Integrative analysis of reference epigenomes in 20 rice varieties

Zhao et al.

Supplementary Fig. 1. eChIP as a fast and robust method for low-input samples in rice.

a, Comparison of chromatin extraction efficiency in different steps of regular ChIP and eChIP in Fig. 1a. The protein-DNA complexes were reverse–cross-linked, and the purified DNA was used to evaluate chromatin content in different steps. Relative chromatin extraction efficiency at the different steps was normalized to the amount of the starting material. Each value represents the mean \pm standard error of mean (n = 3 biological replicates). **b**, Genome-wide correlation heat map (with bin size 1,000 bp) for eChIP-Seq data of two biological replicates across different histone marks and different sample amounts. **c**, Pearson correlation for two replicates of H3K4me3 eChIP-Seq. Numbers of the mapped reads from each genomic bin (10 kb) were plotted in log scale between two replicates. The R value calculated by Pearson correlation coefficient at 10 kb

genomic bin is shown. p-values were calculated by comparing a fitted model to a null model using the 'anova' function; $p < 2.2 \times 10^{-16}$.d, Irreproducible discovery rate analysis for eChIP-Seq and regular ChIP-Seq of H3K4me3. e, Genome browser screenshot showing regular ChIP (5 g input material) and eChIP (0.01–0.2 g input material) datasets from young leaves of rice. f, Genome-wide Pearson correlation heat map (with 1-kb bin size) between H3K4me3 and H3K9me2 with regular ChIP and eChIP data for different sample amounts. g, Reproducibility of peaks called by regular ChIP and eChIP. Venn diagrams display a high percentage of overlap between peaks called by the indicated methods generated from different sample amounts. h, Comparison of the percentages of reads mapped to chloroplast (ChI) or mitochondrion (mt) genome from the regular ChIP and eChIP. i, Comparison of IP preparation time for regular ChIP and eChIP.

Supplementary Fig. 2. eChIP works for modified histones and transcription factor in the indicated plant species.

a–**d**, Pearson correlation for two replicates of H3K4me3 eChIP-Seq data from young leaves of *Arabidopsis* (**a**), Maize (**b**), *Brassica napus* (**c**), and transcription factor (bZIP23) eChIP-Seq data from young leaves of rice (**d**). Representative genome browser screenshots for ChIP-Seq data were also shown.

Supplementary Fig. 3. Antibody specificity validation.

a–e, Western blots of the indicated histone modification antibodies recognizes a ~17 kDa protein in rice protein lysate (left panel). Dot blots confirmed specificity of modified histones (right panel). The experiments were repeated two times with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 4. Correlation analysis for epigenomic datasets in rice.

Genome-wide correlation heatmap (with 10-kb bin size) for eChIP-Seq and FAIRE-Seq datasets across different rice tissues and varieties (MH63, ZS97, and Nip) used in this study. Source Data are provided as a Source Data file.

Supplementary Fig. 5. The association among epigenomic modifications, transcription activity, TE genes and non-TE genes in MH63.

a, Heatmap of epigenetic marks and RNAPII occupancy on all annotated rice genes, which were sorted according to their expression level determined by RNA-Seq. For each gene, the histone mark intensity is displayed along ± 2 kb regions around TSS. **b**, DNA methylation levels for genes showing different expression levels. The y-axis indicates the sample sizes used in the analysis. **c**, Distribution of histone marks, open chromatin (FAIRE), and RNAPII occupancy along genes in young leaves. The gene body was converted into percentiles to standardize genes with different lengths. Regions 1 kb upstream and downstream of the gene are shown. **d**, Number of TE and non-TE genes associated with histone marks, open chromatin, and RNAPII occupancy in the indicated tissues.

Supplementary Fig. 6. DNA methylation and histone modifications of TEs and the effect on gene transcription in young leaves of MH63.

a, Distribution of methylation levels for retrotransposons and DNA transposons. **b**, Percentage of TEs modified by different histone marks. A TE overlapped 1 bp with the histone peak was treated as this histone mark-modified TE. The y-axis indicates the sample sizes used in the analysis. **c**, Distribution of TEs in different regions of the rice genome. MITE includes hAT, CACTA, Mariner, Mutator, Mim, and Harbinger DNA transposons. **d**, Probability density curve of gene expression. TE genes associated with different TEs located in the exon or intron, and non-TE genes are shown.

