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Supplementary Appendix 1 
 2 

This Supplementary Appendix includes a detailed discussion of our HIV microsimulation model, calibration 3 
techniques, and additional methods and results not presented in main manuscript. 4 
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Section 1: HIV Model 1 
 2 

A. Overview 3 
 4 
We developed a microsimulation model of the HIV epidemic in Kenya, where the mode of transmission is 5 
predominantly heterosexual. We first run the model starting in 2003 with 100,000 individual adults over age 15 years, 6 
representative of Kenya’s population, in order to reproduce historical epidemiologic trends through 2018. Starting in 7 
2018, we use the model to simulate and compare individual and population level health outcomes and costs associated 8 
with different HIV pre-treatment drug resistance (PDR) testing strategies over a 15-year time horizon.  The model 9 
includes detailed HIV transmission, disease progression, and care parameters, which we describe below.  10 
 11 
Each adult has several individual-level characteristics, including age, gender, HIV status, circumcision status, and 12 
number of sexual partnerships. In addition, individuals who are HIV-positive are further described by their CD4 cell 13 
count, viral load, treatment regimen, treatment history, opportunistic diseases, and drug resistance status. Each of these 14 
individual characteristics is evaluated on a monthly basis. The population size changes based on maturation into the 15 
population (people who age into the population at age 15 years) and deaths.  16 
 17 
A similar model was previously applied to the South African context.1-3We have re-parameterized and calibrated this 18 
model using demographic, health, and epidemiologic data from Kenya.  In addition, the model has also been further 19 
developed to simulate the emergence and transmission of drug resistance to first-line ART, described in detail in 20 
Section 2. We chose to use a model that includes transmission in order to capture both the treatment and prevention 21 
benefits of PDR testing. We follow a large number of individual-based characteristics, which led us to use an 22 
individual-based model instead of a deterministic compartmental model. 23 
 24 

B. Demographic Population Structure  25 
 26 
We used age- and gender-stratified population data from Kenyan population pyramids to construct the basic 27 
population.4 The initial HIV prevalence of 8·4% in 2003 was based on age- and gender-stratified Kenyan HIV 28 
prevalence data from both the Kenyan Demographic and Health Survey and UNAIDS HIV prevalence estimates5,6. 29 
We obtained the prevalence of male circumcision from published estimates.5,7,8  30 
 31 
Each individual is modeled as having either 0, 1, 2, or 3 sexual partners based on primary data from the Demographic 32 
and Household Survey (DHS) in Kenya (DHS asks the number of people with whom an individual has had sexual 33 
relationships in the past 12 months).5,7,8  We fixed the distribution of sexual partnerships, but people were allowed to 34 
dissolve partnerships and select new partners every 12 months on average.  We assumed that all partnerships last 12 35 
months regardless of the number of partners one has.  We assumed that the HIV status of partners remains unchanged 36 
throughout the period of partnership. This approach may underestimate the risk of transmission. For example, an 37 
individual with only one HIV-negative spousal partnership had no risk of infection throughout the time horizon, while 38 
in reality there is some chance that the partner may get infected by another concurrent partner. 39 
 40 

C.  HIV Disease Model – Natural History, Treatment, and Monitoring 41 
 42 
Natural History  43 
We have previously published a description of our HIV disease model.1 We followed the disease progression of all 44 
infected individuals using the following attributes: age, CD4 cell count, viral load, ART regimen, ART duration, 45 
history of opportunistic diseases, virologic failure, and resistance status.  The values of all attributes were re-evaluated 46 
during each monthly cycle. HIV disease progression was characterized by two primary biological parameters: CD4 47 
cell count and viral load. CD4 cell count was used to determine the monthly probability of opportunistic infection and 48 
HIV-related mortality, and the rate of decrease or increase CD4 cell count depending upon ART and virologic failure 49 
status, age, and viral load.   50 
 51 
Initial assignment of CD4 cell count 52 
Since it was unknown how long they had been infected with HIV, patients who already had chronic HIV at the start 53 
of the model in 2003 randomly assigned a CD4 cell count value from a uniform distribution ranging from 0-750.  The 54 
same approach was used to assign CD4 cell count values to adolescents already infected with HIV when they entered 55 
the model population at age 15 years.  Individuals who became newly infected with HIV after they entered the model 56 
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population were assigned a CD4 cell count value of 750.  For individuals who became newly infected with HIV after 1 
the start of the microsimulation, they were assigned an initial CD4 cell count of 750. 2 
 3 
Initial assignment of viral load 4 
Among patients who were already infected with HIV at the start of the model in 2003, initial viral load was assigned 5 
differently depending on whether was already on treatment and whether the patient had chronic HIV. Patients already 6 
on treatment were assigned an initial viral load of 2·6 logs (398 copies/mL). Patients with chronic HIV who were not 7 
yet on treatment were assigned an initial viral load drawn from a normal distribution with a mean viral load of 4·5 8 
logs, a standard deviation of 0·8 logs, and with lower and upper bounds of 2·6 logs and 6·0 logs, respectively. Patients 9 
with acute HIV at the start of the model in 2003 were assigned a viral load of 6·0 logs. For new infections, we assign 10 
a viral load drawn from a normal distribution with a mean viral load of 4·5 logs, a standard deviation of 0·8 logs, and 11 
with lower bound of 2·6 logs. 12 
 13 
CD4 cell count dynamics 14 
The CD4 cell count was modeled as a continuous variable that varied based on the viral load, ART, and virologic 15 
failure status.  CD4 cell count decreases each month that a patient is either: a) not on ART, b) not adherent to ART, 16 
or c) is experiencing virologic failure while on ART. CD4 cell count decreases at a rate that depends on viral load.9 17 
Given the controversial relationship between HIV viral load and CD4 change, we allowed two non-linear determinants 18 
of CD4 decline, both guided by published data9,10: random variability around the regression line, and a slower rate of 19 
decline with lower CD4.  Each month there is a drop in CD4 cell count, the new value is calculated by the following 20 
equation: 21 

 22 
“this month” CD4 cell count = “last month” CD4 cell count  –  monthly CD4 decrease, 23 
 24 

where the “monthly CD4 decrease” value is drawn at random from a distribution centered around the “monthly 25 
decrease in CD4 cell count” according to viral load level (Table S1). However, if a patient has an opportunistic 26 
infection, the CD4 cell count decrease that month is equal to 58·5, independent of viral load level, with the caveat that, 27 
in our model, CD4 cell count is never allowed to drop below 1.0. 28 
 29 

Log viral load Monthly Decrease in CD4 Cell Count 
0 – 2·6 0 
2·601-3·7 4·4 
3·701- 4·5 5·5 
>4·5 6·6 
Table S1. Monthly Decrease in CD4 Cell Count by Viral Load 

 30 
After starting an ART regimen that begins to effectively decrease the patient’s viral load, the CD4 cell count rises 31 
each month that the ART regimen remained effective.  The monthly rate of increase in CD4 cell count gradually 32 
decreases with each additional month that a patient has been on ART, and the strongest reproducible predictor of the 33 
maximum level the CD4 cell count will achieve while on effective ART is the CD4 cell count at the time of treatment 34 
initiation.11-14 We assume that after 48 months of effective ART there is no further increase in CD4 cell count. 35 
Published data on CD4 rise were extracted using the graph digitizing program DigitizeIt v.1.5 (Braunschweig, 36 
Germany), and the following model was fit to the data to describe the monthly rate of CD4 cell count increase: 37 

