Supporting Information

Insight into the loading and release properties of MCM-48/biopolymer composites as carriers for 5-fluorouracil; equilibrium modeling and pharmacokinetic studies

Mostafa R. Abukhadra^{*†,‡}, Nermen M. Refay^{‡,§}, Ahmed M. El-Sherbeeny **^ξ, Mohammed A. El-Meligy[¥]

[†]Geology Department, Faculty of Science, Beni-Suef University, Beni –Suef city, Egypt

[‡]Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.

Schemistry Department, Faculty of Science, Beni-Suef University, Beni –Suef city, Egypt.

ξ Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

[¥]Advanced Manufacturing Institute, King Saud University, Riyadh-11421, Saudi Arabia,

Content

1.	Table.S1.	the	repres	entativ	e eq	uations	of	the	studied	d kinetic	and	isotherm	model	and	their
	parameter	s													S2
2.	Table S2.	The	determ	nined v	alue	s of the	de	term	ination	coefficie	nt wh	ich were d	obtained	for I	inear
	regression	n f	itting	of t	he	releasi	ing	re	sults	with	the	pharmac	okinetic	m	odels
															S3

1. Representative equation of kinetic and equilibrium models

Kinetic models								
Model	Linear equation	Parameters						
Pseudo-first-order	$\ln \left(q_e - q_t\right) = \ln \ q_e - k_1 t$	$q_t (mg/g)$ is the adsorbed drug at time (t), and K_1 is the rate constant of the first-order adsorption (min^1)						
Pseudo-second-order	$\frac{\mathrm{t}}{\mathrm{q}_t} = \frac{1}{K_2 \mathrm{q}_e^2} + \frac{\mathrm{t}}{\mathrm{q}_e}$	qe is the quantity of adsorbed drug after equilibration (mg/g), and K_2 is Lagergren model rate constant (g/mg min).						
Isotherm models								
Model	Equation	Parameters						
Langmuir	$\frac{C_{e}}{q_{e}} = \frac{1}{bq_{max}} + \frac{C_{e}}{q_{max}} (Linear)$	C_e is the rest drug concentrations (mg/L), q_{max} is the theoritical maximum ibuprofen drug capacity (mg/g), and <i>b</i> is the Langmuir constant (L/mg)						
Freundlich	$ \begin{aligned} q_e &= \frac{q_{max} bC_e}{(1+bC_e)} (Nonlinar) \\ Log \; qe &= (1/n) \; log \; Ce + log \; K_f \; (Linear) \\ q_e &= K_f C_e^{1/n} (Nonlinear) \end{aligned} $	$K_{\rm F}$ is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities						
Dubinin–Radushkevich	$ \begin{aligned} &\ln\left(qe\right) = \ln\left(q_{m}\right) - \beta\varepsilon^{2} (Linear) \\ &q_{e} = q_{m}e^{-\beta\varepsilon^{2}} (Nonlinear) \end{aligned} $	β (mol²/KJ²) is the D-R constant, $\epsilon~$ (KJ²/mol²) is the polanyil potential, and q_m is the adsorption capacity						

Table S1. the representative equations of the studied kinetic and isotherm model and their parameters

2. Determination coefficient values of the pharmacokinetic models

Table S2. The determined values of the determination coefficient which were obtained for linear regression

 fitting of the releasing results with the pharmacokinetic models

		Determination co	Determination coefficient (R ²)		
Models	Materials	pH 1.2	pH 7.4		
	MCM-48	0.5	0.62		
Zero-order model	MCM/ST	0.68	0.61		
	MCM/CH	0.75	0.67		
	MCM/CD	0.73	0.66		
	MCM-48	0.54	0.75		
First order model	MCM/ST	0.90	0.86		
	MCM/CH	0.91	0.88		
	MCM/CD	0.93	0.92		
	MCM-48	0.71	0.82		
Higuchi model	MCM/ST	0.87	0.82		
	MCM/CH	0.92	0.86		
	MCM/CD	0.90	0.85		
	MCM-48	0.52	0.71		
Hixson-Crowell model	MCM/ST	0.84	0.80		
	MCM/CH	0.87	0.83		
	MCM/CD	0.88	0.85		
	MCM-48	0.82	0.85		
Korsmeyer-peppas model	MCM/ST	0.93	0.90		
	MCM/CH	0.94	0.91		
	MCM/CD	0.93	0.92		