- **1** Supplementary Materials
- 2

3 Methods

- 45 Blood sample collection
- 6 Whole blood venous samples were collected with and without anticoagulant
- 7 (ethylenediaminetretracetic acid (EDTA)). EDTA samples were immediately stored at -30
- 8 degree Celsius (°C) until deoxyribonucleic acid (DNA) extraction. Serum samples were
- 9 immediately stored at 4°C and centrifuged for 9 minutes at 2300 g and 4°C within 60 minutes
- 10 after collection. Serum was removed and stored at -20°C. To avoid further freeze and thaw
- 11 cycles serum samples were thawed once and stored in aliquots (1.5 ml reaction tubes).
- 12

13 Liquid chromatography-mass spectrometry methods

- 14 The method was optimized starting from the method described by Noetzli et al. 2012 [1].
- 15 Validation was carried out according to the guideline C62-A for Liquid Chromatography-
- 16 Mass Spectrometry Methods [2].
- 17 A triple quadrupole mass spectrometer (QTRAP 5500, SCIEX, USA) with a high-
- 18 performance liquid chromatography (HPLC) system (1260, G1367E; Agilent Technologies
- 19 Deutschland GmbH, Germany) was used to analyze the samples in SRM mode (selected
- 20 reaction monitoring mode). For the quantification of donepezil mass transition 381->91.1(Da)
- 21 was selected and $383.5 \rightarrow 91.0$ (Da) for IS (donepezil ${}^{13}C_3$). Transiton 251.1->58.0 (Da)
- combined with 257.1 ->206.1 (Da) (rivastigmine D₆) was used for rivastigmine quantification.
 For data analysis Analyst 1.6 (SCIEX Pte.Ltd, Singapore) was applied.
- 23 For data analysis Analyst 1.6 (SCIEX Pte.Ltd, Singapore) was applied.
- A seven point calibration curve was prepared (0.5 ng/ml to 33 ng/ml for rivastigmine and 0.5
- ng/ml to 66 ng/ml for donepezil) using drug free serum. In addition, three independent qualitycontrol samples with concentrations covering the calibration ranges were prepared.
- 27 For sample preparation 50 μ l serum was mixed with 200 μ l precipitation agent for 15 seconds
- 28 at 1000 rpm. The precipitation agent (acetonitrile/methanol 30/70(v/v)) contained internal
- 29 standards (IS): 10 ng/ml rivastigmine D_6 (Toronto Research Chemicals (TRC), Toronto,
- 30 Ontario) and donepezil ${}^{13}C_3$ 50 ng/ml (TRC, Toronto Ontario). The mixed sample was
- 31 centrifuged at 1000 x g for 10 minutes. Either 10 µl or 50 µl of the supernatant were injected
- 32 into the LC-MS system to analyze donepezil and rivastigmine, respectively. Chromatographic
- 33 separation was carried out using a gradient on a reversed phase C_{18} column (Onyx Monolithic
- 34 C18, 100 x 3.0 mm, Phenomenex Germany, Germany) at 45° C. Mobile phase A was of H₂O,
- 35 mobile phase B was methanol, each buffered with 0.1 % acetic acid (v/v) and 12.5 mM
- ammonium acetate. All solvents were LC-MS grade. Total run time was 7 minutes.
- **37** Patient samples above the highest calibration concentration were diluted with drug free serum.
- 38 All samples were measured at least in duplicate and mean was used for further analyses.
- 39