 38 
Monthly increase in CD4 cell count = 75*log((ART duration + 2) / (ART duration + 1)),  39 
where ART duration is the number of months since ART initiation. The monthly increase in CD4 cell count is 40 
multiplied by 0·8 for patients older than 40 years, based on data suggesting that older individuals have an incomplete 41 
CD4 cell count response to ART.13 42 
 43 
Viral load dynamics 44 
Effective ART suppresses viral replication. Each month that a patient receives an effective ART regimen, the viral 45 
load decreases by 0·7 logs, for a maximum of 6 months. Thus, if patient began with a viral load of 6 logs (1 million 46 
copies/mL), which is the maximum possible viral load in the model, then after 6 months of effective ART the patient 47 
would have a viral load of 1·7 logs (50 copies/mL). Also, the lowest possible viral load allowed in the model is 1·7 48 
logs. After a patient experiences virologic failure on ART or stops taking ART, the viral load immediately increases 49 
to the highest prior viral load level for the patient. 50 
 51 
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 1 
 2 
Risk of opportunistic infections and mortality 3 
The risk of opportunistic diseases and mortality were dependent on the current CD4 cell count level (Table S2).15-17 4 
We calculated the risk of a severe opportunistic disease based on the risk of developing a World Health Organization 5 
(WHO) Stage 4 disease plus the risk of developing opportunistic pulmonary tuberculosis (TB). We aggregated data 6 
on the risk of chronic diarrhea, esophageal candidiasis, wasting syndrome, severe bacterial infection, pulmonary TB, 7 
extrapulmonary TB, PCP, CMV, cryptococcal meningitis, and toxoplasmosis when calculating the risk of severe 8 
opportunistic diseases. 15,17 9 

 10 
HIV disease parameter Parameter Value Source 
     Monthly probability of developing opportunistic  
          diseases by CD4 lymphocyte count, % 

 Holmes et al,16 Badri et 
al15 

          0-49 cells/µL 10·0  
          50-99 cells/µL 5·0  
          100-199 cells/µL 3·7  
          200-299 cells/µL 2·4  
          300-399 cells/µL 1·0  
          400-499 cells/µL 0·3  
          ≥500 cells/µL 0  
   
     Monthly probability of HIV mortality without ART, by  
          CD4 lymphocyte count, % 

 Badri et al.15 

          0-49 cells/µL 4·8  
          50-99 cells/µL 2·0  
          100-199 cells/µL 1·6  
          200-299 cells/µL 1·2  
          300-399 cells/µL 1·0  
          400-499 cells/µL 0·8  
          ≥500 cells/µL 0·5  
   
     Monthly HIV mortality with ART, by CD4  
          lymphocyte count, % 

 Lawn et al.17 

          0-49 cells/µL 3·2  
          50-99 cells/µL 1·1  
          100-199 cells/µL 0·5  
          200-299 cells/µL 0·2  
          300-399 cells/µL 0·2  
          400-499 cells/µL 0·2  
          ≥500 cells/µL 0·1  
Table S2. Probability of opportunistic infections and HIV-related mortality by CD4 cell count 

 11 
Treatment and Monitoring 12 
We  assume that, as of 2016, all individuals diagnosed with HIV qualify to receive ART, regardless of CD4 cell count, 13 
as currently recommended by the Kenyan Ministry of Health guidelines.18 Use of dolutegravir in Kenya began in 2018 14 
for 10,000 patients initiating ART across 24 different health facilities as a pilot project.19 According to UNAIDS 15 
estimates, there 62,000 new HIV infections in Kenya in 2016, with estimates ranging from 45,000 to 81,000.6 Based 16 
on this, we roughly estimated that in 2018 there would be ~50,000 new HIV infections. Thus, for our model, since 17 
there were 10,000 patients who received dolutegravir-based ART in 2018, we assume that for any given patient 18 
initiating ART in 2018 there is a 20% chance they will receive dolutegravir-based ART (as 10,000 / 50,000 = 20%). 19 
Patients who do not receive dolutegravir-based ART receive non-nucleoside reverse transcriptase inhibitor (NNRTI)-20 
based ART. We assume protease inhibitor (PI)-based ART is the second-line ART regimen for patients in whom 21 
virologic failure is detected on either dolutegravir-based or NNRTI-based ART. This dolutegravir pilot phase began 22 
prior to May 2018 when evidence from Botswana revealed a potential early signal for  about a potential increased risk 23 
of neural tube defects in association with use of dolutegravir-based ART from the time of conception.20  24 
 25 
In July 2018, WHO recommended use dolutegravir-based ART as the preferred empiric first-line regimen for women 26 
only if they are receiving an effective form of contraception.21 More recent evidence from Botswana suggests that 27 
while the potential increased risk of neural-tube defects is still significant it may not be as large as what the 2018 28 
analysis found.22 In response, WHO has updated its guidelines to provide reassurance and strongly recommend 29 
dolutegravir-based ART as the preferred empiric first-line ART regimen for HIV-infected women.23 However, it 30 
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remains to be seen what proportion of HIV-infected women will use dolutegravir-based ART moving forward. Thus, 1 
for women, in our base-case scenario, we assume that for any given woman initiating ART there is a 40% chance she 2 
will receive dolutegravir-based ART. This assumption was made in anticipation of potential concerns about 3 
dolutegravir from either from health facilities delivering ART or from the patient herself and takes into account 4 
estimates that about 40% of women in Kenya use some form of contraception.8 For men, we assume scale-up of 5 
dolutegravir use occurs relatively quickly with 75% of HIV-infected men initiating ART in 2019 receiving 6 
dolutegravir-based ART and 100% of men initiating ART in 2020 or later receiving dolutegravir-based ART (Table 7 
S3). 8 
 9 
 10 

Year Men Women 
2018 20% 20% 
2019 75% 40% 

2020 & onwards 100% 40% 
Table S3. Proportion Who Receive DTG-based ART Among HIV-Infected Men & Women Initiating ART 

 11 
We modeled and compared three different testing strategies for women who do not initiate dolutegravir-based ART 12 
in Kenya over a 15-year time horizon starting in 2019 (t0): 1) empiric NNRTI-based ART with no PDR testing, 2) 13 
PDR testing with OLA, and 3) PDR testing with CS (diagnostic performance of OLA and CS are discussed in detail 14 
in Section 2). For PDR testing strategies using either OLA or CS, PI-based ART is initiated when PDR is detected, 15 
and NNRTI-based ART is used for all other patients. The probability of virologic failure on one’s initial ART regimen 16 
is determined by PDR status and the ART regimen where individuals who have PDR to their initial ART regimen 17 
have a higher probability of virologic failure compared to those who do not have PDR to their initial ART regimen 18 
(discussed in detail in Appendix Section 2).   19 
 20 
During the period from 2003 to 2017, which was used for calibration, initial viral load testing switches from occurring 21 
at 12 months after ART initiation to 6 months after ART initiation in the year 2014. From that point on, we assume 22 
viral load testing occurs at 6 months after ART initiation and every 12 months thereafter. To estimate the cost of CD4 23 
cell count testing, we assume that CD4 cell count is checked at baseline and when virologic failure is detected to 24 
assess for risk of opportunistic infections.24 Switching from first-line to second-line therapy is indicated when 25 
virologic failure was identified through viral load testing (the probability of switching to 2nd-line ART when indicated 26 
is described in more detail below in the Cascade of Care Section).  Patients who experience treatment failure on PI-27 
based second-line ART continue this therapy because of survival advantages associated with a non-suppressive 28 
regimen compared with discontinuation of ART.25  Patients with virologic failure who were continued on ART had a 29 
lower viral “set point” and their rate of CD4 decline was slower.25  30 
 31 

