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1 Data Sources 

1.1 Temporal Incidence Data for Wuhan and Rest of China 

Epidemic curves from Figure 2 of the recent Report of the WHO-China Joint Mission on Coronavirus 
Disease 2019 (COVID-19)8 were digitised and relevant data extracted using the openly available 
software DataThiefTM: incidence by symptom onset for the period spanning 8th December until 11th 
February were collated separately for Wuhan and the rest of China. Information on the age-
distribution of cases and deaths over the same time period was also extracted from the recent China 
CDC Weekly Paper7 – whilst the deaths were not stratified by location (Wuhan/rest of China), 
information scraped by volunteers at Imperial College from Chinese provincial Health Commission 
Reports enabled estimation of the proportion of deaths in China over that time period that had 
occurred in Wuhan. The observed cases across both locations were then scaled using a number of 
different adjustments to account for potential underreporting (detailed below). Throughout, we 
assume all deaths are completely ascertained (i.e. no missed deaths) after the 21st January, and that 
no detected deaths occurred before that date.  

 

1.2 Individual-Level Data on International Cases 

We collated individual line-list data from reports of international cases (see main text). The cases by 
country are summarised below.  

International cases detected outside mainland China 

Country/Administrative Region Number of 
confirmed cases Number of deaths Number reported to 

have recovered 

Afghanistan 1 - 0 

Australia 22 - 15 

Austria 2 - 0 

Bahrain 17 - 0 

Belgium 1 - 1 

Cambodia 1 - 1 

Canada 10 - 4 

Croatia 1 - 0 

Egypt 1 - 1 

Finland 1 - 1 

France 12 1 11 

Germany 16 - 12 

HK SAR 84 2 12 



 

3 
 
 

Italy 287 11 1 

India 3 - 3 

Iran 95 15 0 

Iraq 5 - 0 

Israel 2 - 0 

Japan 163 1 23 

Kuwait 8 - 0 

Lebanon 1 - 0 

Macau SAR 10 - 7 

Malaysia 22 - 15 

Nepal 1 - 1 

Oman 4 - 0 

Philippines 3 1 2 

Russia 2 - 2 

Singapore 91 - 58 

South Korea 977 11 19 

Spain 5 - 2 

Sri Lanka 1 - 1 

Sweden 1 - 0 

Switzerland 1 - 0 

Taiwan 31 1 2 

Thailand 37 - 22 

UAE 13 - 3 

UK 9 - 8 

USA 53 - 5 

Vietnam 16 - 16 

 

1.3 Prevalence Data from Repatriation Flights 

Date on repatriation flights from Wuhan were collated from a number of different sources, including 
official Ministry of Health reports and media reports. From this data, we considered repatriation flights 
spanning a three-day period 30th January to 1st February (inclusive) - across these 3 days, a total of 689 
individuals were repatriated from Wuhan on flights that tested all individuals (regardless of 
symptoms) for infection immediately upon arrivals. Testing following this repatriation yielded 6 
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positive individuals, a point prevalence of 0.87% - this estimate of point prevalence is then 
incorporated into the analyses detailed below to help estimate the extent of infection underreporting.  

Destination Date Number Tested Number Positive 

Japan 30/01/2020 210 2 

Japan 31/01/2020 149 2 

Denmark 31/01/2020 4 0 

France 31/01/2020 180 0 

Germany 01/02/2020 115 2 

Mongolia 01/02/2020 31 0 

Total  689 6 

1.4 Data from Diamond Princess Cruise Ship 

We extracted data on the ages of passengers onboard on 5th February, the dates of reporting positive 
tests for 657 PCR-confirmed cases, and date of 7 deaths. These are shown below. NB some passengers 
were tested more than once, with a total of 4003 tests for 3711 passengers. 