40 Assessment of CYP2D6 polymorphisms and gene dose assignment

- 41 DNA was isolated by standard procedures from 300 µl EDTA anticoagulated blood according
- 42 to the manufacturer's instructions (Wizard Genomic DNA Purification Kit, Promega). The
- 43 isolated DNA of the CYP2D6 gene was immediately preamplified according to local SOPs.
- 44 Considering the prevalence of CYP2D6 polymorphisms in Caucasians, the following alleles
- 45 were assessed: *1 (wildtype), *3, *4, *5, *6 (no enzyme activity), *9, *10, *41 (reduced
- 46 enzyme activity), and duplications of *1 (increased enzyme activity). Genotyping for all
- 47 polymorphisms of interest was performed according to methods previously described using 48 real time quantitative polymorphic chain reaction (PCP) [2,5] on a LightCycler 2.0 (Decke
- real-time quantitative polymerase chain reaction (PCR) [3-5] on a LightCycler 2.0 (Roche,
 Mannheim) with LightCycler Carousel Centrifuge (Roche, Mannheim). Following previously
- 50 published methods [6-8] allele specific PCR was performed using GeneAmp PCR Systems
- 51 9700 (PE Applied Biosystems, Weiterstadt) for CYP2D6*3, CYP2D6*4, CYP2D6*5,

- 1 CYP2D6*6 and CYP2D6*10. Supplementary table 1 shows assessed polymorphisms and
- 2 used methods of assessment.
- 3 Defective alleles were assigned a gene dose of 0, alleles resulting in a reduced enzyme
- 4 activity were assigned a gene dose of 0.5, wild type allele *1 a gene dose of 1, and
- 5 duplications of a wild type allele a gene dose of at least 2 (supplementary table 2).
- 6 7

8 References:

- 9 1 Noetzli M, Ansermot N, Dobrinas M, Eap CB. Simultaneous determination of
 10 antidementia drugs in human plasma: procedure transfer from HPLC-MS to UPLC11 MS/MS. J Pharm Biomed Anal. 2012;64-65:16–25. doi:10.1016/j.jpba.2012.02.008.
- Clarke W, Molinaro RJ. Liquid chromatography-mass spectrometry methods: Approved
 guideline. Wayne, Penn.: Clinical and Laboratory Standards Institute; 2014.
- Raimundo S, Toscano C, Klein K, Fischer J, Griese E-U, Eichelbaum M, et al. A novel intronic mutation, 2988GA, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther. 2004;76:128–38.
 doi:10.1016/j.clpt.2004.04.009.
- Müller B, Zöpf K, Bachofer J, Steimer W. Optimized strategy for rapid cytochrome P450
 2D6 genotyping by real-time long PCR. Clin Chem. 2003;49:1624–31.
- Stamer UM, Bayerer B, Wolf S, Hoeft A, Stüber F. Rapid and reliable method for cytochrome P450 2D6 genotyping. Clin Chem. 2002;48:1412–7.
- Ji L, Pan S, Marti-Jaun J, Hänseler E, Rentsch K, Hersberger M. Single-step assays to
 analyze CYP2D6 gene polymorphisms in Asians: Allele frequencies and a novel *14B
 allele in mainland Chinese. Clin Chem. 2002;48:983–8.
- 25 7 Sachse C, Brockmöller J, Bauer S, Roots I. Cytochrome P450 2D6 variants in a
 26 Caucasian population: Allele frequencies and phenotypic consequences. Am J Hum
 27 Genet. 1997;60:284–95.
- 28 8 Løvlie R, Daly AK, Molven A, Idle JR, Steen VM. Ultrarapid metabolizers of
 29 debrisoquine: Characterization and PCR-based detection of alleles with duplication of the
 30 CYP2D6 gene. FEBS Lett. 1996;392:30–4.
- 31

1 Supplementary table 1

Semiquantitative gene dose	Mutation of alleles	Type of metabolizer	Number of participants	Donepezil serum concentration [ng/ml]
0	2 deficient alleles	РМ	2	$50.3 \pm 7.1 \\ (45.3-55.3)$
0.5	1 deficient allele + 1 reduced allele	IM	8	$\begin{array}{c} 48.0 \pm 19.55 \\ (27.1 87.6) \end{array}$
1	2 reduced alleles/ 1 deficient allele + 1 wt	EM	16	39.9 ± 14.7 (18.8-60.2)
1.5	1 wt + 1 reduced allele	EM	4	46.2 ± 23.7 (29.8-81.1)
2	2 x wt	EM	10	35.1 ± 10.1 (21.8-48.4)
\geq 3	duplication	UM	0	-