Genes associated with TEs in exons have higher proportion with low expression. Retrotransposons (*Gypsy* and *Copia*) were more likely to insert into exons than were DNA transposon MITEs. Genes with TEs located in exons had a larger proportion of unexpressed genes than did genes with TE located in introns and with no MITE. **e**, H3K9me2 modification rate of TEs located in different regions of the rice genome. **f**, Probability density curve of gene expression. TE genes motioned in (**e**), with or without H3K9me2, are shown. TE genes associated with H3K9me2-modified exons have higher proportion with low expression. Source Data underlying Supplementary Figure 6d and 6f are provided as a Source Data file.

Supplementary Fig. 7. Chromatin state (CS), TE enrichment, DNA methylation, and gene expression for different rice tissues from MH63 and Nipponbare.

a–**d**, Enrichments for 15-state model based on five histone marks, FAIRE, and RNAPII occupancy in the indicated tissues and varieties. **e**, Enrichments for 12-state model based on five histone marks and FAIRE in root. Cov, genome coverage; Expr, enrichments of expression. Boxplots in **a**-**e** include a median with quartiles and outliers above the top whisker. Coverage in **a** showed the total bin size in whole genome, which indicate the sample sizes used in the analysis.

Supplementary Fig. 8. Epigenetic features and transcription activities of promoters in MH63.

a, **b**, 15 clusters of promoters defined by four histone marks and open chromatin in the indicated tissue, and transcriptional activity of genes in each cluster. Boxplots in **a**, **b** include a median with quartiles and outliers above the top whisker. The numbers indicate sample size used in the analysis.

Supplementary Fig. 9. Epigenetic features and transcription activities of promoters in ZS97. a, b, 15 clusters of promoters defined by four histone marks and open chromatin in the indicated tissue, and transcriptional activity of genes in each cluster. Boxplots in a, b include a median with quartiles and outliers above the top whisker. The numbers indicate sample size used in the analysis.

Supplementary Fig. 10. Epigenetic features and transcription activities of promoters in Nipponbare.

a, **b**, 15 clusters of promoters defined by four histone marks and open chromatin in the indicated tissue, and transcriptional activity of genes in each cluster. Boxplots in **a**, **b** include a median with quartiles and outliers above the top whisker. The numbers indicate sample size used in the analysis.

Supplementary Fig. 11. The effect of FAIRE and H3K4me3-marked promoter regions on transcription.

Similar to the descriptions in Fig. 3b, a transient reporter assay was used to examine the effects of different promoter regions on gene expression in rice protoplasts. The relative fLUC activities from 12 randomly selected genes are shown. Empty vector served as the negative control. The data indicate the relative luminescence level. Each value represents the mean \pm standard error of mean (n = 3 biological replicates). Source data are provided as a Source Data file.

a, Correlations of log2 fold-change in H3K27me3 and gene expression between mature leaf and panicle. **b**, Dynamics of histone marks and transcription in four tissues. Heatmaps of tissue-specific histone marks and gene expression levels are presented. Biological GO functions enriched for differentially regulated genes with elevated expression are shown. ML, mature leaf; P, panicle; R, root; YL, young leaf. **c**, Comparison of DNA methylation levels in different tissues. The whole genome was divided into 200-bp bins to calculate the DNA methylation levels.

Boxplots in **c** show the median, third and first quartiles. ** p < 0.01 from Wilcoxon test. The numbers indicate the sample size used in the analysis. **d**, **e**, Numbers of CHG and CHH DMRs in different tissues. **f**, Log10 ratio of relative CG and CHH DMR switch frequency with which a region switches from one chromatin state (row) to another (column). Source Data underlying Supplementary Figure 12f is provided as a Source Data file.

Supplementary Fig. 13. Dynamics of histone marks and gene expression in different tissues.
a, Correlations of log2 fold-changes in a single histone mark and gene expression between the indicated tissues.
b, Correlations of log2 fold-changes in H3K4me3 and H3K27ac (or H3K27me3)

between the indicated tissues. Color scale indicates the fold-changes in gene expression. Only data of genes with both H3K4me3 and H3K27ac (or H3K27me3) marks are plotted here. ML, mature leaf; P, panicle; R, root; YL, young leaf.

Supplementary Fig. 14. FAIRE-defined distal and proximal DNA regulatory elements.

a, Density distribution of the distance between FAIRE summits and TSS. Red dotted line represents the position of 500 bp upstream of TSS. **b**, Schematic diagram for definition of distal regulatory element (DREs) and proximal regulatory element (PREs). **c**, Motifs identified in the tissue-specific DREs. **d**, An example showing that the expression levels of *MH12g041000* proximal to the DRE (dotted box) was enhanced in the root, but not in the panicle. Source Data underlying Supplementary Figure 14a is provided as a Source Data file.