Date of report N tested N positive References 

05/02/2020 31 10 https://www.mhlw.go.jp/stf/newpage_09276.html 

07/02/2020 171 41 https://www.mhlw.go.jp/stf/newpage_09340.html 

08/02/2020 6 3 https://www.mhlw.go.jp/stf/newpage_09398.html 

09/02/2020 57 6 https://www.mhlw.go.jp/stf/newpage_09405.html 

10/02/2020 103 65 https://www.mhlw.go.jp/stf/newpage_09419.html 

13/02/2020 221 44 https://www.mhlw.go.jp/stf/newpage_09425.html 

13/02/2020 217 67 https://www.mhlw.go.jp/stf/newpage_09542.html 

16/02/2020 289 70 https://www.mhlw.go.jp/stf/newpage_09547.html 

17/02/2020 504 99 https://www.mhlw.go.jp/stf/newpage_09568.html 

18/02/2020 681 88 https://www.mhlw.go.jp/stf/newpage_09606.html 

19/02/2020 607 79 https://www.mhlw.go.jp/stf/newpage_09640.html 

20/02/2020 52 13 https://www.mhlw.go.jp/stf/newpage_09668.html 

23/02/2020 831 57 https://www.mhlw.go.jp/stf/newpage_09708.html 

26/02/2020 167 14 https://www.mhlw.go.jp/stf/newpage_09783.html 

02/03/2020 3 1 https://www.mhlw.go.jp/stf/newpage_09881.html 
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02/03/2020 63 0 https://www.mhlw.go.jp/stf/newpage_09881.html 

TOTALS 4003 657  

 

We additionally use the age-distribution of the cases to estimate the IFR. These were available for 619 
of the 712 cases; we assumed the age distribution in the remaining cases was the same. These are 
shown in the table below.  

Age group (years) Number of passengers Number testing positive 

0-9 16 1 

10-19 23 5 

20-29 347 28 

30-39 429 34 

40-49 333 27 

50-59 398 59 

60-69 924 177 

70-79 1015 234 

80-89 215 52 

90-99 11 2 

Total 3711 619 

 

2 Statistical Methods 

2.1 Intervals between onset of symptoms and death 

Let 𝑡" and 𝑡#  be the time (in days) of onset of symptoms and death, respectively, and let 𝛿"# = 𝑡# −
𝑡" be the onset-to-death interval. If 𝑓"#(	∙	)  denotes the probability density function (PDF) of time 
from symptom onset to death, then the probability that a death on day 𝑡#  had onset of symptoms on 
day 𝑡" is 

𝑔"#(𝑡"|	𝑡#) =
∫ 𝑓"#(𝜏)𝑜(𝑡# − 𝜏)
12345
123

𝑑𝜏

∫ 𝑓"#(𝜏7)𝑜(𝑡# − 𝜏7)𝑑𝜏7
8
9

		, 

where 𝑜(𝑡) denotes the observed number of onsets that occurred at time t. For an exponentially 
growing epidemic, we assume that 𝑜(𝑡) = 𝑜9𝑒<=  where 𝑜9 is the initial number of onsets (at 𝑡 = 0) 
and r is the epidemic growth rate. Substituting this, we obtain 
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𝑔"#(𝑡"|	𝑡#) =
∫ 𝑓"#(𝜏)𝑒?<@
12345
123

𝑑𝜏

∫ 𝑓"#(𝜏7)𝑒?<@
A𝑑𝜏78

9

		. 

We can use this formula to fit the distribution 𝑔"#(	∙	) to the observed data, correcting for the 
epidemic growth at rate 𝑟 to estimate parameters of the true onset-to-death distribution 𝑓"#(	∙	). 

If we additionally assume that onsets were poorly observed prior to time 𝑇min then we can include 
censoring:  

𝑔"#(𝑡"|	𝑡#) =
∫ 𝑓"#(𝜏)𝑒?<@
12345
123

𝑑𝜏

∫ 𝑓"#(𝜏7)𝑒?<@
A𝑑𝜏7=3?Hmin

9

		. 

For the special case that we model 𝑓"#(	∙	) as a gamma distribution parameterised in terms of its mean 
𝑚"#  and coefficient of variation 𝑠"#  (defined as the ratio of the standard deviation to the mean), 
namely 𝑓"#(	∙ |𝑚"#, 𝑠"#), it can be shown that  

𝑔"#K𝑡"|	𝑡#,𝑚"#
^ , 𝑠"#^ M =

∫ 𝑓"#K𝜏	|	𝑚/K1 + 𝑟𝑚"#𝑠"#Q M, 𝑠M
12345
123

𝑑𝜏

∫ 𝑓"#(𝜏7|	𝑚/(1 + 𝑟𝑚"#𝑠"#Q )	, 𝑠)𝑑𝜏7
=3?Hmin
9

		, 

where the transformed mean and standard deviation-to-mean ratios are 𝑚"#
^ = R23

K54<R23S23
T M , 𝑠"#

^ =

𝑠"#. 