2 Supplementary table 1 Gene dose, allele mutations and type of metabolizer:

- 3 wt: wild type; PM: poor metabolizer; IM: intermediate metabolizer; EM: extensive
- 4 metabolizer; UM: ultra-rapid metabolizer
- 5
- 6 Supplementary table 2

Polymorphism	SOP Thermocycler	SOP LightCycler
Deletion (*5)/Duplikation	C2D6 Del-Dup-P PCR Del-Dup	C2D6 Del-Dup LC
*3	C2D6 multiplex-P PCR multiplex	C2D6 multiplexB-S probe multiplexB
*4, *6	C2D6 multiplex-P PCR multiplex	C2D6 multiplexA-S probe multiplexA
*9	-	C2D6 9-S probe-9
*10	C2D6 10-P PCR-10	C2D6 10-S probe-10
*41	_	C2D6 41-S probe-41

7 Legend supplementary table 2 Overview of polymorphisms and applied measuring methods:

8 SOP: standard operating procedure; C2D6: Cytochrome P450 isoenzyme 2D6; Del: deletion;

- 9 Dup: duplication; PCR: Polymerase Chain Reaction
- 10

11

12

1 Supplementary table 3

Allele	*1	*3	*4	*5 (Del)	*6	*9	*10	*41	Duplication
Single gene dose	1	0	0	0	0	0.5	0.5	0.5	>2

2 Legend supplementary table 3 Single alleles and corresponding gene dose:

3 Del: deletion.

4

5

6 Supplementary table 4

7

	n=	Donepezil	n=	Rivastigmine	p-value
baseline: word list delayed recall	41	2.0 ± 1.8 (0 to 7)	26	2.4 ± 2.0 (0 to 7)	0.431
Follow-up: word list delayed recall	41	0.4 ± 1.5 (-2 to 4)	25	0.2 ± 1.4 (-2 to 3)	0.384

8 Supplementary table 13: word list delayed recall at baseline and at follow-up; n: number of

9 valid test results; where applicable: mean \pm standard deviation (minimum – maximum); p-

- 10 value calculated from Mann-Whitney U test
- 11

12

13 Supplementary table 5

Variables	male (n=16)	female (n=10)	p-value
Serum concentration rivastigmine [ng/ml]	6.63 ± 5.28 (1.85-17.50)	6.39 ± 5.19 (0.47-16.90)	1.000 ^b
Body weight [kg]	74.1 ± 12.1 (50-90)	58.4 ± 10.7 (47-80)	0.004 ^a
BMI [kg/m²]	24.6 ± 2.59 (19.5-27.8)	21.6 ± 4.5 (16.5-30.9)	0.050 ^a

14 Legend supplementary table 5 Sex differences *rivastigmine*: Serum concentration and BMI of

15 male and female participants, respectively, in the *rivastigmine* group.

16 ng: nanogram; ml: milliliter; mg: milligram; kg: participants' weight in kilogram; BMI: body

17 mass index. Where applicable: mean \pm standard deviation (minimum - maximum). p-values

18 calculated from ^a: t-test for normally distributed data; ^b: Mann-Whitney U test for not

