Supplementary Method. Generation of the tested compounds in this study.

 1_a (#15, 51-60-re-A). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-methyl 9-(2-((tert-butoxycarbonyl)amino)acetoxy)-1,2-dihydroxy-8,11a-dimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-(epoxymethano) dibenzo[de,g]chromene-3-carboxylate

Boc-glycine (25 mg, 0.144 mmol), EDC·HCl (37 mg, 0.192 mmol), and 4-DMAP (12 mg, 0.0962 mmol) was added to brusatol (50 mg, 0.0962 mmol) in 2 mL THF. The reaction was stirred overnight. After diluting with EtOAc, the reaction mixture was washed with saturated aqueous NH₄Cl twice and then with brine once. The organic phase was concentrated and purified with HPLC with acetonitrile (0.1% TFA) in water (0.1% TFA) at a gradient of 34-69% in 10 min, to give a white solid (36.4 mg, 55.9%). ¹H NMR (300 MHz, CDCl₃): δ 5.59 (s, 1H), 4.78 (broad s, 1H), 4.69 (d, *J* = 7.5 Hz, 1H), 4.18-4.10 (m, 2H), 4.10-4.04 (m, 2H), 3.75-3.68 (m, 4H), 3.36-3.32 (m, 1H), 3.20-3.08 (m, 1H), 3.06-2.96 (m, 1H), 2.94-2.64 (m, 2H), 2.43-2.28 (m, 2H), 2.13 (s, 3H), 2.08-2.02 (m, 1H), 1.88 (s, 3H), 1.85-1.72 (m, 1H), 1.77 (s, 3H), 1.42 (s, 3H), 1.40 (s, 9H); Calculated for C₃₃H₄₃NO₁₄, 677.69; observed (M+H)⁺ 678.8.

2_b (#14, 51-60-C). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-methyl 9-(((S)-2-amino-3phenylpropanoyl)oxy)-1,2-dihydroxy-8,11a-dimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-

(epoxymethano)dibenzo[de,g]chromene-3-carboxylate.

According to the procedure for preparation of compound 1_a , brusatol (20 mg, 0.0385 mmol) was treated with Boc-L-phenylalanine (15 mg, 0.0577 mmol), EDC·HCl (15 mg, 0.769 mmol), and 4-DMAP (4.7 mg, 0.0385 mmol) afford 1_b [HPLC purification with a gradient of 41-76% of acetonitrile (0.1% TFA) in water (0.1% TFA) in 10 min], which was converted to 2_b as a clear oil. upon acidic deprotection. ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.26 (m, 5H), 5.576 (s, 1 H), 4.774 (s, 1 H), 4.656 (d, *J* = 7.5 Hz, 1 H), 4.48-4.32 (m, 1H), 4.44-4.34 (m, 1H), 4.16-4.06 (m, 2H), 3.70 (s, 3H), 3.62-3.52 (m, 2H), 3.32-3.26 (m, 2H), 3.22-2.95 (m, 1H), 2.95-2.84 (m, 2H), 2.43-2.25 (m, 2H), 2.11 (s, 3H), 2.07-2.00 (m, 1H), 1.86 (s, 3H), 1.75-1.63 (m, 3H), 1.62-1.56 (m, 1H), 1.42-1.16 (m, 3H); Calculated for C₃₅H₄₁NO₁₂, 667.70; observed (M+H)⁺ 668.8.

2_c (#26, 51-62-NB-B2, 51-69). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-methyl 9-((3aminobutanoyl)oxy)-1,2-dihydroxy-8,11a-dimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-

(epoxymethano)dibenzo[de,g]chromene-3-carboxylate.

