Supplementary material

Prieto et al. (2019)

Contents:

Fig. S1. The expression of *PHO89* does not vary in cold-shocked cells of the *plc1* and *pho85* mutants.

Fig. S2. Cold stimulates the expression of UAS_{INO} sequences containing genes.

Table S1. The Saccharomyces cerevisiae strains used in this study.

Table S2. The oligonucleotides used in this study.

Table S3. The plasmids used in this study.

Table S4. Composition, total carbon length and total double bond of TAG molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Table S5. Composition, total carbon length and total double bond of SE molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Table S6. Composition, total carbon length and total double bond of DAG molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Table S7. Composition, total carbon length and total double bond of PA molecular species found in *S. cerevisiae* wild-type cells grown at 30° C and cold-shocked at 15° C for 3 h.

Table S8. Composition, total carbon length and total double bond of PC molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Table S9. Composition, total carbon length and total double bond of PE molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Table S10. Composition, total carbon length and total double bond of PG molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Table S11. Composition, total carbon length and total double bond of PI molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Table S12. Composition, total carbon length and total double bond of PS molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

Fig. S1. The expression of *PHO89* does not vary in cold-shocked cells of the *plc1* and *pho85* mutants. PHO89::*lacZ* transformants of the CEN.PK2-1C mutants *plc1* and *pho85* were grown at 30°C in SCD, transferred to 15°C for 3 h, and the β -galactosidase activity of cellular extracts was analyzed as indicated in the Materials and methods section. Data represent the mean value (± SD) of three independent experiments. Activity differences between *plc1* and *pho85* samples were statistically significant at both 30 and 15°C (##; *p*< 0.01).

Fig. S2. Cold stimulates the expression of UAS_{INO} sequences containing genes. A) Schematic representation of pathways in which the phospholipid biosynthetic genes *CHO1*, which encodes the phosphatidylserine synthase, *CDS1*, the yeast CDP-diacylglycerol synthase and *PSD1*, encoding the phosphatidylserine decarboxylase, are involved. Details are given in the text and reviews [79]. B) Cells of the CEN.PK2-1C wild-type (wt) strain were grown to the mid-logarithmic phase in SCD medium at 30°C. An aliquot was withdrawn for the analysis and the rest of the culture was shifted to 15°C for 1 h or 3 h. Samples were analyzed for total mRNA levels of the mentioned genes by qPCR as indicated in the Materials and methods section. Expression differences between control (30°C) and cold-treated (15°C) samples are represented as the fold-change (*; *p*<0.05) (**; *p*<0.01). Data represent the mean (± SD) of at least three independent experiments.

Strain	Genotype	Reference or source
CEN.PK2-1C	MATa ura3-52 his3-∆1 leu-2-3,112 trp1-289	M. Rose
CEN.PK2-1C inp51	CEN.PK2-1C inp51::natMX4	[4]
CEN.PK2-1C plc1	CEN.PK2-1C plc1::kanMX4	This study
CEN.PK2-1C vip1	CEN.PK2-1C vip1::hygMX4	[4]
CEN.PK2-1C pho85	CEN.PK2-1C pho85::hygMX4	[4]
CEN.PK2-1C Pah1-Myc	CEN.PK2-1C PAH1-13myc::His3MX6	[4]
CEN.PK2-1C Ypk1-HA	CEN.PK2-1C YPK1-3HA::His3MX6	This study
CEN.PK2-1C Orm2-HA	CEN.PK2-1C ORM2-3HA::His3MX6	This study
CEN.PK2-1C pho85 Pah1-Myc	CEN.PK2-1C pho85::hygMX4 PAH1-13myc::His3MX6	This study
CEN.PK2-1C pho85 Ypk1-HA	CEN.PK2-1C pho85::hygMX4 YPK1-3HA::His3MX6	This study
CEN.PK2-1C pho85 Orm2-HA	CEN.PK2-1C pho85::hygMX4 ORM2-3HA::His3MX6	This study
KKT268 Ypk1-HA	MATa LYS2 ura3∆0 his3∆1 leu2∆0 MET15 fpk1∆::HphMX4 fpk2∆::KanMX6 YPK1-3HA::His3MX6	[98]

Table S1. The Saccharomyces cerevisiae strains used in this study

[98] Nakano K, Yamamoto T, Kishimoto T, Noji T, Tanaka K (2008) Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. *Mol Biol Cell* 19: 1783-1797.

