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Supplementary Methods 

GWAS Samples 

GWAS summary statistics for ADHD were obtained from the Psychiatric Genomics 

Consortium (PGC) and comprised association analyses of 19,099 cases and 34,194 controls (n 

total = 53,293) (1). These samples included a population-based cohort of 14,584 cases and 

22,492 controls from Denmark collected by the Lundbeck Foundation Initiative for Integrative 

Psychiatric Research (iPSYCH), and 10 European cohorts aggregated by the Psychiatric 

Genomics Consortium (PGC) (1). ADHD cases in iPSYCH were identified from a national 

research register and diagnosed by psychiatrists at a psychiatric hospital according to ICD10 

(F90.0), and genotyped using Illumina PsychChip. The PGC cohorts include both adult and 

child participants. Further detailed descriptions of all included cohorts, including sex 

distributions, have been described previously (2).  

The summary statistics for general intelligence (INT) were obtained from the meta-analysis of 

14 independent cohorts (n = 269,867), comprised of adult and child participants of European 

ancestry (3). For general intelligence, the INT GWAS included cohorts assessed using various 

measures of intelligence (3). Statistically, the variance common across cognitive tasks can be 

labeled general intelligence or Spearman’s g (4). The g factors extracted from different sets of 

cognitive tests are known to correlate very strongly (5), and were used as the outcome variable 

in this GWAS (3). Furthermore, a detailed description of these cohorts is available in the 

original publication (3). 



O’Connell et al.  Supplement 

2 

 

For our analyses of educational attainment (EDU) we used summary statistics (n = 842,499) 

generated from the meta-analysis of data from the Social Science Genetic Association 

Consortium (SSGAC) (n = 766,344) (6) and 23andMe (n = 76,155) (7). Data for the additional 

23andMe participants (n = 289,383) included in the Lee et al. study (6) were not available for 

the present study. The meta-analysis was performed using an inverse-weighted fixed effects 

model implemented in the software METAL (http://csg.sph.umich.edu//abecasis/Metal/) (8). 

Each major educational qualification outcome from the surveys used in the cohorts included in 

the EDU meta-analysis were mapped to an International Standard Classification of Education 

(ISCED) category (6, 7). These category scores were then imputed to obtain a ‘years of 

education’ score (1 – 22 years) that was then used as the outcome variable in the meta-analysis 

(6). All participants included in the meta-analysis were adults of European ancestry, and 

additional detailed descriptions of the included participants are provided in the original 

publication (6). 

 

Independent Study of ADHD Symptoms – EAGLE Cohort 

The Early Genetics and Lifecourse Epidemiology (EAGLE) consortium includes population-

based cohorts from Europe, Australia and the United States. For this study of ADHD symptoms, 

nine EAGLE cohorts were included with available scores in childhood (age at measurement < 

13 years). Further details of the nine cohorts is provided in the original article (9). In order to 

assess ADHD symptoms, different instruments were used across cohorts, including the 

Attention Problems scale of the Child Behavior Checklist (CBCL) and the Teacher Report Form 

(TRF), and the Hyperactivity scale of the Strengths and Difficulties Questionnaire (SDQ). For 

the meta-analysis, one phenotype was selected from each cohort. A detailed description of the 

quality control, imputation and the analysis procedures for the different cohorts can be found in 
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the original article (9). Association analyses were performed using linear regression and 

relevant principal components and subsequently meta-analysed using METAL (8). Summary 

statistics from the meta-analysis of N=17,666 individuals were used in the current study. 

 

Independent ADHD Case-Control Sample – deCODE Genetics, ADHD Diagnoses from 

Medical Records 

The Icelandic ADHD cohort (n = 10,217) is comprised of individuals who have either a clinical 

ADHD diagnosis (mostly ICD10-F90) or who have been prescribed medication specific for 

ADHD symptoms (ATC-NA06BA, mostly methylphenidate). The Icelandic control sample (n 

= 338,344) consists of individuals participating in various deCODE studies. All individuals 

used in the analysis were subject to chip genotyping and long range phasing and genotypes were 

imputed based on the Icelandic dataset as described previously (10). 

 

Conditional False Discovery Rate  

The ‘enrichment’ seen in the conditional QQ plots and fold-enrichment plots can be directly 

interpreted in terms of true discovery rate (TDR = 1 – false discovery rate (FDR)) (11). More 

specifically, for a given p-value cutoff, the FDR is defined as  

FDR(p) = π0F0(p) / F(p),  [1]  

where π0 is the proportion of null SNPs, F0 is the null cumulative distribution function (cdf), 

and F is the cdf of all SNPs, both null and non-null (12). Under the null hypothesis, F0 is the 

cdf of the uniform distribution on the unit interval [0,1], so that Eq. [1] reduces to  

FDR(p) = π0 p / F(p),  [2] 

The cdf F can be estimated by the empirical cdf q = Np / Ν, where Np is the number of SNPs 

with p-values less than or equal to p, and N is the total number of SNPs. Replacing F by q in 

Eq. [2], we get  
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Estimated FDR(p) = π0 p / q,  [3] 

which is biased upwards as an estimate of the FDR (13). Replacing π0 in Equation [3] with unity 

gives an estimated FDR that is further biased upward; 

q* = p/q,  [4]  

If π0 is close to one, as is likely true for most GWASs, the increase in bias from Eq. [3] is 

minimal. The quantity 1 – p/q, is therefore biased downward, and hence a conservative estimate 

of the TDR. Referring to the QQ plots, we see that q* is equivalent to the nominal p-value 

divided by the empirical quantile, as defined earlier. We can thus read the FDR estimate directly 

off the QQ plot as  

-log10(q*) = log10(q) – log10(p),  [5] 

i.e. the horizontal shift of the curves in the QQ plots from the expected line x = y, with a larger  

shift corresponding to a smaller FDR (Illustrated in Figure 1 and Supplementary Figure S1). 