According to the procedure for preparation of compound 1_a , brusatol (50 mg, 0.0962 mmol) was treated with Boc- β -HoAla-OH (29 mg, 0.144 mmol), EDC·HCl (37

mg, 0.192 mmol), and 4-DMAP (12 mg, 0.0962 mmol) afford **1**_e [HPLC purification with a gradient of 34-69% of acetonitrile (0.1% TFA) in water (0.1% TFA) in 10 min], which was converted to **2**_e upon acidic deprotection. There were two isomers in the mixture, which was purified by HPLC with a gradient of 20-55% in 10 min. The 2nd fraction was the main product, as a white solid (20.1 mg, 29.0% in two steps). ¹H NMR (300 MHz, CDCl₃): δ 5.59 (s, 1H), 4.79 (s, 1H), 4.68 (d, *J* = 8.1 Hz, 1H), 4.18-4.10 (m, 2H), 3.76-3.62 (m, 4H), 3.36-3.30 (m, 2H), 3.21-3.11 (m, 1H), 3.09-3.00 (m, 1H), 2.95-2.78 (m, 5H), 2.46-2.28 (m, 2H), 2.13 (s, 3H), 2.10-2.02 (m, 1H), 1.88 (s, 3H), 1.86-1.80 (m, 1H), 1.78 (s, 3H), 1.41 (s, 3H), 1.39 (s, 3H); Calculated for C₃₀H₃₉NO₁₂, 605.63; observed (M+H)⁺ 606.8.

2_d (#31, 51-64-NB, 51-80). (2S)-(1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-1,2dihydroxy-3-(methoxycarbonyl)-8,11a-dimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-

(epoxymethano)dibenzo[de,g]chromen-9-yl pyrrolidine-2-carboxylate.

According to the procedure for preparation of compound 1_a , brusatol (20 mg, 0.0385 mmol) was treated with Boc-Pro-OH (12 mg, 0.0577 mmol), EDCI·HCl (15 mg, 0.769 mmol), and 4-DMAP (4.7 mg, 0.0385 mmol) afford 1_d [HPLC purification with a gradient of 35-70% of acetonitrile (0.1% TFA) in water (0.1% TFA) in 10 min], which was converted to 2_d as a clear oil (10.7 mg, 38.2%) upon acidic deprotection. ¹H NMR (300 MHz, CDCl₃): δ 5.59 (s, 1H), 4.79 (broad s, 1H), 4.71-4.64 (m, 2H), 4.17-4.09 (m, 2H), 3.75-3.65 (m, 5H), 3.64-3.54 (m, 2H), 3.36-3.30 (m, 2H), 3.20-3.70 (m, 2)2.58-2.44

(m, 2H), 2.44-2.28 (m, 2H), 2.13 (s, 3H), 2.18-2.02 (m, 3H), 2.00-1.92 (m, 2H), 1.88 (s, 3H), 1.84-1.74 (m, 2H), 1.64-1.40 (m, 3H); Calculated for C₃₁H₃₉NO₁₂, 617.64; observed (M+H)⁺ 618.8.

4_a (5, 51-57-C). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-1,2,9-trihydroxy-3-((2methoxyethyl)carbamoyl)-8,11a-dimethyl-5,10-dioxo-

2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-

(epoxymethano)dibenzo[de,g]chromen-4-yl 3-methylbut-2-enoate

3 (B-acid) (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-1,2,9-trihydroxy-8,11a-dimethyl-

4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-

dodecahydro-1H-3,3a1-(epoxymethano) dibenzo[de,g] chromene-3-carboxylic acid (B-acid).