Table S2. The oligonucleotides used in this study

Name	Sequence	Used for
KAN-S2	GTCAAGGAGGGTATTCTGG	Verification integration
YPK1-F2	ACAGCTAGGTAGCTCAATGGTGCAAGGTAGAAGCATTAGA CGGATCCCCGGGTTAATTAA	Genetic fusion of HA to YPK1
YPK1-R1	AAATTGCGCCATTGGTACAGTTGCTTCATCTTGAACACAG GAATTCGAGCTCGTTTAAAC	Genetic fusion of HA to YPK1
YPK1-V	ATTTGGTGGCTGGACATACG	Verification fusion of HA to YPK1
ORM2- F2	GAATATCCATCCCTGGTATTACGGGCCGTGCTCAAATTAGT CGGATCCCCGGGTTAATTAA	Genetic fusion of HA to ORM2
ORM2- R1	ACATATATATATATATATATACATATATGCGTATAGGCA GAGCCAAGAATTCGAGCTCGTTTAAAC	Genetic fusion of HA to ORM2
ORM2-V	CTGGGAATTACGCATAGA	Verification fusion of HA to ORM2
PAH1-F2	AATTCGATGACGATGAATTCGACGAAGATGAATTCGAAGATC GGATCCCCGGGTTAATTAA	Genetic fusion of MYC to PAH1
PAH1-R1	AGTATGGATCGTTATAAATAATATTCGGCTACAAGAATCGAA TTCGAGCTCGTTTAAAC	Genetic fusion of MYC to PAH1
PAH1-V	CACGAAGGGAGCAAAGTG	Verification fusion of MYC to PAH1
PLC1-F1	TAAACGTACAACGGTAAGGTCATTCACGCAGTGTATATGCGTA CGCTGCAGGTCGAC	PLC1 disruption
PLC1-R1	TGTATTGTTCCCCCTCCATGTTAAACAACGGAATGTGACGATC GATGAATTCGAGCTC	PLC1 disruption
PLC1-V1	ACAGTTACTTTCACCAAGAG	Verification PLC1 disruption
ACT1-F	GGATCTTCTACTACATCAGC	Quantification by qRT-PCR of ACT1 mRNA
ACT1-R	CACATACCAGAACCGTTATC	Quantification by qRT-PCR of ACT1 mRNA
INO1-F	ATTGCTCCAATCACCTCCG	Quantification by qRT-PCR of INO1 mRNA
INO1-R	CCGAAGTAGTTTGGTTGC	Quantification by qRT-PCR of INO1 mRNA
ORM2-F	TGAAGAGTCTCCGCTTACC	Quantification by qRT-PCR of ORM2 mRNA
ORM2-R	TCCATTTGGGCGTCGACC	Quantification by qRT-PCR of ORM2 mRNA
LCB3-F	AGCATTGGTGGTTTCCTTTG	Quantification by qRT-PCR of LCB3 mRNA
LCB3-R	CCAGGGTGACTCCAAACACT	Quantification by qRT-PCR of <i>LCB3</i> mRNA
LCB4-F	TCGTCAAATATGCTGCCAAA	Quantification by qRT-PCR of LCB4 mRNA
LCB4-R	AGGTACTGGTTCCGTCATCG	Quantification by qRT-PCR of LCB4 mRNA
LCB5-F	GCCACTGGACAAACAATCCT	Quantification by qRT-PCR of LCB5 mRNA
LCB5-R	ACCCAATTCAAACCTTGCAG	Quantification by qRT-PCR of LCB5 mRNA
YSR3-F	ACTGGTATGGCCAACAAAGC	Quantification by qRT-PCR of YSR3 mRNA
YSR3-R	AAACAAGCCCCATGCTACAC	Quantification by qRT-PCR of YSR3 mRNA
DPL1-F	TAGTCGGTGCAGCAATGAAG	Quantification by qRT-PCR of DPL1 mRNA
DPL1-R	GGCTTTTGTAGGGCATTGAA	Quantification by qRT-PCR of DPL1 mRNA