Supplementary Fig. 15. Rice varieties differences in chromatin states.

a, Relative chromatin state frequency for each reference epigenome in 20 rice varieties. **b**, DNA methylation level of chromatin state, labeled with each state. **c**, Relative switch frequency of chromatin states from *Xian/Indica* to *Geng/Japonica*. Boxplots in **b** show the median , third and first quartiles. **d**. Trends of chromatin state in Aus, ARO (aromatic) and Int (intermediate) subpopulations. Only *Xian/Indica* and *Geng/Japonica* different regions about 45000 bins (per 200 bp) are considered. Source Data underlying Supplementary Figure 15a, 15c, and 15d are provided as a Source Data file.

Supplementary Fig. 16. NMDS analysis for Epigenetic signal in 20 rice Varieties.

a-f, Non-metric Multidimensional scaling (NMDS) plots indicate the relationships of 20 rice varieties based on similarity in each epigenetic signal. First two dimensions are shown as MDS1 versus MDS2. Source Data are provided as a Source Data file.

A		D. L.	Clean	Mapped	Mapping	Peak	EDID	NGG	DEC
Antibody	Sample title	Kaw data	data	reads	rate	No.	FKIP	NSC	KSC
	eChIP 0.2g Rep 1	32,380,414	30,234,556	29,227,622	96.67%	27,626	78.63%	1.60	1.03
	eChIP 0.2g Rep 2	25,292,790	24,096,580	22,547,309	93.33%	25,327	77.94%	1.71	1.05
	eChIP 0.05g Rep 1	38,662,656	36,898,890	34,500,250	93.50%	26,324	85.80%	1.79	1.13
H3K4me3	eChIP 0.05g Rep 2	63,664,220	57,977,455	55,277,397	95.34%	25,267	90.55%	2.19	1.07
	eChIP 0.01g Rep 1	29,618,844	28,252,006	26,254,860	92.93%	27,491	88.36%	1.85	1.11
	eChIP 0.01g Rep 2	27,242,970	23,976,505	22,508,421	93.88%	25,384	87.83%	1.99	1.10
	regular ChIP	27,828,322	26,562,340	25,078,347	94.41%	29,901	83.93%	1.70	1.01
	eChIP 0.2g Rep 1	67,743,714	61,472,015	60,988,077	99.21%	11,341	72.65%	1.04	1.00
	eChIP 0.2g Rep 2	26,368,192	25,353,242	25,103,775	99.02%	12,079	80.72%	1.06	1.06
	eChIP 0.05g Rep 1	21,092,424	19,494,763	19,209,170	98.54%	11,016	73.10%	1.05	1.22
H3K9me2	eChIP 0.05g Rep 2	44,774,648	40,367,759	38,729,736	95.94%	13,457	84.86%	1.08	1.05
	eChIP 0.01g Rep 1	36,291,684	34,669,137	31,375,536	90.50%	12,719	73.86%	1.05	0.90
	eChIP 0.01g Rep 2	44,774,648	27,490,715	26,143,784	95.10%	13,895	80.04%	1.06	0.99
	regular ChIP	50,162,278	47,874,510	44,671,828	93.31%	14,779	61.38%	1.05	0.79

Supplementary Table 1. Summary of regular ChIP-seq and eChIP-seq data from rice young

leaves.

FRiP, fraction of reads in peaks; NSC, normalized strand coefficient; RSC, relative strand correlation.

Tissue	Variety	eChIP- Seq	FAIRE -Seq	RNA -Seq	WGBS	low input eChIP	regular ChIP-Seq	ChIP-re ChIP	
Young leaf	MH63	12	2	2	1	12	2	6	
Young leaf	ZS97	12	2	2	1				
Young leaf	Nip	12	2	2	1				
Young leaf	Aijiaonante	12	2	2	1				
Young leaf	PeiC122	12	2	2	1				
Young leaf	Xibaizhan	12	2	2	1				
Young leaf	WH139	12	2	2	1				
Young leaf	9311	12	2	2	1				
Young leaf	Nanjing11	12	2	2	1				
Young leaf	Gasym Hany	12	2	2	1				
Young leaf	HKG 98	12	2	2	1				
Young leaf	Yong Chal Byo	12	2	2	1				
Young leaf	TAINO 38	12	2	2	1				
Young leaf	Y134	12	2	2	1				
Young leaf	IR72	12	2	2	1				
Young leaf	Latisai1	12	2	2	1				
Young leaf	Ginga	12	2	2	1				
Young leaf	Garia	12	2	2	1				
Young leaf	LABELLE	12	2	2	1				
Young leaf	BASMATI 385	12	2	2	1				
Panicle	MH63, ZS97, Nip	36	6	6	4				
Root	MH63, ZS97, Nip	30	6	6	4				
Mature leaf	MH63, ZS97, Nip	36	6	6	4				
Total		342	58	58	32	12	2	6	510

Supplementary Table 2. Summary of rice epigenome datasets generated in this study.

eChIP-Seq (including two regular ChIP-Seq) data of five histone modification marks (H3K4me3, H3K27ac, H3K4me1, H3K27me3, and H3K9me2), RNA polymerase II (RNAPII), and transcription factor. WGBS, whole-genome bisulfite sequencing. Each experiment has two biological replications.