The Bayesian posterior distribution for 𝑚"#  and 𝑠"#  is proportional to the product of this likelihood 
over a dataset of observed intervals and times of death {𝑡", 𝑡#}: 

Pr(𝑚"#, 𝑠"#|	{𝑡", 𝑡#}) ∝Z𝑔"#K𝑡",[|	𝑡#,[, 𝑚"#
^ , 𝑠"#^ M	Pr(𝑚"#, 𝑠"#)	,

[

 

Here Pr(𝑚"#, 𝑠"#) is the joint prior distribution over 𝑚"#  and 𝑠"#. We assume a Uniform(10,100) 
prior on 𝑚"#  and a Uniform(0.2,0.8) prior on 𝑠"#, along with a fixed growth rate of 𝑟 = 0.14. This 
growth rate was obtained by fitting a linear model to log(Wuhan cases) ~ date, using the temporal 
incidence data from Wuhan and focusing on the exponential-growth phase from 01/Jan/2020 to 
19/Jan/2020. We note that higher growth rates will tend to elongate the estimated onset-to-outcome 
interval due to the assumption of greater bias in the data. We obtained the full posterior distributions 
of 𝑚"#  and 𝑠"#  by computing the joint distribution over a grid in increments of 0.05 and 0.005 
respectively. We truncated the distribution by setting the likelihood to zero for combinations of 𝑚"#  
and 𝑠"#  that generated gamma distributions with 95th percentile >100 days. 

2.2 Intervals between onset of symptoms and recovery 

Similar to the onset-to-death analysis above, we inferred the onset-to-recovery distribution 
𝑓"<(	∙ |𝑚"<, 𝑠"<) by fitting to data on the interval 𝛿"< = 𝑡< − 𝑡" between onset of symptoms (𝑡") and 
discharge from hospital (𝑡<). As above, we assumed a gamma distribution for 𝑓"<(	∙	) resulting in an 
analytical expression for the epidemic-adjusted distribution 𝑔"<(	∙	): 
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𝑔"<K𝑡"|	𝑡<,𝑚"<
^ , 𝑠"<^ M =

∫ 𝑓"<(𝜏	|	𝑚/(1 + 𝑟𝑚"<𝑠"<Q ), 𝑠)
12b45
12b

𝑑𝜏

∫ 𝑓"<(𝜏7|	𝑚/(1 + 𝑟𝑚"<𝑠"<Q )	, 𝑠)𝑑𝜏7
=b?Hmin
9

		, 

where 𝑚"<
^ = R2b

K54<R2bS2bT M
, 𝑠"<^ = 𝑠"<. 

We assumed r=0.14 in locally-acquired cases, consistent with growth in Wuhan. We used a lower 
growth rate of 𝑟 = 0.05 for cases in travellers who had been infected in China, where the increase in 
case numbers had slowed and onsets were earlier; this growth rate gave onset-to-recovery estimates 
consistent with those in locally-acquired cases.  

An added complication to this analysis was that many samples had missing onset dates. For samples 
with missing onset dates we assumed that symptom onset occurred prior to report date, i.e. 𝑡" = 𝑡d −
𝜀, where 𝑡d was the date of report (present in all cases) and 𝜀 was a free parameter. This resulted in 
an additional set of parameters 𝜀5, … , 𝜀g, where 𝑛 is the number of cases with missing onset data. 
Note that when onset data are present, 𝛿"d = 𝑡d − 𝑡" represents observed data, but when onset data 
are not present this reduces to 𝛿"d = 𝜀. Assuming a gamma distribution for the onset-to-report 
distribution 𝑓"dK	∙ 	 |	𝑚"d, 𝑠"dM we obtain 

𝑔"dK𝑡"|	𝑡d,𝑚"d
^ , 𝑠"d^ M =

∫ 𝑓"dK𝜏	|	𝑚/K1 + 𝑟𝑚"d𝑠"dQ M, 𝑠M
12i45
12i

𝑑𝜏

∫ 𝑓"dK𝜏7	|	𝑚/K1 + 𝑟𝑚"d𝑠"dQ M	, 𝑠M𝑑𝜏7
=i?Hmin
9

	, 

where 𝑚"d
^ = R2i

K54<R2iS2iT M , 𝑠"d
^ = 𝑠"d. 