LiOH_(aq) (1 M, 1.1 eq) was added to brusatol in THF, and the reaction was stirred overnight. The resulting intermediate was purified by HPLC with acetonitrile (0.1% TFA) in water (0.1% TFA). ¹H NMR (CDCl₃-MeOD): 6.33 (broad s, 1H, H15), 5.68 (s, 1H, H2'), 4.80 (s, 1H, H7), 4.74 (d, J = 7.6 Hz, 1H, H20b), 4.22 (s, 1H, H12), 4.13 (s, 1H, H11), 3.80 (d, J = 7.3 Hz, 1H, H14), 3.09 (d, J = 10.3 Hz, 1H, H20a), 2.98 (s, 1H, H1b), 2.93 (s, 1H, H5), 2.50-2.30 (m, 2H, H9 & H1b), 2.18 (s, 3H), 2.21-2.10 (m, 1H, H6a), 1.91 (s, 3H), 1.85 (s, 3H), 1.84-1.68 (m, 1H, H6b), 1.39 (S, 3H); Calculated for C25H30O11, 506.2; observed 507.6. To the **3** (**B-acid**) (10 mg, 0.020 mmol) with excess triethylamine in 2 mL DCM, was added EDC·HCl (19 mg, 0.099 mmol), HOBT·H₂O (13 mg, 0.099 mmol), and 2methoxyethanamine (9 μ L, 0.099 mmol). The reaction was stirred at room temperature overnight. Then it was partitioned between EtOAc and saturated aqueous NH₄Cl. The organic phase was concentrated and purified by HPLC, resulting in the product as a white solid. ¹H NMR (300 MHz, CDCl₃): δ 5.59 (s, 1H), 4.78-4.68 (m, 2H), 4.14-4.09 (m, 1H), 3.91 (s, 1H), 3.71 (d, *J* = 7.5 Hz, 1H), 3.42-3.36 (m, 2H), 3.36-3.31 (m, 3H), 3.31-3.28 (m, 2H), 2.72-2.61 (m, 2H), 2.39-2.25 (m, 2H), 2.12 (s, 3H), 2.10-2.07 (m, 1H), 1.86 (s, 3H), 1.81-1.76 (m, 3H), 1.75-1.63 (m, 1H), 1.32 (s, 3H)); Calculated for C₂₈H₃₇NO₁₁, 563.59; observed (M+H)⁺ 564.7.

4_b (6, 51-57-D). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-1,2,9-trihydroxy-3-(isopentylcarbamoyl)-8,11a-dimethyl-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11bdodecahydro-1H-3,3a1-(epoxymethano)dibenzo[de,g]chromen-4-yl 3-methylbut-2enoate.

According to the procedure for preparation of compound 4_a , 3 (10 mg, 0.020 mmol) was treated with EDC·HCl (19 mg, 0.099 mmol), HOBT·H₂O (13 mg, 0.099 mmol), and isoamylamine (11 µL, 0.099 mmol) to afford 4_b as a white solid. ¹H NMR (300 MHz, CDCl₃): δ 5.64 (s, 1H), 4.79 (d, J = 7.5 Hz, 1H), 4.73 (broad s, 1H), 4.19-4.15 (m, 1H), 3.93 (broad s, 1H), 3.71 (d, J = 7.5 Hz, 1H), 3.46-3.36 (m, 1H), 3.36-3.22 (m, 1H), 3.18-3.04 (m, 1H), 2.98-2.86 (m, 2H), 2.42-2.28 (m, 2H), 2.25-2.10 (m, 3H), 1.91-

1.86 (m, 4H), 1.75-1.65 (m, 3H), 1.64-1.50 (m, 2H), 1.41-1.36 (m, 2H), 1.35 (s, 3H), 0.92-0.85 (m, 7H)); Calculated for C₃₀H₄₁NO₁₀, 575.65; observed (M+H)⁺ 576.8.

Brusatol (34, 51-70-A)

To **3** (15 mg, 0.030 mmol) in 2 mL MeOH, EDC·HCl (11 mg, 0.059 mmol) and 4-DMAP (4 mg, 0.030 mmol) was added. The reaction was stirred at room temperature overnight. Then it was partitioned between EtOAc and saturated aqueous NH₄Cl. The organic phase was concentrated down and purified by HPLC, resulting in the product as a white solid (4.9 mg, 32%). ¹H NMR (300 MHz, CD₃OD): δ 5.67 (s, 1H), 4.83 (broad s, 1H), 4.70 (d, *J* = 7.6 Hz, 1H), 4.22-4.14 (m, 2H), 3.74-3.68 (m, 4H), 3.40-3.20 (m, 2H), 3.01-2.92 (m, 1H), 2.88-2.79 (m, 1H), 2.57-2.48 (m, 1H), 2.35-2.25 (m, 1H), 2.23-2.19 (m, 1H), 2.17 (s, 3H), 1.94 (s, 3H), 1.89-1.85 (m, 1H), 1.84 (s, 3H), 1.37 (s, 3H); Calculated for C₂₅H₃₀O₁₁, 520.53; observed (M+H)⁺ 521.7.