Tissue	Ticcuo	SRR	data link	Variatios
number	1 18800	accession		v al lettes
	Voung loof	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	
1	(two wook	892	erm=SRX7426703	
1	(IWO-WEEK	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	
	-010)	893	erm=SRX7426704	
	Flag leaf	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	
2	before	898	erm=SRX7426709	Vian/Indica (MH63
2	flower	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	this study)
	transition	899	erm=SRX7426710	uns study)
	Daniala	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	
3	(15.4.5)	894	erm=SRX7426705	
5	(1.5-4.5 cm)	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	
	CIII)	895	erm=SRX7426706	
	One week	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	
	old root	896	erm=SRX7426707	
4	0101001	SRR10751	https://www.ncbi.nlm.nih.gov/sra?t	
		987	erm=SRX7426708	
		SRR51340	https://www.ncbi.nlm.nih.gov/sra/?	Gana/Japonica
5	Four-week -old root	63	term=SRR5134063	(Chilbo)
5		SRR51340	https://www.ncbi.nlm.nih.gov/sra/?	(CIIII00)
		64	term=SRR5134064	
	Calli	SRR37246	https://www.ncbi.nlm.nih.gov/sra/?	Geng/Japonica
6	(embryoni	15	term=SRR3724615	(TNG67)
0	(enioryoni	SRR37246	https://www.ncbi.nlm.nih.gov/sra/?	Yian/Indica (IR64)
	e stage)	16	term= SRR3724616	Alum mulcu (IRO4)
		SRR31234	https://www.ncbi.nlm.nih.gov/sra/?	Hybrid of
		79	term = SRR3123479	Xian/Indica
7	Endosper			(Longtefu) and
,	m	SRR31234	https://www.ncbi.nlm.nih.gov/sra/?	Geng/Japonica
		81	term= SRR3123481	(02428)
		~ *		
		SRR17772	https://www.ncbi.nlm.nih.gov/sra/?	0 sativa
8	Nodes I	39	term= SRR1777239	<i>0. suuvu</i>
0	and II	SRR17772	https://www.ncbi.nlm.nih.gov/sra/?	
		40	term= SRR1777240	O. sativa

Supplementary Table 3. RNA-Seq data for different tissues used in this study.

Tissue	Tissuo	SRR	data link	Variatios
number	115500	accession		v al lettes
		SRR17772 41	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR1777241	O. sativa
9	Stem	SRR17772 42	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR1777241SRR1777242	O. sativa
10	Flower buds before flowering	SRR12136 90	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR1213690	
11	Flowers at the flowering day	SRR12136 91	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR1213691	<i>Geng/Japonica</i> (Nipponbare)
12	Milk grains	SRR12136 96	https://www.ncbi.nlm.nih.gov/sr a/?term SRR1213696=	
13	Mature seeds	SRR12136 97	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR1213697	
14	Panicle (0.3-1.5 cm)	SRR16331 82 SRR16331 87	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR1633182 https://www.ncbi.nlm.nih.gov/sr a/?term= SRR1633187	<i>Geng/Japonica</i> (DongJin)
15	Egg cell	SRR97633 5 SRR97633 6 SRR97633 7	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976335 https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976336 https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976337	
16	Sperm cell	SRR97633 8 SRR97633 9 SRR97634 0	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976338 https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976339 https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976340	<i>Geng/Japonica</i> (Kitaake)
17	Vegetative cell	SRR97634 1 SRR97634 2 SRR97634 3	https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976341 https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976342 https://www.ncbi.nlm.nih.gov/sr a/?term= SRR976343	

Supplementary Table 3. RNA-Seq data for different tissues used in this study (continued).