Plasmid	Description	Source or reference
pFA6a-kanMX4	pFA-yeast plasmid containing the <i>kan^r</i> gene, which provide resistance to the drug geneticine. kanMX4 cassette template	[99]
pFA6a-3HA-His3MX6	pFA6a-His3MX6-derived plasmid containing sequences encoding 3 tandem repeats of the influenza virus hemagglutinin epitope	[49]
pPHO89:: <i>lacZ</i>	Plasmid that contains the <i>E. coli lacZ</i> gene under the control of the <i>PHO89</i> gene promoter.	[93]
pRS414-7x2-PHO5-GFP-hPLC	Plasmid that contains two repeats of Phospholipase C δ 1 PH-domain fused to GFP under the control of the <i>PHO5</i> gene promoter	Tim Levine

Table S3. The plasmids used in this study

[99] Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in *Saccharomyces cerevisiae*. *Yeast* 10: 1793-1808.

S. cereviside wild type cells grown at 50	$mol\% \pm SD^a$	
TAG species	30°C	15°C
C38:0	0.12 ± 0.07	nd
C38:1	0.15 ± 0.01	0.06 ± 0.03
C40:0	0.23 ± 0.06	$0.11 \pm 0.02*$
C40:1	0.56 ± 0.05	0.31 ± 0.01 **
C42:0	0.36 ± 0.09	0.28 ± 0.03
C42:1	1.77 ± 0.07	$1.37 \pm 0.06*$
C42:2	1.87 ± 0.05	0.99 ± 0.01 **
C44:0	0.41 ± 0.18	0.31 ± 0.18
C44:1	2.41 ± 0.02	2.44 ± 0.06
C44:2	3.88 ± 0.04	$2.61 \pm 0.06^{**}$
C44:3	0.14 ± 0.01	nd
C46:1	1.95 ± 0.08	$2.07 \pm 0.02*$
C46·2	547 ± 0.09	$4.35 \pm 0.05^{**}$
C46·3	1.87 ± 0.02	$0.97 \pm 0.02^{**}$
C48:1	1.07 = 0.02 1.76 ± 0.15	1.93 ± 0.03
C48:2	9.91 ± 0.16	9.75 ± 0.09
C48:3	13.63 ± 0.14	$12.02 \pm 0.10**$
C50:2	9.88 ± 0.10	$11.35 \pm 0.05**$
C50:2	2257 ± 0.23	$23 \ 37 \pm 0.39$
C52:2	529 ± 0.09	$7.05 \pm 0.63*$
C52:2	10.87 ± 0.17	13.45 ± 0.05
C54:2	163 ± 0.03	$2 19 \pm 0.08 **$
C54:3	1.03 = 0.03 1.32 ± 0.07	$1.68 \pm 0.03^{**}$
C56:1	0.21 ± 0.12	0.20 ± 0.02
C56:2	0.21 = 0.12 0.34 ± 0.02	0.20 = 0.02 0.32 ± 0.01
C56:3	0.54 ± 0.02 0.17 ± 0.04	0.52 ± 0.01 0.15 ± 0.09
C58:2	0.58 ± 0.01	0.13 ± 0.03
C60:2	0.33 ± 0.01 0.73 ± 0.05	0.17 ± 0.03 0.57 ± 0.33 *
Total carbon length	0.75 - 0.05	0.57 - 0.55
	0.27 + 0.07	0.06 + 0.02
C38	0.27 ± 0.07	0.06 ± 0.03
C40	0.78 ± 0.10	$0.42 \pm 0.01^{*}$
C42	4.00 ± 0.19	2.64 ± 0.03 **
C44	6.84 ± 0.20	$5.25 \pm 0.12^{**}$
C46	9.29 ± 0.01	$7.38 \pm 0.09^{**}$
C48	25.30 ± 0.23	$23.71 \pm 0.21 **$
C50	32.45 ± 0.29	$34.72 \pm 0.43*$
C52	16.16 ± 0.20	$20.51 \pm 0.45 **$
C54	2.95 ± 0.03	$3.87 \pm 0.06^{**}$
C56	0.65 ± 0.11	0.62 ± 0.10
C58	0.58 ± 0.01	$0.49 \pm 0.03*$
C60	0.01 ± 0.00	nd
Total double bond		
C:0	1.12 ± 0.39	0.59 ± 0.16
C:1	8.73 ± 0.23	$8.34 \pm 0.16*$
C:2	39.58 ± 0.32	39.48 ± 0.75
C:3	50.57 ± 0.31	51.59 ± 0.74