5b (35, 51-70-C). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-isopropyl 1,2,9-trihydroxy-8,11a-dimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-(epoxymethano)dibenzo[de,g]chromene-3-carboxylate.

According to the procedure for preparation of compound 5_a , 3 (15 mg, 0.030 mmol) was treated with EDC·HCl (11 mg, 0.059 mmol) and 4-DMAP (4 mg, 0.030 mmol), and isopropanol (2 mL) to afford 5_b as a white solid (3.5 mg, 21%). ¹H NMR (300 MHz, CD₃OD): δ 5.67 (s, 1H), 4.83-4.79 (m, 1H), 4.69 (d, J = 7.6 Hz, 1H), 4.21-4.14 (m, 2H), 3.75-3.66 (m, 1H), 3.40-2.20 (m, 3H), 3.02-2.92 (m, 1H), 2.88-2.80 (m, 1H), 2.58-2.48 (m, 1H), 2.35-2.25 (m, 1H), 2.25-2.19 (m, 1H), 2.16 (s, 3H), 2.00-1.89 (m, 4H), 1.89-1.80 (m, 3H), 1.37 (s, 3H), 1.33-1.22 (m, 6H); Calculated for C₂₈H₃₆O₁₁, 548.58; observed (M+H)⁺ 549.7.

6 (51048). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-methyl 1,2-dihydroxy-8,11adimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-9-((5-((3aS,4S,6aR)-2oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)oxy)-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-

(epoxymethano)dibenzo[de,g]chromene-3-carboxylate.

To brusatol (20 mg, 0.0385 mmol) in 2 mL DCM, EDC·HCl (15 mg, 0.769 mmol), 4-DMAP (4.7 mg, 0.0385 mmol), and D-biotin (9 mg, 0.0385 mmol) was added. The reaction was stirred at room temperature for 2 days. Then it was diluted with EtOAc and washed with saturated aqueous NH₄Cl and brine. The organic phase was concentrated down and then purified by HPLC with acetonitrile (0.1% TFA) in water (0.1% TFA) at a gradient of 20-60% in 12 min, resulting in the product as a white solid (13.7 mg, 47.7%). ¹H NMR (CDCl₃-MeOD): (ppm) 5.62 (s, 1H, 2'), 4.78 (s, 1H, 15),

4.75-4.60 (m, 1H, H7), 4.55-4.35 (m, 2H, NHCH &H20b), 4.34-4.03 (m, 2H, NHCH & H12), 3.79 (s, 3H, OMe), 3.85-3.70 (m, 1H, H14), 3.30-3.00 (m, 3H, H20a & SCH & H11), 3.00-2.75 (m, 2H, SCHa & SCHb), 2.70-2.55 (m, 1H, H1a), 2.45-2.00 (m, 5H, H5, COCH2 & CH3 & H1b), 1.98-1.30 (m, 18H, 3xCH2 & H6x2 & H9 & 3xCH3); Calculated for C36H46N2O13S, 746.3; observed 747.4.

7 (51052). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-methyl 1,2-dihydroxy-8,11adimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-9-((6-(5-((3aS,4R,6aR)-2oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoyl)oxy)-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-

(epoxymethano)dibenzo[de,g]chromene-3-carboxylate.

Brusatol (10.2 mg, 0.02 mmol), N-(+)-Biotinyl-6-aminohexanoic acid (7.0 mg, 0.02 mmol), EDCI (7.7 mg, 0.04 mmol), DMAP (2.4 mg, 0.04 mmol) were dissolved in CH₂Cl₂ (1 ml). The mixture was stirred under argon at room temperature for a week. Solvent was removed in vacuo, and the residue was partitioned between ethyl acetate and brine. The organic phase was concentrated. The desired conjugate (1.7 mg) was obtained as a white solid after HPLC separation (gradient: 20-53% of acetonitrile : water in 15 minutes) and lyophilization. ¹H NMR (CDCl₃-MeOD): (ppm) 5.69-5.63 (m, 1H, 2'), 4.86-4.81 (m, 1H, 7), 4.80-4.72 (m, 1H, H12), 4.58-4.48 (m, 1H, NH)4.34-4.27 (m, 2H, NH & H11), 4.27-4.22 (m, 1H, H20b), 3.78 (s, 3H, OMe), 3.82-3.72 (m, 1H, H14), 3.30-3.10 (m, 4H, H20a & NCH2 & SCH), 3.03-2.75 (m, 3H, H5 & 1a & SCHa), 2.65-2.35