 

Conditional QQ Plots  

Under large-scale testing paradigms, such as GWAS, quantitative estimates of likely true 

associations can be drawn from the distributions of summary statistics (12, 14). One common 

method for visualizing the enrichment of statistical association relative to that expected under 

the global null hypothesis is through QQ plots of the nominal p-values obtained from GWAS 

summary statistics. QQ plots compare a nominal probability distribution against an empirical 

distribution. In the presence of all null relationships, nominal p-values form a straight line on a 

QQ plot when plotted against the empirical distribution. Under the global null hypothesis the 

theoretical p-value distribution is uniform on the interval [0,1]. As is common in GWAS, we 

plot -log10 p against -log10 q (q=1-cdf(p)) to emphasize tail probabilities of the theoretical and 

empirical distribution of ADHD, EDU and INT associations. Leftward deflections of the 

observed distribution from the projected null line reflect increased tail probabilities in the 
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distribution of test statistics (z-scores) and consequently an over-abundance of low p-values 

compared to that expected by chance, also named ‘enrichment’.  

 

Conditional QQ plots are constructed by creating subsets of SNPs based on levels of an 

auxiliary measure for each SNP, and computing QQ plots separately for each level. If SNP 

enrichment is captured by variation in the auxiliary measure, this is expressed as successive 

leftward deflections in a conditional QQ plot as levels of the auxiliary measure increase. We 

constructed conditional QQ plots of empirical quantiles of nominal association -log10 p-values 

for all SNPs and for subsets (strata) of SNPs determined by the nominal p-values of their 

association with the conditional phenotypes, and vice versa. Specifically, we computed the 

empirical cumulative distribution (cdf) of nominal p-values for a given phenotype for all SNPs 

and for SNPs with significance levels below the indicated cut-offs for the conditional 

phenotypes (-log10(p) ≥ 1, -log10(p) ≥ 2, -log10(p) ≥ 3 corresponding to p < 0ꞏ1, p < 0ꞏ01, p < 

0ꞏ001 respectively). To assess the polygenic effects below the standard GWAS significance 

threshold, we focused the conditional QQ plots on SNPs with nominal –log10(p) < 7ꞏ3 

(corresponding to p > 5x10-8). To control for spurious enrichment, all conditional QQ plots were 

constructed after random pruning averaged over 500 iterations. At each iteration, one SNP in 

every LD block (defined by an r2 >0ꞏ1) was randomly selected and the empirical cdfs were 

computed using the corresponding p-values. 

 

Detection of Genetic Variants Using Conditional and Conjunctional FDR 

The FDR can be interpreted as the probability that a SNP is null given that its p-value is as 

small as or smaller than its observed p-value. The conditional FDR (condFDR) is an extension 

of the standard FDR, which incorporates information from GWAS summary statistics of a 

second phenotype to adjust its significance level. The condFDR is defined as the probability 
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that a SNP is null in the first phenotype given that the p-values in the first and second 

phenotypes are as small as or smaller than the observed ones. Ranking SNPs by the standard 

FDR or by p-values gives the same ordering of SNPs. In contrast, if the primary and secondary 

phenotypes are related genetically, the condFDR reorders SNPs and results in a different 

ranking than that based on p-values alone. The conjunctional FDR (conjFDR) is defined as the 

posterior probability that a SNP is null for either phenotype or both simultaneously, given that 

its p-values for association with both phenotypes are as small as or smaller than the observed 

p-values (15, 16). A conservative estimate of the conjFDR is given by the maximum condFDR 

for a given SNP after repeating the condFDR procedure for both traits and inverting their roles 

(17). Given that complex correlations in regions with intricate LD can bias FDR estimation (18), 

we excluded SNPs in the extended major histocompatibility complex (genome build 19 

locations 25119106–33854733) and SNPs in LD (r2>0ꞏ1) with such SNPs before fitting the 

FDR models. 

Code Availability

All of the code necessary to replicate the condFDR/conjFDR analyses described above is 

publicly available at https://github.com/precimed/pleiofdr. 
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Supplementary Figures 

 

Supplementary Figure S1. Stratified conditional QQ plots of nominal vs empirical −log10 p-

values (corrected for inflation) in educational attainment (EDU) or general intelligence (INT) 

below the standard genome-wide association study threshold of p < 5 × 10−8 as a function of 

significance of association with ADHD at the level of −log10 p-values of 1, 2, or 3, 

corresponding to p = 0.10, p = 0.01 and p = 0.001, respectively. The dashed lines indicate the 

null hypothesis. 
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Supplementary Figure S2. Age-dependent variations of expression for the genes associated 

with identified eQTL SNPs in the developmental and adult human brain. 

Line plots show the log2-transformed gene exon array signal intensity from the early fetal 

period to late adulthood in six brain regions. The solid line between periods 7 and 8 

(approximately post-conception day 280) separates prenatal from postnatal periods. Data were 

generated using Affymetrix GeneChip Human Exon 1.0 ST Arrays by the Human Brain 

Transcriptome project, and accessed via their publicly available database at http://hbatlas.org. 

Abbreviations: NCX = neocortex; HIP = hippocampus; AMY = amygdala; STR = striatum; MD 

= mediodorsal nucleus of the thalamus; CBC = cerebellar cortex. 
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