Tissue number	Tissue	SRR accession	data link	Varieties
		SRR71132	https://www.ncbi.nlm.nih.gov/sra	
10	Three-week-	2	/?term= SRR711322	
18	old leaf	SRR71132	https://www.ncbi.nlm.nih.gov/sra	
	3		/?term= SRR711323	
10		SRR35879	https://www.ncbi.nlm.nih.gov/sra	<i>Geng/Japonica</i>
	Three-week-	5	/?term= SRR358795	Nippolioare
19	old calli	SRR35879	https://www.ncbi.nlm.nih.gov/sra	
		7	/?term= SRR358797	
20	Lamina joints of flag leaf	SRR97616 8	https://www.ncbi.nlm.nih.gov/sra /?term= SRR976168	

Supplementary Table 3. RNA-Seq data for different tissues used in this study (continued).

Target	Construct	Forward primer	Reverse primer
pMCEI M		CCCCTACCCCCATCCTA	TCCCCGCGGCTGCAGGTC
	35S terminator	CACTOCC	GACTCTAGAGGATCCAGG
C/p2DI M		GAGICEG	TCACTGGATTTTGGTTT
C/p2KLW		GGAATTCCATATGGAATTC	GGACTAGTAAGCTTGCAT
C	MCS	GCATGCAAGCTTACTAGTC	GCGAATTCCATATGGAAT
		С	TCC
	FI	GGAATTCCATATGCTATTG	CCCAAGCTTCACAAACAA
	ГL	GGTATGTGGCATCCATAAC	ACAAACCACACAACC
		GGAATTCCATATGATACTT	
	Δ500	GCCGAGTTTTTATACGAAT	
		GC	ACAAACCACACAACC
MH07t010	ΔK4me3	GGAATTCCATATGATACTT	
0900		GCCGAGTTTTTATACGAAT	
promoter		GC	
		GGAATTCCATATGGAAAA	
	FAIREK4me3	ACAACAATGAAATAAACA	
		GAGAA	ACAAACCACACAAACC
	ΔFAIRE	GGAATTCCATATGCCGGCG	CCCAAGCTTCACAAACAA
		AGGTGAACGAAACC	ACAAACCACACAACC
	EI	GGAATTCCATATGCCTCCC	GGAATTCGCCCGTCAGGA
	FL	TCTAAACTTGATACCCCG	TTTCATCGTAC
	4.500	GGAATTCCATATGGTTATT	GGAATTCGCCCGTCAGGA
	Δ300	TGTTGGGGGATTGGGATCTA	TTTCATCGTAC
MH03t004	AV Ame o?	GGAATTCCATATGGTTATT	GGAATTCATGGCTGGCTG
7000		TGTTGGGGGATTGGGATCTA	GTCTGCGAAG
promoter		GGAATTCCATATGAATAGT	CCAATTOCOCCTCACCA
	FAIREK4me3	GTAATTGTACATCAAACGT	GGAATICGCCCGTCAGGA
		ATAA	TITCATCOTAC
		GGAATTCCATATGTTCGCA	GGAATTCGCCCGTCAGGA
	ΔFAIRE	GACCAGCCAGCCAT	TTTCATCGTAC

Supplementary Table 4. Constructs and primer sequences used in this study.

		GGAATTCCATATGTTCAGG	CCCAAGCTTACAACCCCG
	FL		
		ACCIAGATATCACACCCOC	CAAAICOCCIAAAC
		GGAATTCCATATGCAGATG	CCCAAGCTTACAACCCCG
	$\Delta 500$	ACAAGGGAACATTCCTTTT	CAAATCGCCTAAAC
MH10t007		G	
7500		GGAATTCCATATGCAGATG	CCCAAGCTTGGGAGGAG
7500	ΔK4me3	ACAAGGGAACATTCCTTTT	CTCCACACCTTCTACA
promoter		G	GIGGAGAGCIICIAGA
		GGAATTCCATATGCGGTGA	CCCAAGCTTACAACCCCG
	FAIREK4me3	AATATACCGCAGAGTATTT	CAAATCGCCTAAAC
	AFAIDE	GGAATTCCATATGTCCTCC	CCCAAGCTTACAACCCCG
	ΔΓΑΙΚΕ	CATGGCGGCGACGA	CAAATCGCCTAAAC
	EI	GGAATTCGGGGGTCGCTGGA	CCCAAGCTTATGCGACCA
	FL	GATGGAGACG	AGGCGAGGGGA
	Δ500	GGAATTCTCGTTGATGTTA	CCCAAGCTTATGCGACCA
MU02±047		CAGTGTCGCATGATG	AGGCGAGGGGA
6200	ΔK4me3	GGAATTCTCGTTGATGTTA	CCCAAGCTTGCATGTGGG
0200		CAGTGTCGCATGATG	CCTCCCGTCGC
promoter	FAIREK4me3	GGAATTCTTACCAAAACGC	CCCAAGCTTATGCGACCA
		TCTTACAAGGTCT	AGGCGAGGGGA
	AFAIDE	GGAATTCCGAGGGAAGCG	CCCAAGCTTATGCGACCA
	ΔΓΑΙΚΕ	AAGGTAAGGAA	AGGCGAGGGGA
	EI	GGAATTCTTTTGTCGCCTA	CCCAAGCTTACATACCTT
	TL	TTTTTTCACGG	GCCATCGACTTCCC
	4 500	GGAATTCGATATATGCACG	CCCAAGCTTACATACCTT
MU11+056	Δ300	TGTTCTCCTGGTGA	GCCATCGACTTCCC
1700	AV/mo2	GGAATTCGATATATGCACG	CCCAAGCTTGGTGCCGCC
1700 promoter		TGTTCTCCTGGTGA	TCTTCAAATCTCTCC
promoter	EAIDEK/mo2	GGAATTCGGTTTTTTCTTTTC	CCCAAGCTTACATACCTT
		TTTTTCCGCACT	GCCATCGACTTCCC
	ΔΕΔΙΡΕ	GGAATTCCTGGGCGTTTTC	CCCAAGCTTACATACCTT
	ΔΓΑΙΚΕ	CGTGTTTGAAT	GCCATCGACTTCCC