S. cerevisiae wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

	mol%	$b \pm SD^{a}$
SE species	30°C	15°C
C10:0	0.24 ± 0.01	$0.4 \pm 0.03*$
C12:0	0.71 ± 0.06	$1.02 \pm 0.13*$
C14:0	0.99 ± 0.05	1.50 ± 0.10 **
C14:1	0.82 ± 0.04	$1.35 \pm 0.05 **$
C16:0	12.70 ± 0.18	$16.18 \pm 0.02*$
C16:1	43.19 ± 0.43	52.83 ± 6.57
C18:0	8.36 ± 0.11	7.4 ± 1.08
C18:1	32.04 ± 0.33	$24.31 \pm 2.15*$
C20:0	0.95 ± 0.07	$0.81 \pm 0.11*$
Total carbon length		
C10	0.24 ± 0.01	$0.40 \pm 0.03*$
C12	0.71 ± 0.06	$1.02 \pm 0.13^*$
C14	1.80 ± 0.05	2.85 ± 0.13 **
C16	55.89 ± 0.40	$63.62 \pm 2.77*$
C18	40.40 ± 0.40	31.71 ± 3.22*
C20	0.95 ± 0.07	0.81 ± 0.11
Total double bond		
C:0	23.95 ± 0.30	26.57 ± 0.27 **
C:1	76.05 ± 0.30	73.43 ± 0.27 **

TABLE S5. Composition, total carbon length and total double bond of SE molecular species found in S.
<i>cerevisiae</i> wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

	$mol\% \pm SD^a$	
DAG species	30°C	15°C
C30:0	0.94 ± 0.04	1.27 ± 0.68
C30:1	2.35 ± 0.09	4.47 ± 0.06 **
C30:2	0.51 ± 0.04	1.76 ± 0.12 **
C32:1	13.07 ± 0.09	$13.95 \pm 0.17*$
C32:2	24.12 ± 0.38	$22.69 \pm 0.25*$
C34:1	18.77 ± 0.08	15.33 ± 0.10 **
C34:2	30.21 ± 0.30	31.11 ± 1.19
C36:0	6.26 ± 0.01	6.01 ± 0.80
C36:1	3.08 ± 0.05	3.02 ± 0.04
C42:1	1.02 ± 0.59	1.19 ± 0.69
Total carbon length		
C30	3.80 ± 0.10	$7.50 \pm 0.79 *$
C32	37.19 ± 0.44	36.65 ± 0.16
C34	48.98 ± 0.27	$46.43 \pm 1.26*$
C36	9.34 ± 0.06	9.03 ± 0.77
C42	0.68 ± 0.59	0.40 ± 0.69
Total double bond		
C:0	0.94 ± 0.04	1.27 ± 0.68
C:1	41.13 ± 0.51	$40.15 \pm 0.89*$
C:2	57.94 ± 0.55	58.58 ± 1.36

TABLE S6. Composition, total carbon length and total double bond of DAG molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

	$mol\% \pm SD^a$	
PA species	30°C	15°C
C28:1	1.45 ± 0.22	2.03 ± 0.23
C30:1	2.34 ± 0.20	3.03 ± 0.27 **
C30:2	0.86 ± 0.50	1.68 ± 0.46
C32:1	11.54 ± 0.41	12.67 ± 0.35
C32:2	23.41 ± 0.63	24.21 ± 1.87
C34:1	19.34 ± 0.90	$15.94 \pm 1.24*$
C34:2	39.89 ± 0.46	39.07 ± 1.18
C36:2	1.46 ± 0.10	1.39 ± 0.22
Total carbon length		
C28	1.12 ± 0.25	1.92 ± 0.76
C30	2.92 ± 0.51	4.7 ± 0.71 *
C32	34.94 ± 0.57	36.87 ± 1.52
C34	59.23 ± 1.06	55.01 ± 2.38
C36	1.46 ± 0.10	1.39 ± 0.22
Total double bond		
C:0	nd	nd
C:1	34.67 ± 1.08	33.66 ± 1.15
C:2	65.33 ± 1.08	66.34 ± 1.15