(m, 2H, SCHb & 1b), 2.25-2.15 (m, 7H, 2xCOCH2 & CH3), 1.90 (s, 3H), 1.90-1.30 (m, 21H, 6xCH2 & H6x2 & H9 & 2xCH3); Calculated for C42H57N3O14S, 859.4; observed 861.0.

8 (51046). (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS)-1,2,9-trihydroxy-8,11a-dimethyl-5,10-dioxo-3-((6-(5-((3aS,4R,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentanamido)hexyl)carbamoyl)-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-(epoxymethano)dibenzo[de,g]chromen-4-yl 3-methylbut-2-enoate.

To **3** (12 mg, 0.024 mmol) and excess triethylamine in 2 mL DCM, EDC·HCl (23 mg, 0.12 mmol), HOBT·H₂O (16 mg, 0.12 mmol), and N-(6-aminohexyl)-biotinamide (41 mg, 0.12 mmol) was added. The reaction was stirred at room temperature for 2 days. Then it was partitioned between EtOAc and saturated aqueous NH₄Cl. The organic phase was concentrated and then purified by HPLC at a gradient of 20-70% in 20 min to provide a white solid (3.7 mg, %) after lyophilization . ¹H NMR (CDCl₃-MeOD): 7.50-7.38 (m, 1H), 5.64 (s, 1H, H2'), 4.90-4.75 (m, 2H, H20b &H15), 4.55-4.45 (m, 1H, NHCH), 4.38-4.25 (m, 1H, NHCH), 4.23-4.15 (m, 1H, H7), 3.96 (s, 1H, H12), 3.85-3.75 (m, 1H, H11), 3.60-3.30 (m, 1H, H20a), 3.30-3.10 (m, 6H, 2xNHCH2 & SCH & H14), 3.00-2.85 (m, 3H, SCH2 & H5), 2.83-2.68 (m, 1H, H1a), 2.50-2.30 (m, 2H, H9 and H1b), 2.24-2.10 (m, 6H, CH3 & COCH2 & H6a), 1.93 (s, 3H), 1.85 (s, 3H), 1.85-1.20 (m, 18H, 7xCH2 & CH3 & H6b).

9

Supplementary Figures

Supplementary Fig. 1. RNA-Seq analysis of Brusatol-treated cells. (a) Microscopic pictures show the normal status of tested cells. (b) P-value and overlap percent of Brusatol-related signaling pathways were demonstrated from RNA-Seq analysis. (c) Heatmap summarized the up-regulated and down-regulated genes in Brusatol-treated LCL1 cells.

Supplementary Fig. 2. Biotin-conjugated Brusatol compounds exhibit inhibitory effects. (a) Chemical structures of synthesized biotin-conjugated compounds were shown. (b) IC50 assays of biotin-conjugated compounds were performed in multiple PDXs and lymphoma cells.

>10

1.393

>10

>10

0.132

JeKo-1

1.186

0.028

Supplementary Fig. 3. Developed Brusatol analogs show inhibitory effects *in vitro* and *in vivo*. (a-c) Chemical structures of representative Brusatol analogs with different modifications were shown. (d) The compound #1 was shown as an inactivated drug. (e) MOLM14 cells were treated with 100 nM Brusatol for different times (0, 24 hours, 48 hours, 72 hours) and cell viability was examined by detecting luminescence activity. Results are the mean \pm standard error of the duplicates. ****p < 0.0001 shows the significant differences between the indicated groups. (f) MOLM14 cells were treated with 100 nM Brusatol for indicated times (0, 24 hours, 48 hours) and cell cycle assay was determined with flow cytometry. The subG1 population in cells was labeled as the percentage. (g) The expressions of PI3K associated proteins were detected in Raji, MOLM14, and SU-DHL-4 cells with western blot. (h) The microscopic examination of these tumors from the dissected mice was shown. (i) Mice weight was monitored after