Supplementary Table 4. Constructs and primer sequences used in this study (continued).

	FI	GGAATTCCTTCAGTTCACC	CCCAAGCTTAATTAAATC
	ГL	CAAAAAAAATCCT	CGGACCACACAAGTTT
	4500	GGAATTCCCTCTCTGGCAC	CCCAAGCTTAATTAAATC
MI102400C	Δ300	AACTGACCTTG	CGGACCACACAAGTTT
MH03000	AV Ame o?	GGAATTCCCTCTCTGGCAC	CCCAAGCTTAGCTGACGT
2000		AACTGACCTTG	GAACCATCGTCGC
promoter		GGAATTCTGAAGAGGAGG	CCCAAGCTTAATTAAATC
	FAIRER4IIIe5	AGCCGCAAGAA	CGGACCACACAAGTTT
		GGAATTCGCCTTACCTGTT	CCCAAGCTTAATTAAATC
	ΔΓΑΙΚΕ	GTGTTCTTCGTC	CGGACCACACAAGTTT
	EI	GGAATTCCATATGTAACGC	CCCAAGCTTAACCACAAC
	ГL	CACCAACCTCCTCACTATT	CAAGAAACCGCCC
		GGAATTCCATATGTTTCTA	
	Δ500	TTTTCAGGATAAACCATGT	CLAAGETTAACCACAA
MU00+010		CGG	CAAUAAACCUCCC
2700	ΔK4me3	GGAATTCCATATGTTTCTA	
2700		TTTTCAGGATAAACCATGT	CTCTCTCCCCTCTC
promoter		CGG	
	FAIREK4me3	GGAATTCCATATGTCTCCG	CCCAAGCTTAACCACAAC
		TGAAAAAACAATATGATG	CAAGAAACCGCCC
	ΛΕΛΙΦΕ	GGAATTCCATATGCCGACC	CCCAAGCTTAACCACAAC
		CTCCTCTCGTCCTATC	CAAGAAACCGCCC
	FI	CGAGCTCGTAGATCCTTGT	GGAATTCTAAAAAGTTCC
	L.	ACCAGCGTACCC	TACCAGAATCGCC
	4500	CGAGCTCGAAGGAGGGAG	GGAATTCTAAAAAGTTCC
MU02+042	Δ300	TACTTGTCAA	TACCAGAATCGCC
MI1031043	AV/mo2	CGAGCTCGAAGGAGGGAG	GGAATTCGCTTGAGGGAA
4200 promoter		TACTTGTCAA	ACCATCGCC
promoter	EAIDEK/mo2	CGAGCTCTTTTGTGTGAAT	GGAATTCTAAAAAGTTCC
		GACTAATGGGTCC	TACCAGAATCGCC
	ΔΕΔΙΦΕ	CGAGCTCCTACCGTATGAT	GGAATTCTAAAAAGTTCC
	ΔΓΑΙΚΕ	GTTCTGTGCCTGC	TACCAGAATCGCC

Supplementary Table 4. Constructs and primer sequences used in this study (continued).