D. Cascade of Care and ART Coverage 32 
 33 
Overview 34 
The cascade of care model input parameters are designed to be consistent with Kenyan Ministry of Health guidelines 35 
and calibrated to achieve ART coverage rates that have been observed in Kenya over time.  ART coverage is an 36 
important population level outcome that strongly influences the prevalence of PDR.  As ART coverage increases, the 37 
number of HIV-infected individuals who can develop acquired drug resistance (ADR) increases, and patients with 38 
ADR have the potential to transmit drug resistance mutations to others they infect.  Therefore, the prevalence of PDR 39 
tends to increase as ART coverage increases.  Thus, it was important to model ART coverage accurately from 2003-40 
2017, in order to ensure we made accurate assumptions about other key parameters involved in the emergence and 41 
transmission of drug resistance, including the probability of virologic failure, of developing ADR among those who 42 
experience virologic failure, and of switching to second-line ART when virologic failure is identified by a viral load 43 
test. A detailed explanation of how drug resistance is modeled is provided in Appendix Section 2, and our model 44 
calibration is explained in Appendix Section 3. 45 
 46 
ART initiation thresholds over time were based on published guidelines.18,26,27  Other cascade of care parameters 47 
were based on a range of values published in the literature and adjusted such that the ART coverage rates generated 48 
by the model matched observed ART coverage rates in Kenya.  49 

 50 
 51 
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Cascade of Care Parameters 1 
Our model includes the following cascade of care parameters: 2 

• Annual probability of being tested/screened for HIV 3 
• Linkage to care parameters 4 

o Probability of being linked to care when a patient becomes aware of her HIV-infected status 5 
o Probability of being lost-to-follow-up (LTFU) after being diagnosed with HIV but before ART 6 

initiation 7 
o Probability of having access to ART when ART is indicated 8 
o Probability of LTFU after ART initiation 9 
o Probability of a LTFU individual returning to care when she has an acute OI 10 

• ART initiation threshold 11 
• Probability of switching to second-line ART when virologic failure is identified by a viral load test 12 

 13 
Annual Test Probability 14 
According to the 2012 Kenya AIDS indicator survey report, in 2007 and 2012, 34·3% and 71·3% of individuals 15-15 
64 years old in Kenya had ever been tested for HIV, respectively.28,29 To reproduce a similar data trend, we assumed 16 
that in 2003 the annual probability of receiving an HIV test among uninfected individuals was low at 10% and that 17 
this probability increased by approximately 10% each year (Table S4). 18 

Year Annual Test Probability 
2003 0·1 
2005 0·2 
2006 0·3 
2007 0·34 
2008 0·4 
2009 0·5 
2010 0·6 
2011 0·7 

2012 and onward 0·8 
Table S4. Annual Probability of an Adult Being Screened for HIV 

 19 
Linkage to Care Parameters 20 
We obtained baseline estimates for LTFU parameters from a systematic review that examined attrition rates 21 
determined by death after starting ART, treatment discontinuation, and LTFU (Table S5).30  We assume that when a 22 
patient who has initiated ART is LTFU they stop taking ART, and CD4 cell count and viral load dynamics are modeled 23 
accordingly.  Among those who are lost to follow-up, there is a probability assigned to them of returning to care and 24 
resuming ART.  We focused primarily on the issue of loss to follow-up as a separate event from early mortality after 25 
ART initiation.  26 
 27 

Parameter Monthly Probability 
Probability of being LTFU after being diagnosed with HIV but 
before ART initiation 

0·005 

Probability of having access to ART when ART is indicated 0·8 
Probability of LTFU after ART initiation 0·000875 
Probability of returning to care after being LTFU with an acute 
OI 

0·5 

Table S5. Linkage to care parameters 
 28 
ART Initiation Threshold 29 
Although new recommendations regarding when to initiate ART are likely adopted gradually over time, we assumed 30 
that they were fully implemented the year they were recommended (Table S6).18,26,27 31 
 32 

Year CD4 Cell Count 
2003-2009 < 200 
2010-2013 < 350 
2014-2015 < 500 

2016 and onward Treat all regardless of CD4 cell 
count 

Table S6. ART Initiation Thresholds in Kenya 
 33 
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Probability of Switching to Second-line ART  1 
Viral load testing for individuals on NNRTI-based first-line ART is used to inform the decision of whether to continue 2 
first-line ART or to switch to second-line ART.  Ideally, individuals with unsuppressed viral load, despite optimal 3 
adherence, should be switched to PI-based second-line ART. However, prior studies suggest that rates of switching to 4 
2nd-line ART when clinically indicated have been inappropriately low in sub-Saharan Africa.31,32  Data on the 5 
probability of switching to second-line ART when virologic failure on first-line ART is not readily available for 6 
Kenya. We assume that the probability of switching to second-line ART has gradually increased since ART roll-out 7 
began as the price of PI-based ART has decreased and access has presumably improved.   8 
 9 
We used estimates of the proportion of patients on ART in Kenya using PI-based ART at two time points (2006 and 10 
2018) to inform the model inputs for the probability of switching to PI-based second-line ART when virologic failure 11 
is detected (Table S6). First, a multi-country survey conducted in resource-limited settings by WHO found that in 12 
2006, among adults on ART, 4% were on second-line ART (PI-based) and 96% were on first-line ART.33 Second, 13 
based on data published online by the Kenyan National AIDS/STD Control Programme (NASCOP), we estimate that 14 
in 7.4% of patients on ART in Kenya in 2018 were using PI-based ART.34   15 

 16 
In the model, when testing reveals an unsuppressed viral load in a patient, a random number is generated for this 17 
patient, and if the random number is less than the assigned probability of switching to second-line ART, then the 18 
patient will switch to second-line ART.  Otherwise, the patient will remain on first-line ART. If a patient is detected 19 
with virologic failure but is not switched to second-line ART at that time, they will be eligible for switching regimens 20 
the next time viral load testing is performed (using the same algorithm), which we assume occurs 12 months later, 21 
although there is little data to guide this assumption. We implement the following probabilities of switching to 2nd-22 
line ART, given unsuppressed viral load at testing, over time (Table S7):  23 
 24 

Year Probability 
2003-2007 0·1 
2008-2012 0·2 

2013 0·25 
2018 and onwards 0·6 

Table S7. Probability of Switching to PI-based Second-Line 
ART When Virologic Failure is Diagnosed 