Brusatol or its analogs treatment *in vivo*. (j) Total RNAs were extracted from the xenografts, and Real-time PCR analysis was performed to detect PIK3CG and GSK3B expression. Results are the mean \pm standard error of the samples (n=3). *p < 0.05 and **p < 0.01 show the significant differences as compared to the control group.

Cells	Organism	Cell type/Disease	Source/Code
AML	human	Monocyte, acute myeloid leukemia	Dr. Mariusz Wasik
BJAB	human	B lymphocyte, Burkitt's lymphoma	Lab
BL41	human	Burkitt's lymphoma	Lab
DLCL2	human	Diffuse large B-cell lymphoma germinal center B-cell type, B-cell lymphoma	Dr. Ari Melnick
HepG2	human	Hepatocellular carcinoma	Lab
HL-60	human	Promyeloblast, acute promyelocytic leukemia	Dr. Jianxin You
H929	human	B lymphocyte, plasmacytoma, myeloma	ATCC (CRL-9068)
K562	human	Chronic myelogenous leukemia (CML)	Dr. Jianxin You
LCL1	human	Epstein-Barr virus-transformed lymphoblastoid cell lines	Lab
LCL2	human	Epstein-Barr virus-transformed lymphoblastoid cell lines	Lab
MOLM14	human	Acute myeloid leukemia	DSMZ (ACC 777)
MOLT-4	human	T lymphoblast, acute lymphoblastic leukemia	ATCC (CRL-1582)
NB-4	human	Acute promyelocytic leukemia	Dr. Jianxin You
PBMC	human	Primary Peripheral Blood Mononuclear Cells, normal	Upenn, HIC
Raji	human	B lymphocyte, Burkitt's lymphoma	Lab
RPMI-8226	human	Plasma cell myeloma, B lymphocyte, plasmacytoma	ATCC (CCL-155)
SU-DHL-4	human	Diffuse large B-cell lymphoma germinal center B-cell type, B lymphocyte	Dr. Ari Melnick
SU-DHL-6	human	Diffuse large B-cell lymphoma germinal center B-cell type, B lymphocyte	Dr. Ari Melnick
SU-DHL-10	human	Diffuse large B-cell lymphoma, B lymphocyte, large cell lymphoma	ATCC (CRL-2963)
WL-1	human	Mantle cell lymphoma	Dr. Mariusz Wasik

Supplementary Table. Cell lines, antibodies, primers, and compounds used in this study.

Toledo	human	B lymphocyte, diffuse large cell lymphoma; non-Hodgkin's B cell			Dr. Wafik El-Deiry		
Pfeiffer	human	Diffuse large cell lymphoma; non- Hodgkin's B cell lymphoma			Dr. Wafik El-Deiry		
JeKo-1	human		Mantle cell lymphoma		Dr. Wafik El-Deiry		
PDX-129	human	B-cell Follicular lymphoma		ì	Dr. Wafik El-Deiry		
PDX-223	human	Diffuse large B cell lymphom		na	Dr. Wafik El-Deiry		
PDX-255	human		Burkitt's lymphoma		Dr. Wafik El-Deiry		
C17	human	EBV	EBV-containing nasopharyngeal		Dr. Paul Lieberman		
NPC43	human	EBV-positive NPC cell line		e	Dr. Paul Lieberman		
NPC53	human	EBV-positive NPC cell line		e	Dr. Paul Lieberman		
Antibodies			Catalog No.	Company			
anti-PI3Ka			sc-293172	Santa Cruz			
anti-PI3Kβ		sc-376641	Santa Cruz				
anti-PI3Ky		sc-166365	Santa Cruz				
anti-PI3Kð			sc-55589	Santa Cruz			
anti-PI3KC2β			sc-100407	Santa Cruz			
anti-AKT1			sc-5298	Santa Cruz			
anti-P53			sc-126	Santa Cruz			
anti-GSK3			sc-7291	Santa Cruz			
anti-CCND1			sc-8396	Santa Cruz			
anti-GAPDH		sc-47724	Santa Cruz				
anti-mTOR			#2983	Cell Signaling Technology			