	EI	GGAATTCTTGGTTAAAATT	CCCAAGCTTTCAGGATTG
	FL	ATTTCTAGGGCTCTG	GACAACATAAAACACC
	4500	GGAATTCTTTTTGGTTTGA	CCCAAGCTTTCAGGATTG
MH07~042	Δ300	CTGATATGTGGAT	GACAACATAAAACACC
MH0/g042	AV/ma2	GGAATTCTTTTTGGTTTGA	CCCAAGCTTCATGGCTGG
nomotor		CTGATATGTGGAT	ATTAGCTCGGTAG
promoter	EAIDEK/ma2	GGAATTCTTTTTGGTTTGA	CCCAAGCTTTCAGGATTG
	FAIRER4IIIe3	CTGATATGTGGAT	GACAACATAAAACACC
	AFAIDE	GGAATTCATTCCTGAAGGT	CCCAAGCTTTCAGGATTG
	ΔΓΑΙΚΕ	CTGCGTGCTA	GACAACATAAAACACC
	EI	GGAATTCCATATGCTGCAC	CCCAAGCTTGCTAACCCC
	FL	ATATATACACAGCGGGC	TAACCCGAAACGAT
		GGAATTCCATATGATATTT	
	Δ500	TCATTAAATCTATAATTGA	
MUOGHOGT		ATAAT	TAACCCOAAACOAT
2200	ΔK4me3	GGAATTCCATATGATATTT	
2200		TCATTAAATCTATAATTGA	CATECCCCACCCC
promoter		ATAAT	UAICOOCOAOOOC
	FAIREK4me3	GGAATTCCATATGTACCAT	CCCAAGCTTGCTAACCCC
		CCATCTCGCTTTCTGC	TAACCCGAAACGAT
	AFAIDE	GGAATTCCATATGACGAGG	CCCAAGCTTGCTAACCCC
	ΔΓΑΙΚΕ	TATGCTGCTGTGTGTGTG	TAACCCGAAACGAT
	EI	GGAATTCCATATGCCCAGT	GGAATTCCTACCAGATCC
	T'L	TTTTTTCCCCTGCATGT	GATCATACTGAGCG
	4 500	GGAATTCCATATGGAAGCA	GGAATTCCTACCAGATCC
MU11+029	Δ300	GCTCCTTCTTGCGGAT	GATCATACTGAGCG
0000	AV 1mo2	GGAATTCCATATGGAAGCA	GGAATTCAAACACAACG
0900		GCTCCTTCTTGCGGAT	ATCTGGCGCGGA
promoter	EAIDEV/ma2	GGAATTCCATATGGTTGAG	GGAATTCCTACCAGATCC
		GCATACGATTTAGATTAGC	GATCATACTGAGCG
	AFAIDE	GGAATTCCATATGCCGGAT	GGAATTCCTACCAGATCC
	ΔFAIRE	CCACTCAACCCCCC	GATCATACTGAGCG

Supplementary Table 4. Constructs and primer sequences used in this study (continued).

	EI	GGAATTCCATATGCCGCCC	CCCAAGCTTATAAGCAAA
	FL	TCTCGCTAGATCCAGA	TCTATGACACCACTACAG
	4.500	GGAATTCCATATGACTGAG	CCCAAGCTTATAAGCAAA
MI1054027	Δ300	AACGCTCTCGGTTTAGAT	TCTATGACACCACTACAG
MH031027 4800	AV Ama?	GGAATTCCATATGACTGAG	CCCAAGCTTCTTGTTGGA
4000		AACGCTCTCGGTTTAGAT	TTGCAGCTAGGGCC
promoter	EAIDEK4ma2	GGAATTCCATATGACTGAG	CCCAAGCTTATAAGCAAA
	FAIRER4IIIe3	AACGCTCTCGGTTTAGAT	TCTATGACACCACTACAG
	AFAIDE	GGAATTCCATATGCCCCAG	CCCAAGCTTATAAGCAAA
	ΔΓΑΙΚΕ	GTCCTTTTCTCATCAC	TCTATGACACCACTACAG
		GGAATTCCATATGTGGCCT	
	FL	AAAGCAGATTCTAGTATTA	
		AAC	AICAUIAAIAAUCUCA
	Δ500	GGAATTCCATATGTTAATC	CCCAAGCTTAAAGAGTCC
NILL004025		TCAAAACATGATGCTCAGG	ATCAGTAATAAGCCCA
MH08t035	AV Amer 2	GGAATTCCATATGTTAATC	CCCAAGCTTCGAGACGAG
5400	ΔK4me3	TCAAAACATGATGCTCAGG	ACAAGAGGAGGAAC
promoter		GGAATTCCATATGAATATT	
	FAIREK4me3	GTTAAGGTTTATTTTGGTT	
		ACA	AICAGIAAIAAGUUUA
		GGAATTCCATATGGAAGA	CCCAAGCTTAAAGAGTCC
	ΔFAIRE	AGTGTGCGTACTACTGCGT	ATCAGTAATAAGCCCA

Supplementary Table 4. Constructs and primer sequences used in this study (continued).