This likelihoods from the two parts of this analysis were combined and multiplied by the prior to obtain 

PrK𝑚"<, 𝑠"<,𝑚"d, 𝑠"d, 𝜀5, … , 𝜀g|	j𝑡", 𝑡d, 𝑡<kM

∝Z𝑔"<K𝑡",[|	𝑡<,[, 𝑚"<
^ , 𝑠"<^ M𝑔"dK𝑡",[|	𝑡d,[, 𝑚"d

^ , 𝑠"d^ , 𝜀5, … , 𝜀gM 	×
[

	

       PrK𝑚"<, 𝑠"<,𝑚"d, 𝑠"d, 𝜀5, … , 𝜀gM	. 

We assumed Uniform(10,100) priors on 𝑚"<  and 𝑚"d, and Uniform(0.2,0.8) priors on 𝑠"<  and 𝑠"d. 
We also assumed Uniform(0,50) priors on all 𝜀 parameters, which were treated as nuisance 
parameters when summarising other parameters. Due to the high dimensionality of this problem, 
parameters were estimated via MCMC in the R package drjacoby v1.01 

2.3 Epidemic growth-rate adjustment  

Figure S1 below illustrates the requirement for the adjustment for epidemic growth for these onset-
to-outcome distributions.  

Figure S1: Adjusting onset-to-outcome distributions for epidemic growth. We simulated a growing 
epidemic up to day 60 (number of cases on day 1 = 2, growth rate=0.14, doubling time 5 days). The 
simulated onset-to-outcome distribution if everyone had been followed up until their outcome was 
observed is shown by the black bars whilst the onset-to-outcome distribution observed at day 60, 
censoring those whose outcome is not yet observed is shown by the red bars. The uncorrected Gamma 
distribution fitted to the observed outcome times at day 60 is shown in red and the Gamma 
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distribution fitted to the observed outcome times at day 60, corrected for epidemic growth, is shown 
in blue. The latter recovers the true distribution whilst the uncorrected fit results in distribution that 
is biased towards shorter durations.  

 

2.4 Age-stratified estimates of the Case Fatality Ratio and Infection Fatality 
Ratio from aggregate case data 

2.4.1 Demographic adjustment 

Assuming homogeneous attack rates across the different age groups, the demographic distribution of 
cases by age across each location should broadly match the demography of the populations in Wuhan 
and across the rest of China. The reported age-distribution of cases for both locations show striking 
deviations from the demographic structure of the Chinese populations. Wuhan, in particular, has 
noticeably fewer cases in younger age groups, and significant overrepresentation of older age-groups 
(see Figure 1B in main text). Similar patterns are evident in the age-distribution of cases outside China, 
but to a lesser extent. We hypothesised that these disparities were a product of under-ascertainment 
of cases, particularly in younger age-groups where a smaller proportion of infections would be 
expected to be severe and require hospitalisation.  

In order to account for these disparities, we adjust the observed cases across both locations (inside 
Wuhan and outside Wuhan) to produce age-distributions of cases that matches China’s demography. 
For each age-group and location, we calculate the following: 

𝑁𝐶[,o = 	
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[,o
𝐶𝑎𝑠𝑒𝑠[,o

 

where 𝑖 indexes each age-group and 𝑗 indexes by location, and therefore 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[,o  and 𝐶𝑎𝑠𝑒𝑠[,o  
describe the population and number of cases in age-group 𝑖 and location 𝑗 respectively. The reciprocal 
of 𝑁𝐶[,o  is therefore the attack-rate, which describes the number of cases per unit population.  