TABLE S7. Composition, total carbon length and total double bond of PA molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

	$mol\% \pm SD^a$	
PC species	30°C	15°C
C28:0	0.27 ± 0.01	nd
C28:1	3.26 ± 0.15	$2.83 \pm 0.13*$
C28:2	0.06 ± 0.03	0.07 ± 0.04
C30:0	0.11 ± 0.02	nd
C30:1	2.66 ± 0.04	1.54 ± 0.04 **
C30:2	1.65 ± 0.04	$2.19 \pm 0.03 **$
C32:1	6.22 ± 0.07	$1.69 \pm 0.15 **$
C32:2	39.66 ± 0.07	45.66 ± 0.42 **
C34:1	3.6 ± 0.08	0.54 ± 0.13 **
C34:2	38.99 ± 0.21	42.87 ± 0.23 **
C36:1	0.61 ± 0.01	0.07 ± 0.04 **
C36:2	2.90 ± 0.04	2.60 ± 0.03 **
C38:2	0.06 ± 0.03	nd
Total carbon length		
C28	3.56 ± 0.16	$2.88 \pm 0.16*$
C30	4.42 ± 0.02	$3.72 \pm 0.05 **$
C32	45.88 ± 0.04	47.34 ± 0.31 **
C34	42.59 ± 0.18	43.41 ± 0.14 **
C36	3.51 ± 0.05	2.65 ± 0.07 **
C38	0.04 ± 0.03	nd
Total double bond		
C:0	0.38 ± 0.03	nd
C:1	16.35 ± 0.29	$6.65 \pm 0.47 * *$
C:2	83.27 ± 0.28	93.35 ± 0.47 **

TABLE S8. Composition, total carbon length and total double bond of PC molecular species found in S.
<i>cerevisiae</i> wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

	m	$ol\% \pm SD^{a}$
PE species	30°C	15°C
C26:0	0.11 ± 0.01	0.08 ± 0.01
C26:1	0.13 ± 0.01	$0.17 \pm 0.02*$
C28:0	0.25 ± 0.02	0.17 ± 0.00 **
C28:1	0.82 ± 0.04	0.91 ± 0.07
C30:1	1.51 ± 0.00	$1.49 \pm 0.01*$
C30:2	0.37 ± 0.02	0.72 ± 0.02 **
C32:1	9.52 ± 0.17	$8.96 \pm 0.05*$
C32:2	23.83 ± 0.12	22.13 ± 0.26 **
C34:1	10.75 ± 0.02	$10.26 \pm 0.09 **$
C34:2	48.45 ± 0.36	$50.92 \pm 0.36*$
C36:2	4.12 ± 0.12	4.14 ± 0.03
C38:2	0.13 ± 0.01	0.09 ± 0.05
Total carbon length		
C26	0.24 ± 0.01	0.24 ± 0.02
C28	1.07 ± 0.05	1.08 ± 0.07
C30	1.88 ± 0.02	2.21 ± 0.01 **
C32	33.35 ± 0.19	31.09 ± 0.31 **
C34	59.21 ± 0.34	$61.18 \pm 0.42*$
C36	4.12 ± 0.12	4.14 ± 0.03
C38	0.13 ± 0.01	0.06 ± 0.05
Total double bond	~ ^ 1	
C:0	0.36 ± 0.02	0.25 ± 0.01
C:1	22.74 ± 0.23	$21.79 \pm 0.08*$
C:2	76.90 ± 0.23	$77.96 \pm 0.08*$

TABLE S9. Composition, total carbon length and total double bond of PE molecular species found in S.
<i>cerevisiae</i> wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