 25 
E. HIV Transmission 26 

 27 
Our model was set in a region where HIV disease transmission is predominantly through heterosexual contact. The 28 
risk of infection for those who are HIV-negative was evaluated monthly in multiple stages. First, the model determined 29 
whether any of an individual’s partners were infected with HIV, based on the number of partners that individual had 30 
and the prevalence of HIV during that month. For each infected partner, the model determined what HIV state he/she 31 
was in, either acutely infected (for no more than three months), on effective ART, or chronically infected with any 32 
one of four classes of elevated viral load.9,35,36 The probability of being in each any one of those states was proportional 33 
to the proportion of HIV-infected persons in that state in the population. If an HIV-negative person had an HIV-34 
infected partner, the monthly probability of acquiring HIV that month was a function of the number of sex acts per 35 
month, his/her partner’s HIV state, and risk modifications such as male circumcision. We assumed the probability of 36 
transmission per sexual act was higher with acute HIV and with higher viral load levels of the infected partner,35-37  37 
and we assumed that men who were circumcised had a 55% reduction in risk of acquiring HIV.38-40  38 
 39 
For the purpose of modeling transmission, from 2003-2017, HIV prevalence and the probability of an HIV-infected 40 
partner being in a given viral load category were dynamically calculated each month among men and women as a a 41 
whole. Starting in 2018, these calculations became sex-specific because rates of virologic failure were no longer 42 
uniform for men and women with the introduction of dolutegravir. Further, using sex-specific calculations allowed us 43 
to project sex-specific PDR prevalence trends. 44 
 45 
 46 
 47 
 48 
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F. Population Growth and Size 1 
 2 
We modeled population growth, which provides a measure of the secondary benefits of each improved care strategy. 3 
That is, because we modeled “entries” into the population as a function of the size of population in childbearing age, 4 
reducing deaths may be expected to lead to an increase in population growth. We made simplifying assumptions in 5 
modeling population size, such as the assumption that fertility rates will remain unchanged over the next 15 years and 6 
with different courses of the HIV epidemic. As a result, our estimates of population growth provide a comparison 7 
among the strategies about the potential demographic benefits of HIV care rather than real predictions about 8 
population size change.  9 
 10 
Each time we simulated a scenario with a unique set of parameter values (such as the base-case scenario or various 11 
sensitivity analysis scenarios), the simulation began running in 2003 with an initial population size of 3 million people, 12 
and it was run 3,000 times. Model outcomes from these simulations that are count data (such as costs, QALYs gained, 13 
number of new infections, etc.; as opposed to proportions, such as percentage of HIV-infected adults with viral 14 
suppression) were scaled-up to a population size equivalent to the population size of Kenya. 15 
 16 
Section 2: Modeling Drug Resistance 17 
 18 

A. Overview of Drug Resistance Model 19 
 20 
Our model simulates the emergence of ADR in patients receiving ART and the transmission of drug resistance 21 
mutations from HIV-infected individuals to previously uninfected individuals.  We model drug resistance status in 22 
each patient as the presence or absence of a mutation that confers resistance to the NNRTI class of antiretroviral drugs, 23 
and each mutation is modeled as being in either the majority or minority state over time. Each patient can have a 24 
maximum of one mutation. We define the development of ADR as the emergence of a drug resistance mutation while 25 
a patient is on ART. We define a transmitted drug resistance (TDR) mutation as a mutation in a patient that was 26 
transmitted to her by her source partner. Of note, we assume mutations can only be transmitted to others when they 27 
are in the majority state. When describing our model, we primarily use the term PDR, but PDR and TDR are essentially 28 
interchangeable terms, with respect to the model. The is different from the more common use of the term PDR, which 29 
includes both resistance among ART-naïve individuals (namely TDR) and resistance among individuals who are about 30 
to initiate first-line ART but have a prior history of ART exposure.41 PDR, ADR, and majority/minority states are 31 
described in more detail below. 32 
 33 
Although, in reality, HIV-infected individuals can have more than one mutation and can have mutations that confer 34 
resistance to multiple drugs or classes of drugs, we chose to only model mutations that confer resistance to the NNRTI 35 
class of drugs and allow a maximum of one mutation per individual for a few important reasons. First, this approach 36 
makes it feasible to conduct a one-way sensitivity analysis on the diagnostic sensitivity of OLA, which is important 37 
because we hypothesized that the diagnostic sensitivity of OLA would be correlated with whether or not OLA was 38 
cost-effective. If we had modeled more than one type of mutation and allowed individuals to have more than one 39 
mutation, the proportion of individuals with mutations detectable by OLA would likely change of time, preventing us 40 
from being able to directly control the diagnostic sensitivity of OLA through input parameters. Second, there is very 41 
little data describing the proportion of PDR at the population level that is made up by NNRTI vs. NRTI mutations 42 
over time, making it difficult to know if we are modeling these trends correctly. Third, when an HIV-infected 43 
individual has multiple mutations and transmits HIV to a sexual partner, there is limited data describing what 44 
proportion of the time more than one of these mutations is transmitted. We chose to focus on modeling NNRTI 45 
mutations because they are the most common PDR mutations, and in the absence of selective pressure, they tend to 46 
stay in the majority state for a longer period of time relative to other types of mutations.42 For example, if a patient 47 
had PDR with a K103N and an M184V mutation, in the absence of selective pressure, the M184V mutation would 48 
likely convert to minority state prior to the K103N mutation would. 49 
 50 
One of the limitations of modeling a maximum of one mutation per person is that when making assumptions about 51 
the probability of virologic failure in a patient with PDR, one cannot assign different probabilities associated with 52 
different types of mutations or with having multiple mutations. In general, there is limited published data describing 53 
increased risk of virologic failure associated with specific types of mutations or multiple mutations. However, we 54 
address this limitation through a one-way sensitivity analysis of the probability of virologic failure associated with 55 
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having PDR. Also, by modeling only one type of mutation, this may underestimate the prevalence of PDR, which we 1 
address through a one-way sensitivity analysis of PDR prevalence, described in detail in Section 5. 2 
 3 

B. Transmission of Drug Resistance 4 
 5 
Overview of transmission of drug resistance 6 
We assume that when a source partner with a drug resistance mutation transmits HIV to another individual through 7 
sexual contact, the source partner’s mutation will be also be transmitted if this mutation is in the majority state. We 8 
apply this assumption to all mutations, regardless of whether they originated from PDR or ADR.  We also assume the 9 
presence of drug resistance does not affect the probability of HIV transmission occurring. 10 
 11 
Because our model does not explicitly represent sexual partnerships between individuals in the model, it cannot 12 
determine who the source partners are for newly infected individuals. Thus, we do not know whether or not those 13 
source partners had drug resistance.  As described in Section 1, at the start of each monthly cycle, the model 14 
probabilistically determines which individuals become infected with HIV, as a function of multiple factors, including 15 
number of sexual partners and viral load distribution in the population.  Each monthly cycle, after the model 16 
determines which individuals are newly infected, we use a similar probabilistic approach to determine who among 17 
them received PDR.  Individuals who have a mutation transmitted to them receive a maximum of one PDR mutation, 18 
as our model allows for a maximum of one mutation per individual.  Although prior studies show that some patients 19 
may have multiple PDR mutations, the majority of patients with PDR have only one mutation.43  20 
 21 
Algorithm for determining who receives PDR: 22 

Step 1: For each newly infected individual, we assume the probability of receiving PDR is equal to the 23 
prevalence of drug resistance in the majority state among patients of the opposite sex with unsuppressed 24 
viral load (>500 copies/mL), which is calculated by the following equation: 25 

 26 
(number of individuals with unsuppressed viral load with a mutation in majority state) / (number of 27 
individuals with unsuppressed viral load) 28 

 29 
This prevalence is calculated among patients with unsuppressed viral load because the probability of a patient 30 
with viral suppression transmitting HIV is close to zero. 31 
 32 
Step 2: For each newly infected individual, a random number between 0 and 1 is generated and compared to 33 
the probability of receiving PDR (as defined in Step 1).  For each newly infected individual, if this random 34 
number is less than or equal to the probability of receiving PDR, then the individual receives PDR.   35 