This factor is then used to scale observed cases in the following way. For cases Outside Wuhan, we 
assume complete ascertainment in the age-group where the attack rate (highest valued reciprocal of 
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𝑁𝐶[,o) is highest – that of the 50-59 year olds. We then adjust cases in the other age-groups to produce 
identical attack rates, so that for Outside Wuhan: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐶𝑎𝑠𝑒𝑠[,xy=S[#z{y|}g = 𝐶𝑎𝑠𝑒𝑠[,xy=S[#z{y|}g	max �
1

𝑁𝐶xy=S[#z	{y|}g
�𝑁𝐶[,xy=S[#z	{y|}g 

We assume an additional level of under-ascertainment in Wuhan occurring due to the extensive strain 
on the health system, and so further scale the number of cases after the initial demographic 
adjustment above, such that  

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐶𝑎𝑠𝑒𝑠[,{y|}g = 𝐶𝑎𝑠𝑒𝑠[,{y|}g𝑁𝐶[,{y|}g𝑧 

where 𝑧 is a fitted parameter that is smaller than 	max � 5
���,�

�, implying that more cases are missed 

inside Wuhan than in the rest of the country.  

We checked the sensitivity of our results to the assumption that there was under-ascertainment 
outside Wuhan. Under the alternative assumption that cases outside Wuhan are completely 
ascertained (and hence that the age-distribution observed reflects the true age distribution of cases 
outside of Wuhan) we obtained similar estimates (overall CFR 1.87% compared to 1.67% under our 
baseline assumption).  

2.4.2 Statistical modelling framework 

We worked within a Bayesian framework in order to jointly estimate the age-stratified case-fatality 
ratio, the onset-to-death distribution and the true underlying number of cases within Wuhan and 
other areas of mainland China, incorporating our prior knowledge of the onset-to-death distribution 
from fitting to observed data from 24 cases from mainland China (see Section2.1) .  

Given our case and death age-stratification	𝐴 = {𝑎 ∈ 1: 9; 1 = 0 − 9	𝑦𝑒𝑎𝑟𝑠	𝑜𝑙𝑑, 2 = 10 − 19,…9 =
80 +} we define the following parameters: the associated set of case-fatality rates 𝜃�, mean 𝑚"#  and 
standard deviation to mean ratio 𝑠"#  of the onset-to-death distribution 𝑓"#(∙ |	𝑚"#, 𝑠"#). Observed 
cases are adjusted assuming homogeneous attack rates across age groups and a demographic age-
distribution representative of China, assuming perfect case ascertainment in the 50-59 year old age 
group outside of Wuhan where there were the highest levels of case reporting relative to population 
size (see above). We also adjust for an additional level of underreporting specific to Wuhan (relative 
to elsewhere in China), 𝑧. 

To fit these parameters we used the following data: 𝐷�, the total observed deaths in Wuhan to 11th 
February 2020; 𝐷�,  the total observed deaths by age up to 11th February 2020, including those in 
Wuhan and 𝐶H,�,�, observed cases by day, age and location up to this date. We also incorporated data 
on the total deaths and cases observed within mainland China by 4th March 2020 (without 
disaggregation by age or location), 𝐷�� and 𝐶��.  

PrK𝑟�,𝑚"#, 𝑠"#, 𝑧, 𝜑, 𝑟, 𝐷|𝐷��, 𝐶��, 𝐷�, 𝐷�, 𝐶H,�,�, 𝐴�, 𝐴�M ∝ 𝐿5	𝐿Q	𝐿�Pr(𝜃�)Pr(𝑚"#)Pr(𝑠"#)Pr(𝑧) 

where 

𝐿5 = PrK𝐷���𝐶�, 𝜃�, 𝐶H,�,�7 , 𝑚"#, 𝑠"#M 
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𝐿Q = PrK𝐷�, 𝐷�|𝜃�, 𝐶H,�,�7 , 𝑚"#, 𝑠"#M 

𝐿� = PrK𝐶H,�,�7 , 𝐼H,�	,�|𝐶H,�,�, 𝐴�, A�, 𝜔, 𝜑, 𝑟, 𝐷M. 