anti-Phospho-AKT(Ser473)		#9271		Cell Signaling Technology	
Primers /Targets	Forward Sequences (5'-3')		Reverse Sequences (5'-3')		
AKT1	TATTGTGAAGGAGGGTTG		ATTCTTGAGGAGGAAGTAG		
ATF1	GGGACTTCAGACATTAACCAT G		CAGGAGATGTCATCACCACA		
ATF3	AAACAAGAAGAAGGAGAAGA		TTCAGTTCAGCATTCACA		
ATF4	AGATAGGAAGCCAGACTA		CTCATACAGATGCCACTA		
PIK3C2B	GAAGTATGAATGCTACCT		CAGTAACCAGAAGAAGTA		
PIK3CG	GTGATTCTGGAAGCCTAT		CGATTACTTGGACTTGTTG		
PIK3R4	TGCTATATTGCTCCTGAA		CTCCTCTTGTTCTCTGAT		
FOXO1	CGAGTTATGGAGGTATGAG		GAGGAGAGTCAGAAGTCA		
FOXO3	ACCATCCAAGAGAACAAG		TAAGTGAGTCCGAAGTGA		
GSK3A	AAGGTTCTCCAGGACAAG		AAGTATCTCAGCCTCACAA		
GSK3B	TATGAATTCCGCCATGTCAGGG CGGC		TATGCGGCCGCGGTGGAGTTG GAAG		
ΝΓκΒ	TTGCTGGTCCCACATAGTTG		ATGTATGTGAAGGCCCATCC		
PTEN	ATCTAGGGGTAGAGGCAAGG		GTGGAGGACTGATGATGAAA		
BAX	TGCTTCAGGGTTTCAAGGA		ACGGCGGCAATCATCCTCTG		
TP53	GCTCGACGCTAGGATCTGAC		GCTTTCCACGACGGTGAC		
TP73	CCCCATCAGGGGAGGTG		AGGGGACGCAGCGAAAC		
JUP	AGTGTGCTGAAGATTCTG		TTGTTCTTGCTGTTGTTG		
DPAGT1	CAATGCCATCAATATCCTA		AATCACCTTCCAACTCTA		
NME2	GTTGGCAGGAACATCATT		ACCAGTTCTTCAGGCTTA		

RNF8	GGTCTATTCCA	ATTCATCAG	GTCTTCTTCAGTAACTTCAT			
МҮС	CATAGAATTCAC CTC	CGCCATGCCC A	CATAGCGGCCGCCGCACAAGA GTTC			
GSTK1	CCGCAAAGGACTATACAT		AAGCATCACAGACAAGAA			
HMOX1	GACTGCGTTC	CTGCTCAA	CTCTGGTCCTTGGTGTCAT			
NFE2L2	GTAGATGACAATGAGGTT		TGATTAGTAGCAATGAAGA			
NQO1	GAGTCTGTTCTGGCTTAT		AACTGGAATATCACAAGGT			
SOD1	TTAATCCTCTATCCAGAA		TCACAGAATCTTCAATAG			
PIK3CG KO	CACCGGAACGGAGAAGAGATT CACG		AAACCGTGAATCTCTTCTCCGT TCC			
PIK3CG KO verification	CGTGTTGCACCTTGTAAACTGG G		GAAGCTGAACTTTGCCCTTGGA C			
Compounds		Catalog No.		Company		
Copanlisib (BAY 80-6946)		S2802		Selleckchem		
Duvelisib (IPI-145, INK1197)		S7028		Selleckchem		
Idelalisib (CAL-101, GS-1101)		S2226		Selleckchem		
IPI-549		S8330		Selleckchem		