 36 
 37 

C. Emergence of Acquired Drug Resistance 38 
 39 
Overview 40 
Our model simulates the emergence of ADR among patients who experience virologic failure on NNRTI-based first-41 
line ART.  A systematic review found that 53% to 90% of individuals with unsuppressed viral load at 48 weeks after 42 
ART initiation had drug resistance.44 We assume the probability of developing ADR among patients with virologic 43 
failure on NNRTI-based first-line ART is 80%, based on published data and model calibration.  Importantly, because 44 
our model allows for a maximum of one general mutation per individual, patients who already have a TDR mutation 45 
cannot develop a second mutation through ADR, and a patient can only develop one mutation through ADR while on 46 
ART.   47 
 48 
Algorithm to determine who develops ADR 49 

Step 1: During each monthly cycle, the model identifies patients who are eligible for developing ADR, based 50 
on meeting all of the following criteria: 51 

1) No current drug resistance 52 
2) On first-line ART 53 
3) Experiencing virologic failure 54 

Step 2: For each individual who is eligible for developing ADR, a random number between 0 and 1 is 55 
generated during the monthly cycle in which virologic failure occurs. 56 
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Step 3: This random number generated for each eligible individual is compared to the probability of 1 
developing ADR among patients who experience virologic failure on first-line ART, which is 80%.   2 
 3 

Importantly, the presence of an ADR mutation does not increase the probability of failure in this model, as emergence 4 
of an ADR mutation is conditional upon a patient already experiencing virologic failure on first-line ART.  The main 5 
purpose of simulating the emergence of ADR is to model the transmission of ADR and its contribution to the 6 
increasing prevalence of PDR.  Also, we do not account for the emergence of ADR among patients who do not fail 7 
ART. We do not model the development of ADR among individuals on PI-based ART, including those who initiated 8 
treatment with PI-based ART in response to drug resistance testing results. Finally, we do not model the development 9 
of ADR among individuals on dolutegravir (DTG)-based ART. 10 
 11 
 12 

D. Majority and Minority States 13 
 14 
We model mutations as being in either the majority or minority state, and mutations can transition from the majority 15 
state to the minority state over time in the absence of selective pressure. The main purpose of modeling mutations as 16 
being in either the majority or minority state over time is to accurately model the prevalence of PDR over time, as we 17 
assume that only mutations in the majority state can be transmitted.  Conceptually, we define a mutation as being in 18 
the majority state if it can be detected by consensus sequencing, which typically detects mutations present in at least 19 
20% of the viral population.  Individuals with a mutation present in less than ~ 20% of the viral population are referred 20 
to as being in the minority state. We assume mutations that develop through ADR transition from the majority to 21 
minority state within 3 months without selective pressure.45,46  In contrast, PDR mutations (those transmitted from one 22 
partner to another) persist in the majority state for a significantly longer period of time.42  23 
 24 
When an individual is first infected with HIV and receives PDR, the drug resistance mutation begins in the majority 25 
state.  Because we model drug resistance status in each patient as the presence or absence of a mutation that confers 26 
resistance to the NNRTI class of antiretroviral drugs, selective pressure is applied to the mutation only when the 27 
patient is taking NNRTI-based ART. In the absence of selective pressure, each month we assume there is some 28 
probability the mutation will convert from the majority to the minority state.  We will henceforth refer to this 29 
probability as the minority conversion probability. Our estimate of the minority conversion probability is based on a 30 
study that followed ART-naïve, HIV-infected individuals with PDR longitudinally to estimate what proportion of 31 
patients continue to have mutations detectable by consensus sequencing over time.42 They used a parametric 32 
proportional hazard model to predict the percentage of transmitted mutations that would be expected to be in the 33 
minority state by 6 months, 1 year, 2 years, 3 years, and 4 years after HIV infection. Using data from Table 2 from 34 
Jain et al., we calculated the monthly rate of conversion for NNRTI mutations, based on model projections for 6 35 
months, 1 year, 2 years, 3 years, and 4 years after HIV infection.  Next, we take the average of each of these monthly 36 
rates and convert to a monthly probability, which was equal to 0·0037 (95% CI 0·0009 – 0·0143). Based on our 37 
calibration (described in detail in Section 3), we used a value of 0·001, in order for our model PDR prevalence trends 38 
to be consistent with empirically observed trends. 39 
 40 
Finally, if a mutation converts to the minority state, we assume that the mutation converts back to the majority state 41 
within one month of initiating first-line ART.47  42 
 43 
 44 

E. Performance of Drug Resistance Tests 45 
 46 
We define the diagnostic sensitivity of a PDR test as the proportion of individuals who truly have PDR who are 47 
diagnosed as having PDR.48 First, in order for a PDR test to detect a PDR mutation in a patient, the PDR testing 48 
method must be capable of detecting the specific type of mutation this patient has. We assume consensus sequencing 49 
can detect all types of mutations that can confer resistance to ART. In contrast, OLA is designed to detect a pre-50 
specified set of common and clinically significant mutations. For example, in a recent randomized trial in Kenya, the 51 
version of OLA used was designed to detect K103N, Y181C, G190A, and M184V.49 Second, in order for a PDR test 52 
to detect a PDR mutation in a patient, the mutation must be present at a frequency above the PDR testing method’s 53 
analytical sensitivity, which we define as the lowest frequency (or concentration) of a specific mutation in a sample 54 
detectable by a drug resistance test.48 While OLA can detect mutants present with at least 2% frequency, consensus 55 
sequencing can typically detect mutants comprising at least 15-25% of an individual’s virus population.50  56 
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 1 
We assume that OLA will detect 80% of PDR cases and CS will detect 100% of PDR cases. Although a meta-analysis 2 
found that only 59% of PDR cases in low- and middle-income countries had at least one mutation detectable by OLA,51 3 
a recent trial found that among subjects with virologic failure at 12 months, 100% of subjects with PDR detected by 4 
CS were also detected by OLA.49  Thus, our assumption that OLA detects 80% of PDR cases is intended to synthesize 5 
data from these two studies. Our assumption that CS will detect 100% of PDR cases is likely an overestimation, given 6 
that OLA can detect mutations present at a lower frequency than CS.50  We assume both tests have a specificity of 7 
100%. 8 
 9 
In the model, the ability of OLA or CS to detect PDR in an individual with a drug resistance mutation is independent 10 
of whether or not the mutation is in majority or minority state. In essence, this is assigning OLA and CS the same 11 
analytical sensitivity, which is not accurate. However, the reason we do this is it allows us to directly control the 12 
diagnostic sensitivity of OLA through the use of a “diagnostic sensitivity” input parameter. Finally, we conduct a one-13 
way sensitivity analysis on the diagnostic sensitivity of OLA to address the simplifying assumptions we make 14 
regarding this parameter and also to understand how uncertainty associated with this parameter affects the cost-15 
effectiveness of PDR testing with OLA. 16 

 17 
F. Probability of Virologic Failure 18 

 19 
Overview 20 
The rationale behind each of the assumptions in Table S8 is described in detail below and are based on three major 21 
sources of data:  22 

1. Studies describing viral suppression rates on first-line and second-line ART in sub-Saharan Africa, including 23 
Kenyan data52-55 24 

2. Studies describing the increased risk of virologic failure associated with PDR compared to no PDR49,56 25 
3. Model calibration to ensure that virologic failure parameters are consistent with observed PDR prevalence in 26 

East Africa (Appendix Section 3) 27 
 28 

2003-2017  Source 
     Initial ART (over 12 months)  McMahon et al52; Hamers et al56; Chung et al49; Calibration 
          No PDR on NNRTI-based 20%  
          PDR on PI-based 20%  
          PDR on NNRTI-based% 47%  
     Second-line, PI-based ART (over 24 months) 15·2% Stockdale et al55 