Here term L1 represents the likelihood of the most recently observed crude case-fatality ratio 
(deaths/cases) in mainland China.  The crude case fatality ratio tends to the true case fatality ratio as 
the proportion of the full epidemic which has been observed increases2 and after adjustment for under 
ascertainment of cases. Cases in China have now reduced substantially relative to their late January 
2020 peak. As such, this suggests that the recently estimated crude CFR likely represents a good 
approximation of the final epidemic CFR. Term L2 represents the likelihood of the observed number 
of deaths in Wuhan (aggregated across age groups), and also, the observed number of deaths by age 
across all settings accounting for case-fatality rates by age, the epidemic curve adjusted for differences 
in ascertainment rates (by age and location) of cases and the distribution between case-onset and 
death. Term L3 represents the model of how observed cases can be adjusted to reflect true cases, 
denoted  𝐶H,�,�7 , accounting for surveillance capacity in Wuhan, 𝑧, and age-based disparities in 
ascertainment throughout the course of the large-scale epidemic.  

2.4.3 Estimation of infection rates from flight repatriation data 

We also estimate infections, 𝐼H,�	,� from true cases accounting for further under-ascertainment 
present across both locations. We inform this under-ascertainment of all infections using the observed 
prevalence of infections in travellers (n = 689) repatriated from Wuhan over the time period spanning 
30th January – 1st February 2020 (inclusive). We estimate the prevalence of infection in Wuhan on 31st 
January by: 

PrevalenceH ,{ =

	𝜑𝐶H  ,{
7 	

𝑃{
(1 − 𝑒?<¡)

𝑟  

where 𝜑	is an additional scaling factor for all infections,  𝐶H ,{
7  is the estimated incidence of cases on 

31st January in Wuhan (after the other age-based and Wuhan specific scaling detailed above), 𝑃{ is 
the population of Wuhan (assumed to be 11,081,000 people), r is the epidemic growth rate (assumed 
r = 0.14) and D is the detection window (duration that an infection remains detectable). For the age 
stratified analysis we assume Uniform priors on r of [0,0.1] and D of [7,14]. 

The remaining terms represent priors which were all uninformative with the exception of the onset-
to-death parameters which were set to the likelihood surfaces estimated from the subset of observed 
onset to death durations. 

2.4.4 Capturing age-stratified case-fatality ratios 

Setting 𝑇 = 11th of February 2020, the probability a case in age-category 𝑎 with onset date 𝑡 has died 
by time  𝑇 is: 

𝜆(𝑎, 𝑡|𝜃},𝑚"#, 𝑠"#) = 𝜃} £ 𝑓¤¥(𝜏	|	𝑚"#, 𝑠"#)	𝑑𝜏
H?=

=
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Assuming we observe 𝐶H,�,�7 , the true number of cases by day and age across all locations from the 
beginning of the epidemic 𝑡9 = 2nd December (the date our data starts from), the expected number 
of deaths in age-category 𝑎 is then: 

𝐸(𝐷}) = §§𝐶=,},¨7

�

H

=©=ª

𝜆(𝑎, 𝑡)	. 

We assume that observed deaths 𝐷} follow a Poisson distribution with rate equal to the expectation 
𝐸(𝐷}): 

PrK𝐷}|	𝐸(𝐷})M =
𝐸(𝐷})¡«𝑒?¬(¡«)

𝐷}!
	. 

The likelihood of observing the full set of age-specific death-counts observed at 𝑇 is then: 

PrK𝐷�|𝜃�, 𝐶H,�,�7 , 𝑚"#, 𝑠"#M = ∏ PrK𝐷}	|	𝐸(𝐷})M}∈� . 

Simultaneously, the expected proportion of cases in Wuhan, 𝜋�, can be assumed to follow a Binomial 
distribution (where 𝑋~𝐵𝑖𝑛(𝑁, 𝑝) is the binomial distribution with 𝑋 observations from 𝑁 trials with 
probability 𝑝): 

𝐸(𝜋�) =
∑ ∑ �´,«,µA ¶(},=)·
¸
´¹´ª

∑ ∑ ∑ �´,«,º
A

»· ¶(},=)¸
´¹´ª

 , 	PrK𝐷�|𝜃�, 𝐶H,�,�7 , 𝑚"#, 𝑠"#M~𝐵𝑖𝑛(∑ 𝐷}� , 𝐸(𝜋�))  

As we assume the age-distribution and location of deaths are independent of one another: 

PrK𝐷�, 𝐷�|𝜃�, 𝐶H,�,�7 , 𝑚"#, 𝑠"#M = Pr(𝐷�)Pr(𝐷�). 