19 normally distributed data

20

Supplementary table 6

Variables	Donepezil	Donepezil	p-value	Rivastigmine	Rivastigmine	p-value
	low concentration	high concentration		low concentration	high concentration	
Numbers	14	14		9	9	-
Sex: male:female [n]	11:3 (79%:21%)	4 : 10 (29% : 71%)	0.008 ^a	6:3 (67%:33%)	5:4 (56%:44%)	0.629 ^a
Age [years]	69.9 ± 10.2 (53-88)	74.3 ± 9.4 (54-85)	0.244 ^b	73.6 ± 4.6 (69-82)	70.6 ± 7.7 (53-78)	0.329 ^b
Time baseline to follow up [days]	226.7 ± 87.7 (96-441)	214.2 ± 63.9 (131-325)	0.839 °	248.6 ± 99.7 (122-442)	215.7 ± 40.7 (164-259)	0.666 ^c
Duration from start of AChE-I treatment to follow up [months]	5.9 ± 3.3 (3-13)	5.6 ± 2.0 (3-10)	0.839 °	6.0 ± 2.6 (4-12)	5.4 ± 1.7 (3-8)	0.931 °
Participants taking CYP2D6 inhibitors [n]	2 (14%) (2x Citalopram)	4 (29%) (3x Citalopram; 1x Carvedilol)	0.357 ª	n.a.	n.a.	-
Participants taking CYP2D6 inducers [n]	-	-	-	n.a.	n.a.	-
Weight [kg]	70.2 ± 9.1 (50-83) n=13	68.6 ± 9.1 (53-83) n=13	0.650 °	74.9 ± 10.8 (59-89) n=8	63.6 ± 15.9 (47-84)	0.139 °
BMI [kg/m²]	22.9 ± 2.9 (17.2-26.2) n=13	24.1 ± 3.7 (19.7-34.5) n=13	0.650 °	25.7 ± 2.7 (22.6-30.9) n=8	22.1 ± 4.3 (16.5-27.7)	0.074 °
Gene dose	1.3 ± 0.6 (0.5-2)	1.0 ± 0.6 (0-2)	0.128 ^c	n.a.	n.a.	-
Serum concentration [ng/ml]	$26.76 \pm 4.14 \\ (18.75 - 31.45)$	58.82 ± 11.79 (46.90-87.55)	<0.001 °	$2.67 \pm 1.01 (0.47.3.62)$	$12.50 \pm 4.46 \\ (0.47.3.62)$	<0.001 °
Variance of serum concentration	17.16	138.93	<0.001 ^d	1.01	19.10	<0.001 ^d
Variation coefficient of serum concentration measurement	5.47 ± 3.01 (1.46-10.32)	5.21 ± 2.26 (0.77-9.09)	0.910 °	5.88 ± 4.62 (2.54-17.40)	5.28 ± 3.82 (1.00-10.99)	0.863 °
Time since last dosing [h]	21.0 ± 2.6 (14-25)	22.6 ± 1.9 (19-26)	0.050 °	23.6 ± 4.1 (15-28)	24.4 ± 1.6 (22-27)	0.931 °
Wordlist recall at baseline	2.3 ± 1.7 (0-5)	1.4 ± 1.6 (0-5)	0.164 °	2.1 ± 2.7 (0-7)	3.1 ± 2.1 (0-6)	0.297 °
Changes wordlist recall	0.1 ± 2.0 (-2 to 4)	0.4 ± 1.6 (-1 to 2)	0.482 °	0 ± 1.6 (-2 to 2)	0.8 ± 1.3 (0-3)	0.161 ^c

Legend supplementary table 6 Characteristics of participants in the low and high serum concentration group for donepezil and rivastigmine: where applicable: mean \pm standard deviation (minimum - maximum); AChE-I: acetylcholinesterase inhibitor; kg: participants' weight in kilogram; BMI: body mass index in kilogram per square meter; p-values calculated from ^a: Chi-squared test, ^b: t-test or ^c:Mann-Whitney-U-test; ^d: F-test.

Supplementary table 7

Allele	*1	*3	*4	*5 (Del)	*6	*9	*10	*41	Duplication *1
Single gene dose	1	0	0	0	0	0.5	0.5	0.5	2
Number	40	1	23	3	1	1	2	9	0
Allele frequency	0.500	0.013	0.288	0.038	0.013	0.013	0.025	0.113	-

Legend Supplementary table 7 CYP2D6 polymorphism: Overview of tested alleles, corresponding gene dose, absolute number and frequency of alleles. Del: Deletion

Supplementary table 8

	Gene dose	CYP 2D6- Inhibitors	Age	Sex	Duration AChE-I intake	Time since last dosing	Body weight
corr. R ²	0.047	0.044	0.005	0.165	-0.025	0.054	-0.011
Beta	-0.267	0.261	0.172	-0.432	-0.017	0.279	-0.132
p-value	0.096	0.099	0.282	0.005	0.915	0.077	0.435

Legend supplementary table 8 Prediction of serum concentration of *donepezil univariate* regression analyses: AChE-I: acetylcholinesterase inhibitor.