 
2018 to future  Source 

     Initial dolutegravir-based ART (over 12 months) 6·2% Literature review in appendix of Dugdale et al57 (see 
“Dolutegravir-based First-line ART” section below) 

     Initial non-dolutegravir-based ART (over 12 months)  Kenya Ministry of Health53; Hamers et al56; Chung et al49 
          No PDR on NNRTI-based 13·6%  
          PDR on PI-based 13·6%  
          PDR on NNRTI-based% 32·0%  
     Second-line, PI-based ART (over 24 months) 15·2% Stockdale et al55 
Table S8. Probability of virologic failure by PDR and ART status 

 29 
We assume a lower probability of virologic failure on first-line ART from 2018 and onwards compared to 2003-2017 30 
compared to 2018 and onwards to reflect recent trends of lower rates of virologic failure, which are likely due in large 31 
part to improved adherence in an effort to achieve UNAIDS 90-90-90 goals. Our assumptions about the probability 32 
of virologic failure from 2003-2017 are consistent with systematic reviews and allow the model to generate a PDR 33 
prevalence consistent with observed trends (see Section 3),52 and our assumptions from 2018 onwards are consistent 34 
with recent estimates of viral suppression in Kenya.53  The probability of virologic failure on an initial ART regimen 35 
is assigned based on a patient’s PDR status and ART regimen. During the time periods “2003-2017” and “2018-36 
future”, we assume that the odds of virologic failure are 3·5 times and 3.0 times higher, respectively, for patients with 37 
PDR to one’s ART regimen compared to those with no PDR.49,56  The lower odds ratio for the “2018-future” time 38 
period is meant to reflect more recent evidence suggesting that the risk of virologic failure associated with PDR is 39 
lower with NNRTI-based regimens including efavirenz/tenofovir compared to those containing nevirapine and/or 40 
zidovudine.58 For patients who fail NNRTI-based first-line ART and switch to PI-based second-line ART, we assume 41 
the same probability of virologic failure before and after 2018. 42 
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Of note, to operationalize a 12-month probability of failure in the model, it is converted into a monthly probability 1 
through the following steps, where p = probability, t = time, and r = rate: 2 

1) Convert the 12-month probability to a 1-month rate: p = 1 – exp(-rt), where t = 12 3 
2) Convert the 1-month rate to a 1-month probability:  r = (-ln(1 – p) )/ t, where t = 1 4 

 5 
2003-2017 First-Line NNRTI-based ART without PDR and with PDR 6 
First-line NNRTI-based ART Without PDR 7 
Prior to 2018, estimates of the probability of virologic failure after 12 months on first-line (NNRTI-based) ART in 8 
sub-Saharan Africa vary widely, with reported values ranging between 8 to 30% at 12 months after ART initiation.52 9 
In the 2012 Kenya AIDS Indicator survey, 26·1% of those surveyed who were on ART did not have viral suppression.59  10 
It is important to note that most of these studies do not make a distinction between individuals with and without PDR, 11 
so there may be some individuals included in these analyses who had PDR to NNRTI-based ART.   12 
 13 
We assumed the “true” mean probability of virologic failure on NNRTI-based first-line ART in Kenyan adults was 14 
within the range of values reported in the literature.  In order to select a point estimate for use as a model input 15 
parameter, we calibrated the model to multiple targets, including PDR prevalence.  As described in Section 2B, both 16 
PDR mutations and ADR mutations can be transmitted to newly infected individuals.  Thus, as the prevalence of ADR 17 
increases, the prevalence of PDR also increases because there is a larger pool of individuals with resistance that can 18 
transmit mutations to others.  The majority of ADR occurs in patients with treatment failure, and our model only 19 
allows for ADR to develop in patients on ART experiencing treatment failure.  The prevalence of ADR increases as 20 
the absolute number of people experiencing virologic failure increases, which increases with a higher probability of 21 
virologic failure.  We found that, when using a 20% probability of virologic failure on first-line ART over 12 months, 22 
our model generated PDR prevalence levels consistent with observed levels.  This probability was also applied to 23 
those with PDR on PI-based ART because prior studies have found rates of failure similar to those without PDR on 24 
NNRTI-based ART.56 25 
 26 
First-line NNRTI-based ART with PDR 27 
Once we established the probability of virologic failure on initial ART for patients without PDR, we used data from 28 
two studies to estimate the odds ratio of virologic failure for patients with PDR to initial ART compared to patients 29 
without PDR to initial ART. First, a multi-center cohort study conducted in six sub-Saharan African countries 30 
(including Kenya) found that compared to participants without PDR, the odds ratio for virologic failure was increased 31 
(OR = 2·13) in participants with PDR to at least one prescribed drug, but not in individuals with PDR and fully active 32 
ART.49,56 Second, in a randomized clinical trial in Kenya, among subjects with PDR to first-line ART, those who 33 
underwent drug resistance testing and started PI-based ART had a 14·3% probability of failure at 12 months compared 34 
to 50·0% probability of failure at 12 months in those who were not tested for drug resistance and started NNRTI-based 35 
ART.49 Expressed a different way, compared with subjects with PDR on PI-based ART, the odds ratio for virologic 36 
failure was 5·99 in subjects with PDR to at least one prescribed drug.  Because failure rates were similar in those 37 
without PDR on NNRTI-based ART and those with PDR on PI-based ART, we assumed the odds ratio is also 38 
applicable to comparing those with PDR to at least one prescribed drug to those without PDR on NNRTI-based ART.   39 
 40 
Thus, these two studies provide odds ratios ranging from 2·13 to 5·99 estimating the increased risk of failure in those 41 
with PDR to at least one prescribed drug to those on fully active ART.  For the 2003-2017 time period, we chose to 42 
use an odds ratio of 3·5 to calculate the probability of failure among those with PDR to at least one prescribed drug.  43 
This OR of 3·5 is skewed slightly towards the cohort study because it had a larger sample size of subjects with PDR.  44 
Using a 20% probability of failure over 12 months among individuals without PDR on NNRTI-based first-line ART 45 
(during 2003-2017) and an OR of 3·5, this produces a 12-month probability of failure of 47% among those with PDR 46 
to NNRTI-based first-line ART. 47 
 48 

 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
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2018 to Future Efavirenz-based First-Line ART with and without PDR 1 
In response to UNAIDS 90-90-90 goals, rates of viral suppression have increased over time, likely due in large part 2 
to improved adherence. According to 2018 estimates, approximately 84% of HIV-infected adults on ART in Kenya 3 
are virally suppressed (16% had virologic failure).53  This data does not provide estimates of virologic failure rates 4 
among those without PDR and among those with PDR, which is what we need to parameterize our model. We used 5 
an algebraic approach to estimating these parameters, where: 6 

- X = probability of virologic failure on efavirenz-based ART without PDR (over initial 12 months on ART) 7 
- Y = probability of virologic failure on efavirenz-based ART with PDR (over initial 12 months on ART) 8 

 9 
Our algebraic approach included the following assumptions: 10 

- Proportion of HIV-infected patients on ART with virologic failure in 2018 = 16% 11 
- We assumed proportion of patients with virologic suppression among patients on ART stays relatively stable 12 

after the first 12 months on ART54 (see section on “Long-term Probability of Failure on First-line ART” 13 
below) 14 

- PDR prevalence in 2018 = 12·6%. This was the average PDR prevalence in 2018 based on estimates from 15 
our model, which is calibrated to observed trends. 16 