2.4.5 Capturing post-peak overall case-fatality ratio 

Given the total number of expected deaths across all-ages according to our age-stratified case-fatality 
ratios the overall number of expected deaths across all ages in China by 𝑇 is: 

𝐸(𝐷��) = ∑ ∑ ∑ 𝐶=,}7�
H
=©=ª 𝜆(𝑎, 𝑡)}∈� . 

As cases in mainland China have been remained substantially lower than their late January 2020 peak 
since mid-February, current CFR estimates unadjusted by onset-to-death (i.e. true deaths to date 
divided by true cases to date) are likely to be a good estimator of the underlying CFR2. To capture this 
information, accounting for our estimates of the underlying surveillance capacity to capture all cases 
throughout the epidemic, we therefore assume that the current crude CFR in mainland China (i.e. 
current total deaths as a proportion of the current total observed cases) is a good estimate of the 
expected deaths arising from cases up to time 𝑇 in China as a proportion of the unadjusted observed 
cases in this time period: 

𝑃K𝐷���𝐶��, 𝜃�, 𝐶H,�,�7 M~𝐵𝑖𝑛 ¼𝐶��,
¬(¡¸)
�¸

½, 

where 𝐶H  is the total observed cases in China prior to time 𝑇 (which is 11th February 2020).  

 



 

12 
 
 

2.5 Estimates of the Case Fatality Ratio from individual case data 

2.5.1 Parametric estimates 

Continuing our notation from section 2.1, let 𝑡", 𝑡<  and 𝑡#  denote the times of onset, recovery and 
death respectively, and let 𝛿"<  and 𝛿"#  denote onset-to-recovery and onset-to-death intervals. 
Additionally, let 𝑐 denote the case-fatality ratio (CFR) such that each case has a probability 𝑐 of 
ultimately resulting in death and a probability (1 − 𝑐	) of ultimately resulting in recovery. For 72% of 
cases, the date of onset was not reported. For the cases with known date of reporting and missing 
onset date (n=958) we multiply imputed the dates of onset by jointly fitting a gamma distributed 
onset-to-report distribution. We also allow for imperfect identification of recoveries, such that each 
recovery has a probability 𝑝<  of being detected, and a probability (1 − 𝑝<) of remaining in the data 
for an unlimited time as an un-coded or “other” event.   

The probability that a patient dies on day 𝑡#  given onset at time 𝑡" is given by: 

Pr(outcome	=	death, 𝑡#|	𝑡",𝑚"#, 𝑠"#, 𝑐) = 𝑐 £ 𝑓"#(𝜏	|	𝑚"#, 𝑠"#)𝑑𝜏	.

12345

123

 

Similarly, the probability that a patient is detected as a recovery on day 𝑡<, given onset at time 𝑡", or 
alternatively recovers but this recovery event is missed, is given by: 

Pr(outcome	=	recovery, 𝑡<|	𝑡",𝑚"<, 𝑠"<, 𝑐, 𝑝<) = 𝑝<(1 − 𝑐) £ 𝑓"<(𝜏	|	𝑚"<, 𝑠"<)𝑑𝜏	.

12b45

12b

 

Finally, the probability that a patient remains in hospital, or that they recover but are not reported as 
a recovery, at the last date for which data are available, T, is 

Pr(outcome	=	other	|	𝑡",𝑚"#, 𝑠"#,𝑚"<, 𝑠"<, 𝑐, 𝑝<) = 𝑐 £ 𝑓"#(𝜏	|	𝑚"#, 𝑠"#)𝑑𝜏 +
8

H?=2

	

 𝑝<(1 − 𝑐) ∫ 𝑓"<(𝜏	|	𝑚"<, 𝑠"<)𝑑𝜏 +
8
H?=2

	
(1 − 𝑝<)(1 − 𝑐)	. 