	Beta	p-value
Type of metabolizer	-0.314	0.045
CYP2D6-Inhibitors	0.275	0.060
Age	0.180	0.216
Sex	-0.734	0.001
Duration of AChE-I treatment	0.286	0.058
Time since last dosing	0.009	0.954
Body weight	0.200	0.269

Legend supplementary table 9 Prediction of serum concentration of *donepezil using type of metabolizer instead of gene dose. Multivariate* regression model. AChE-I: acetylcholinesterase inhibitor. Corr R²=0.352, p=0.005

	Beta	p-value
Gene dose	-0.354	0.061
CYP2D6-Inhibitors	0.240	0.112
Age	0.195	0.187
Sex	-0.630	<0.001
Duration of AChE-I treatment	0.327	0.035
Time since last dosing	-0.065	0.710
BMI	0.127	0.372

Legend supplementary table 10: Prediction of serum concentration of *donepezil: Multivariate* regression model *including body mass index (BMI) instead of weight*. AChE-I: acetylcholinesterase inhibitor. Corr R²=0.349, p=0.005

Supplementary table 11

	Beta	p-value
CYP2D6-Inhibitors	0.081	0.773
Age	-0.098	0.684
Sex	0.138	0.635
Duration AChE-I treatment	0.096	0.753
Time since last dosing	0.432	0.104
Body weight	-0.276	0.351

Legend supplementary table 11 Prediction of serum concentration of *rivastigmine: Multivariate* regression model including body weight; AChE-I: acetylcholinesterase inhibitor. Corr. R²=-0,113, p=0,718

Su	bbl	ement	arv	table	12
Du	PPI	omon	ui y	luoie	

	Beta	p-value
CYP2D6-Inhibitors	0.136	0.625
Age	-0.083	0.722
Sex	0.125	0.614
Duration AChE-I treatment	0.050	0.869
Time since last dosing	0.438	0.087
BMI	-0.348	0.186

Legend supplementary table 12 Prediction of serum concentration of *rivastigmine: Multivariate* regression model including body mass index; AChE-I: acetylcholinesterase inhibitor; BMI body mass index. Corrected R²=-0,055, p=0,583

Supplementary table 13

		Serum concentr ation	Baseline test result	Time baseline to follow- up	Sex	Age	model corr.R ²	model p-value
Word list – delayed recall donepezil	Beta	0.094	-0.445	-0.131	0.160	-0.156	0.169	0.041
	p-value	0.571	0.008	0.385	0.342	0.307		
Word list – delayed recall rivastigmine	Beta	0.472	-0.622	0.281	0.244	-0.194	0.267	0.049
	p-value	0.019	0.006	0.155	0.199	0.297		

Legend supplementary table 14 Correlation between cognitive changes and AChE-I serum concentration: *multivariate* regression analyses between changes in word list delayed recall and *donepezil* respectively *rivastigmine* serum concentration, baseline test result, time from baseline to follow-up, sex, and age.

Supplementary table 14

		Low /high serum concen- tration	Baseline test result	Time baseline to follow- up	Sex	Age	model corr.R ²	model p-value
Word list – delayed recall donepezil	Beta	0.055	-0.447	-0.102	0.114	-0.171	0.096	0.208
	p-value	0.814	0.044	0.597	0.634	0.415		
Word list – delayed recall rivastigmine	Beta	0.542	-0.711	0.503	0.392	-0.211	0.294	0.098
	p-value	0.035	0.014	0.044	0.110	0.357		

Legend supplementary table 15 Correlation between cognitive changes and low / high AChE-I serum concentration: *multivariate* regression analyses between changes in cognitive tests and *donepezil* respectively *rivastigmine* low / high serum concentration, baseline test result, time from baseline to follow-up, sex, and age.

Supplementary figures

Supplementary figure 1

Legend to supplementary figure 1: Consort Flow Diagram depicting progress of participants n: number of subjects; AChE-I: acetylcholinesterase inhibitor.