		Const	ruct	qRT-PCR		
	Target	Forward Reverse		Forward	Reverse	
		primer	primer	primer	primer	
	1: MH11g04922 00 2: MH02g01670 00	ACACTCTTT CCCTACACG ACGGCACAC GACACGAGC ACGAA ACACTCTTT CCCTACACG ACGCCAATC TAAGAACAA	GACTGGAG TTCAGACG TGTGCTCT CTCTACCT CTTCTTGA GCCTAA GACTGGAG TTCAGACG TGTGCTTT TTCGCACT	GTACAAC ACTCTTT CCCTACA CGAC GTACAAC ACTCTTT CCCTACA CGAC	GAGGAAGT GGACTGCG AGTT GCTAGCGG ATTTCTTAG GTGC	
	00	GAAGAGATC C	GTCATATT GAATAC			
Enhancer- like promoter	3: MH06g05865 00	ACACTCTTT CCCTACACG ACGGAGGA ATAGTGGTA CTCTCTCTG TC	GACTGGAG TTCAGACG TGTGCCGT AACAATGT GTCAATGT CTGC	GTACAAC ACTCTTT CCCTACA CGAC	ACAGCTTCT CGTTGGGT GAT	
	4: MH09g03783 00	ACACTCTTT CCCTACACG ACGTATGTG GAAAAGTTT GTACTAACG	GACTGGAG TTCAGACG TGTGCCAC TTGATCCC CAGGAAGT AGG	GTACAAC ACTCTTT CCCTACA CGAC	TCAGCTGTC TCCTCCGAT CT	
	5: MH09g04315 00	ACACTCTTT CCCTACACG ACGCTTTTG GCTAGTTCT ATAAACAGG	GACTGGAG TTCAGACG TGTGCTTT GCGGTCAA GAACTAAA GATTA	GTACAAC ACTCTTT CCCTACA CGAC	AGGGACGA AGGGAGTA AGAGA	

Supplementary Table 5. Primer sequences used for enhancer validation in this study.

Supplementary Table 5. Primer sequences used for enhancer validation in this study (continued).

		ACACTCTTT	GACTGGAG	GTACAAC	TGCATTTGG
	1:	CCCTACACG	TTCAGACG	ACTCTTT	CCCTAGCTA
		ACGATTCTT	TGTGCATA	CCCTACA	CC
	102650	GCATTTCCC	ATTCTTAG	CGAC	
	-102650	ATATTCATA	TATTGTTA		
		Т	CCTGCC		
		ACACTCTTT	GACTGGAG	GTACAAC	CTTTGACCC
	2.	CCCTACACG	TTCAGACG	ACTCTTT	CTCGGCATC
	<i>2</i> :	ACGACTAAA	TGTGCATC	CCCTACA	TT
	cnr3:1151199	CACAGCCTA	CGAACTGG	CGAC	
	7-11512850	ATACACTCG	TCTTTGCG		
		Т	TAG		
		ACACTCTTT	GACTGGAG	GTACAAC	ACGATTGT
	2	CCCTACACG	TTCAGACG	ACTCTTT	ACGTGGCT
Distal	3: chr10:161860 41-16186708	ACGAAAATA	TGTGCACT	CCCTACA	ATCTCG
enhancer		CATAGACCT	CCAAGACG	CGAC	
		TGACATCAC	CAGTGTGT		
		G	ATGAC		
			GACTGGAG	GTACAAC	GATCCAAC
	4: chr1:2162786 4-21628585	ACACICITI	TTCAGACG	ACTCTTT	CGGACAAG
		ACGTGTAGC AAACCATGG	TGTGCGAA	CCCTACA	TGCT
			CTCAGCCT	CGAC	
			TAATCTTG		
		AACCACC	CCTGT		
			GACTGGAG	GTACAAC	CGCTTGTCT
	-	ACACICITI	TTCAGACG	ACTCTTT	TTTAGCCGG
	5:	CCCTACACG	TGTGCAAT	CCCTACA	GA
	cnr/:2256168	ACGGAACIA	AGAACAAA	CGAC	
	8-22562357	AACACGGIG	TTAAACTG		
		CAACCAT	AAAATAGC		
			GACTGGAG	GTACAAC	CGGTTATG
			TTCAGACG	ACTCTTT	GGCGGGTC
Control	chr2:2841215	ACCTCCATA	TGTGCAGG	CCCTACA	TAAC
Control	1-28413151	ACGIGUATA	ACCGGTTC	CGAC	
			ACGAGTTT		
		AICCC	С		