	$mol\% \pm SD^a$		
PG species	30°C	15°C	
C32:1	26.94 ± 3.13	27.77 ± 0.47	
C32:2	6.82 ± 3.94	14.02 ± 0.53	
C34:1	55.38 ± 1.26	$34.79 \pm 0.13 **$	
C34:2	15.41 ± 1.81	23.41 ± 0.92 **	
Total carbon length			
C32	29.21 ± 1.41	41.80 ± 0.94 **	
C34	70.79 ± 1.41	$58.20 \pm 0.94 **$	
Total double bond			
C:1	82.32 ± 2.13	62.57 ± 0.41 **	
C:2	17.68 ± 2.13	37.43 ± 0.41 **	

TABLE S10. Composition, total carbon length and total double bond of PG molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

PI species	mol%	$mol\% \pm SD^a$		
	30°C	15°C		
C24:0	0.13 ± 0.07	0.33 ± 0.02		
C26:0	2.74 ± 0.14	3.83 ± 0.09 **		
C26:1	0.37 ± 0.02	1.13 ± 0.02 **		
C28:0	4.68 ± 0.13	$4.75 \pm 0.14*$		
C28:1	0.86 ± 0.05	2.62 ± 0.07 **		
C30:0	1.74 ± 0.01	0.92 ± 0.01 **		
C30:1	2.84 ± 0.08	5.42 ± 0.09 **		
C30:2	0.26 ± 0.00	1.27 ± 0.02 **		
C32:1	22.37 ± 0.15	23.85 ± 0.08 **		
C32:2	4.76 ± 0.13	7.10 ± 0.02 **		
C34:1	40.72 ± 0.46	$31.34 \pm 0.25 **$		
C34:2	8.31 ± 0.09	9.57 ± 0.08 **		
C36:1	9.35 ± 0.32	6.86 ± 0.10 **		
C36:2	0.95 ± 0.01	$1.01 \pm 0.02*$		
Total carbon length				
C24	0.13 ± 0.07	0.33 ± 0.02		
C26	3.11 ± 0.16	4.97 ± 0.10 **		
C28	5.54 ± 0.17	7.37 ± 0.20 **		
C30	4.84 ± 0.08	7.6 ± 0.12 **		
C32	27.13 ± 0.21	30.95 ± 0.08 **		
C34	49.03 ± 0.39	40.91 ± 0.28 **		
C36	10.30 ± 0.32	7.87 ± 0.09 **		
Total double bond				
C:0	9.21 ± 0.33	9.84 ± 0.24 **		
C:1	76.51 ± 0.50	71.22 ± 0.24 **		
C:2	14.29 ± 0.21	$18.94 \pm 0.03 **$		

TABLE S11. Composition, total carbon length and total double bond of PI molecular species found in *S. cerevisiae* wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.

PS species	$mol\% \pm SD^a$		
	30°C	15°C	
C26:0	nd	0.53 ± 0.03	
C28:0	0.44 ± 0.07	0.57 ± 0.02	
C28:1	0.53 ± 0.04	1.21 ± 0.06 **	
C30:1	1.18 ± 0.09	2.40 ± 0.06 **	
C32:1	13.64 ± 0.29	17.97 ± 0.32 **	
C32:2	6.83 ± 0.09	8.93 ± 0.30 **	
C34:1	33.89 ± 0.62	$29.59 \pm 0.79*$	
C34:2	41.64 ± 0.79	$35.37 \pm 0.82*$	
C36:1	0.58 ± 0.05	$1.10 \pm 0.21*$	
C36:2	1.46 ± 0.12	$2.53 \pm 0.34*$	
Total carbon length			
C26	nd	0.53 ± 0.03	
C28	0.93 ± 0.10	1.81 ± 0.01	
C30	1.18 ± 0.09	2.40 ± 0.06 **	
C32	20.46 ± 0.36	26.90 ± 0.07 **	
C34	75.53 ± 0.18	64.96 ± 0.62 **	
C36	2.04 ± 0.12	$3.62 \pm 0.46*$	
Total double bond			
C:0	0.44 ± 0.07	$0.91 \pm 0.32*$	
C:1	49.64 ± 0.65	52.26 ± 1.27	
C:2	49.93 ± 0.70	46.82 ± 0.97 *	

TABLE S12. Composition, total carbon length and total double bond of PS molecular species found in S
<i>cerevisiae</i> wild-type cells grown at 30°C and cold-shocked at 15°C for 3 h.