- Odds ratio of the probability of virologic failure for patients with PDR to initial ART compared to patients 17 
without PDR to initial ART is 3·0. 18 
  19 

We solved for X and Y using the following 2 equations: 20 
- 0.874X + 0.126Y = 0·16 21 
- (Y/(1-Y)) / (X/(1-X)) = 3·0 22 

 23 
We found X = 13.6% and Y = 32%.  24 
 25 
We used an odds ratio of 3.0 for “2018 to future”, as opposed to the odds ratio of 3·5 we used for 2003-2017, to reflect 26 
evidence suggesting that suggest the risk of virologic failure with PDR may be lower with the 27 
tenofovir/emtricitabine/efavirenz combination compared to other NNRTI-based regimens.58 In a one-way sensitivity 28 
analysis, we varied the probability of virologic failure on efavirenz-based ART with PDR from 23·9-48·6%, such that 29 
the odds of virologic failure for those with PDR on efavirenz-based ART compared to those with either no PDR on 30 
efavirenz-based ART or those with PDR on PI-based ART varied from 2·0 to 6·0.  31 
 32 
 33 
 34 
Dolutegravir-based First-line ART 35 
There are currently no population-level estimates of rates of virologic suppression with dolutegravir-based ART in 36 
Kenya. Thus, we used a recent literature review to inform our assumptions about the relative risk of virologic failure 37 
with dolutegravir-based ART compared to efavirenz-based ART.57 To parameterize their model-based analysis, 38 
Dugdale et al performed a literature review of randomized clinical trials reporting virologic suppression with 39 
dolutegravir or efavirenz in combination with two nucleoside reverse transcriptase inhibitors and then pooled these 40 
estimates (and weighted by study size). They estimated that the probabilities of viral suppression after 48-weeks on 41 
efavirenz-based (only subjects without PDR were eligible) and dolutegravir-based ART were 91% and 96%, 42 
respectively. Based on these estimates, for patients without efavirenz-associated PDR, the odds of virologic failure 43 
with efavirenz-based ART are 2·37 times higher (odds ratio = 2·37) than the odds of virologic failure with dolutegravir-44 
based ART. Based on this odds ratio of 2·37 and our prior assumption that the probability of virologic failure with 45 
efavirenz-based ART without PDR (during the first 12 months of ART) is 12%, we estimate that the probability of 46 
virologic failure with dolutegravir-based ART in Kenyan adults (during the first 12 months of ART) is 5·5%. We 47 
assume efavirenz-associated PDR does not influence the probability of virologic failure on dolutegravir-based ART. 48 
To our knowledge, data from Botswana is the only published programmatic data (non-clinical trial) evaluating viral 49 
suppression rates on dolutegravir-based ART sub-Saharan Africa, which found an overall viral suppression rate of 50 
97·4% at 12 months after initiating dolutegravir-based ART.60 51 
 52 
 53 
 54 
 55 
 56 
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Long-term Probability of Failure on First-line ART 1 
Data from the clinical studies described above are limited to the first 12 months after ART initiation.  Our assumptions 2 
about the long-term probability of virologic failure are based on a systematic review/meta-analysis.54 Table 2 from 3 
Boender et al. provides estimates of the probability of virologic suppression over 6 to 60 months after initiation of 4 
first-line ART, using both on-treatment and intention-to-treat analyses.54   5 
 6 

Months on ART Random Effects Meta-Analysis 
 Summary Estimate Low 95% Confidence 

Interval 
High 95% Confidence 

Interval 
6 84·9 83·5 86·3 
12 85·6 84·4 86·9 
24 84·4 82·0 86·9 
36 88·5 85·5 91·4 
48 88·6 84·2 93·0 
60 85·2 76·6 93·9 

Table S9. Virologic Suppression after 6 to 60 Months of First-Line ART On-
Treatment Analysis. Adapted from Boender et al.54 

 7 
 8 
Because our model already accounts for individuals dropping out of ART use, from either being lost to follow-up and 9 
mortality, we focused on the on-treatment analysis results, which suggests that the proportion of patients who 10 
experience virologic failure while on first-line ART does not grow substantially after the first 12 months.54 Our 11 
interpretation of these results is that, after the first 12 months on ART, some patients who previously had virologic 12 
failure eventually achieve viral suppression and some patients who previously had virologic suppression experience 13 
virologic failure. Amongst patients on ART, the rate of switching between these two states occurs at such as rate that 14 
the overall proportion of patients with virologic suppression remains relatively stable over the long-term.  15 
 16 
We wanted our model assumptions to produce results consistent with the meta-analysis’ finding that the overall 17 
proportion of patients with virologic suppression remains relatively stable over the long-term. One option would have 18 
been to actually model some long-term probability of virologic failure beyond the first 12 months of ART, as well as 19 
some long-term probability of re-achieving virologic suppression after experiencing virologic failure. However, we 20 
identified two disadvantages to using this approach. First, we do not know what these long-term probabilities of 21 
virologic suppression and failure are. Second, we thought this would make our model unnecessarily more complex 22 
and prone to potential errors in the code.  23 
 24 
Instead, we assume that if an individual on first-line ART has not experienced virologic failure during the first 12 25 
months of first-line ART that they will continue to maintain viral suppression on this regimen in the future.  To be 26 
consistent, we apply this assumption to all individuals on NNRTI-based first-line ART, regardless of PDR status, and 27 
individuals on DTG-based first-line ART.  However, if an individual discontinues ART due to being lost to follow up 28 
after 12 months, then this individual will not maintain viral suppression. 29 
 30 
PI-based Second-line ART 31 
Our estimate of the probability of virologic failure on PI-based second-line ART is based on a meta-analysis of sub-32 
Saharan African studies by Stockdale et al.55 Based on their on-treatment analysis at 96 weeks, we assume that once 33 
an individual has switched from first-line ART to second-line PI-based ART, the probability of virologic failure is 34 
15·2% over 24 months in our base-case analysis (range for one-way sensitivity analysis is 10·1-21·2% over 24 months). 35 
We assume that if a patient has not experienced virologic failure on second-line ART after 24 months, she will 36 
maintain viral suppression while on second-line ART.  Because we do not model resistance to PI-based ART, this 37 
probability of virologic failure is applied uniformly to all individuals on second-line ART. 38 
 39 
 40 
 41 
 42 
 43 
 44 
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Section 3: Model Calibration 1 
 2 

A. Overview of Calibration  3 
 4 
In order to determine what combination of input parameter values to use in the model, we calibrated our simulation 5 
model to observed trends in Kenya and sub-Saharan Africa for multiple target outcomes: HIV and PDR prevalence, 6 
proportion of HIV-infected individuals on any ART, proportion of HIV-infected individuals on PI-based ART, and 7 
population growth. Some aspects of the calibration have been described above in Sections 1 and 2. Here, we provide 8 
an overview of our model calibration and additional details that have not been described thus far.  9 
 10 
At the beginning of the calibration process, we started with parameter values based on best available reported 11 
estimates. These estimates were subsequently adjusted manually to match relevant calibration targets, while using 12 
estimates that are within reported 95% confidence intervals for these parameters. Only parameters that strongly 13 
influence the value of our calibration targets over time were adjusted through calibration and are described below.  14 
 15 
First, we adjusted parameters related to the cascade of care in order to reproduce ART coverage trends similar to those 16 
observed in Kenya over time, as described in Section 1. Next, multiple parameters were adjusted to match PDR 17 
prevalence and HIV prevalence, simultaneously.  This included: 1) probabilities of virologic failure (during 2003-18 
2017), based on PDR status and ART regimen; 2) probability of developing ADR among individuals with virologic 19 
failure on NNRTI-based first-line ART); 3) probability of switching to second-line ART when virologic failure is 20 
identified (during 2003-2017); and 4) probability of mutation to converting from majority to minority state over time. 21 