The overall likelihood given all observed outcomes (outcome[ ∈ {death,	recovery,	other}) and 
corresponding outcome times (𝑡[) is simply the product over the individual terms:  

PrK{outcome[, 𝑡[}	|	𝑡",[, 𝑚"#, 𝑠"#,𝑚"<, 𝑠"<, 𝑐, 𝑝<M

=ZPr(outcome[, 𝑡[	|	𝑡",[, 𝑚"#, 𝑠"#,𝑚"<, 𝑠"<, 𝑐, 𝑝<)	.
[

 

In a Bayesian context, the posterior distribution is obtained by multiplying this likelihood by the priors: 

PrK𝑚"#, 𝑠"#,𝑚"<, 𝑠"<, 𝑐, 𝑝<	|	joutcome[, 𝑡",[, 𝑡[kM
∝ PrK{outcome[, 𝑡[}	|	𝑡",[, 𝑚"#, 𝑠"#,𝑚"<, 𝑠"<, 𝑐, 𝑝<M	×	

         	Pr(𝑚"#, 𝑠"#)Pr(𝑚"<, 𝑠"<)Pr(𝑐)Pr(𝑝<) 
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Here we have assumed that the joint prior can be decomposed into separate marginal priors on onset-
to-death parameters, onset-to-recovery parameters, and separate priors on 𝑐 and 𝑝<. For the first two 
priors Pr(𝑚"#, 𝑠"#) and Pr(𝑚"<, 𝑠"<) we pass in the posterior distributions from the analyses above, 
namely the posterior 𝑚"#  and 𝑠"#  from the analysis in section 2.1, and the posterior 𝑚"<  and 𝑠"<  from 
the analysis in section 2.4. 

2.5.2 Non-parametric estimates 

To test sensitivity to parametric assumptions, we also estimated CFR in international cases using a 
modified Kaplan-Meier method (reference 25, main text) which accommodates the 3 possible 
outcomes (death, recovery, or censored), and does not assume any particular parametric distribution 
for onset-to-death and onset-to-recovery outcomes. Similarly to the parametric analysis, we multiply 
imputed missing onset times, now using observed onset-to-report times. Likewise, we imputed 
recovery status to allow for unreported recoveries. For this analysis, we used aggregated recovery 
numbers by country, which identified that 21% of total reported case recoveries at the country level 
were not recorded in the individual-level data because they could not be linked to a specific case. For 
each country, we used the number of unlinked recoveries to impute potential recoveries amongst 
those with no known outcome, sampling from these individuals weighted by the probability they had 
recovered given their onset date and the onset-to-recovery distribution from the parametric 
estimates. 

2.6 Estimating the infection fatality ratio for the Diamond Princess data 

We estimated the proportion of deaths amongst the passengers testing positive on the Diamond 
Princess that had occurred  𝜋¡�(𝑇) where 𝑇 was the last date for which data are available (25th March 
2020), given the probability density function (PDF) of time from symptom onset to death 𝑓x¡(. ): 

𝐸K𝜋¡�(𝑇)M =§Ä£ 𝑓x¡(𝜏|𝑚Å"#, 𝑠̅"#)𝑑𝜏
H?=ª,�

@©9
Ç

�

[©5

/𝑁 

where {𝑡9,[; 1. . 𝑁} are the set of time of onset in each of the 𝑁 total number of test-positive individuals 
and 𝑚Å"#  and 𝑠̅"#  are the posterior mode of the mean and ratio of standard deviation to mean of onset 
duration distribution obtained from our fitting of these distributions to data from mainland China.   

Figure S2 below shows the proportion first reported test-positive on each date according to Ministry 
of Health reports, and the fitted logistic growth curve.t  We used the date of positive test report as a 
proxy for onset date, (acknowledging that this could be before the onset of symptoms for some 
passengers and after onset for others given potential delays in testing and reporting). Initially only 
symptomatic individuals were tested whilst later testing was extended to all passengers. 

Figure S2 Proportion of tests positive by date on the Diamond Princess cruise ship. Data (points) and 
fitted logistic growth curve (log odds[proportion positive] = a + b*days, where a=-3.98, b=0.43 and 
days=days since the first positive test on 5th February up to tests on 2nd March) weighted by inverse 
variance of each data point.  
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