 22 
B. Relationship Between PDR Prevalence and Key Parameters 23 

 24 
There are several key parameters that strongly influence the prevalence of PDR over time. Both PDR mutations and 25 
ADR mutations can be transmitted to newly infected individuals (described in Section 2).  As the prevalence of ADR 26 
increases, the pool of individuals with resistance that can be transmitted to others increases, and prevalence of PDR 27 
increases as a result of this.  Because we assume ADR develops among a portion of patients on ART who experience 28 
virologic failure, the prevalence of ADR increases as the absolute number of people experiencing virologic failure 29 
increases, which increases with higher ART coverage rates and a higher probability of virologic failure. Therefore, 30 
PDR prevalence will increase with increasing values of: 1) ART coverage, 2) probability of virologic failure on initial 31 
ART, and 3) probability of developing ADR among individuals with virologic failure on 1st-line ART. PDR prevalence 32 
will also increase as the probability of switching to second-line ART when virologic failure is detected decreases 33 
because this prolongs the time during which patients with drug resistance mutations are virally unsuppressed and able 34 
to transmit their resistance to others. 35 
 36 
Estimates of the probability of virologic failure at one year on first-line, NNRTI-based ART in sub-Saharan Africa 37 
vary widely, with reported values ranging between 8 to 30% at one year (see Section 2F).52 We found that a 12-month 38 
probability of virologic failure of 20% on 1st-line ART among HIV-infected adults without PDR, along with an 80% 39 
probability of developing ADR among patients with virologic failure would generate sufficient ADR to allow for the 40 
PDR prevalence trend observed empirically in Kenya/East Africa (while using values for the probability of switching 41 
to PI-based second-line ART after virologic failure was detected, described in Section 1).   42 
 43 

C. Comparing Model Outputs to Calibration Targets 44 
 45 
Overview 46 
HIV and PDR prevalence trends and model outputs are illustrated in Figure 1 of the manuscript. In this section, Figures 47 
S1 and S2 illustrate model outputs for ART coverage and the proportion of patients on ART on PI-based second-line 48 
ART alongside historical trends in Kenya. 49 
 50 
PDR Prevalence 51 
Our model was calibrated to two sources of data on the prevalence of PDR in East Africa. First, Gupta et al. 2012 52 
provided estimates of PDR prevalence (including both NNRTI and NRTI mutations) in East Africa among ART-naïve 53 
individuals from 0-9 years after the initiation of ART roll-out (with the assumption that ART became available in 54 
2001 in Kenya).61 Second, Gupta et al. 2017 provided an estimate of NNRTI-associated PDR prevalence in East Africa 55 
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in 2016, which includes both treatment-naïve individuals and those reporting prior exposure to ART who are initiating 1 
first-line ART.41 The PDR prevalence predicted by our model was within the 95% confidence intervals for three out 2 
of the four empirical estimates that served as calibration targets.  The PDR prevalence projected by our model in 2016 3 
is below the range estimated by Gupta et al, 2017.41 The numerator and denominator for PDR prevalence are “number 4 
of pre-ART patients with PDR” and “number of pre-ART patients”, respectively.  5 
 6 
In Figure 1B, there are three relatively small discontinuities in our model PDR prevalence estimates at the start of the 7 
years 2010, 2014, and 2016, which are caused by a combination of ART coverage expansion and the stochastic nature 8 
of our model. At the beginning of each of these three years, we assume ART coverage expands, based on evolving 9 
ART initiation criteria in treatment guidelines (see Section 1D). When ART coverage expands from one month to the 10 
next, both the numerator for PDR prevalence (number of pre-ART patients with PDR) and the denominator (number 11 
of pre-ART patients) should decrease. Whether PDR prevalence itself increases or decreases depends on the percent 12 
reduction in the size of the numerator and denominator.  13 
 14 
After accounting for ART initiation criteria (either based on CD4 cell count threshold pre-2016 or treating all HIV-15 
infected patients after 2016), our model selects patients for ART initiation at random and without considering PDR. 16 
Thus, in theory, when ART coverage suddenly expands, the percent reduction in the PDR prevalence numerator and 17 
denominator should be the same, which would keep PDR prevalence constant. For example, let us consider a case in 18 
which PDR prevalence is currently 10%, with 10 pre-ART patients with PDR (PDR prevalence numerator) and 100 19 
pre-ART patients (PDR prevalence denominator). The following month ART coverage expands such that an additional 20 
10 patients are started on ART. The model would choose 10 out of the 90 pre-ART patients, at random, to initiate 21 
ART. If the sampling is done at random an infinite number of times, on average, the model would select 1 patient with 22 
PDR and 9 patients without PDR, since the prevalence of PDR is 10%. Now, we have 9 pre-ART patients with PDR 23 
(10% reduction in numerator), 90 pre-ART patients (10% reduction in denominator), and PDR prevalence remains 24 
constant at 10%. This also assumes that PDR prevalence is not changing for reasons other than changes in ART 25 
coverage. Because of the small number of pre-ART patients with PDR relative to the size of the population and the 26 
stochastic nature of the model, the proportion of patients with PDR among new patients initiating ART is not always 27 
equal to the PDR prevalence at that time. Thus, the percent reduction in the numerator and the denominator each time 28 
ART coverage expansion happens is not exactly the same, which results in the visible model estimate discontinuities. 29 
 30 
In Table S10, we show the number of pre-ART patients and the number of pre-ART patients with PDR in the month 31 
preceding and first month of 2010, 2014, and 2016, and we show the percent reduction in each of these numbers from 32 
one month to the next.  In 2010 and 2014, the percent reduction in the denominator is larger than that for the numerator, 33 
which results in a sudden increase in PDR prevalence. In contrast, in 2016, the percent reduction in the numerator is 34 
larger than that for the denominator, which results in a sudden decrease in PDR prevalence. 35 
 36 

 Number pre-ART 
with PDR 

(numerator) 

% change in number 
pre-ART with PDR 

(numerator) 

Number pre-ART 
(denominator) 

% change in number 
pre-ART 

(denominator) 
Final month 2009 2,678  47,990  
First month 2010  2,547 -5% 43,412 -10% 
     
Final month 2013 3,363  36,764  
First month 2014 2,860 -15% 30,442 -17% 
     
Final month 2015 3,091  27,249  
First month 2016 1,510 -51% 15,428 -43% 
Table S10. Values for Numerator and Denominator of PDR Prevalence at Discontinuous Data Points 

 37 
 38 
 39 
 40 
 41 
 42 
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 44 
 45 
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HIV Prevalence 1 
Population-level survey estimates of HIV prevalence (15-49 years) in Kenya are from the Kenya Demographic and 2 
Health Survey (2003 & 2009) and the Kenya AIDS Indicator Survey (2007 & 2012).5,7,28,62 3 
 4 
ART Coverage 5 
 6 

 

 
 

Figure S1. Proportion of adults 15 year and older living with HIV on ART.  7 
UNAIDS Kenya data from 2010-2017 was used for calibration, as ART coverage data prior to 2010 was not readily 8 
available. 9 
 10 
 11 
 12 
 13 
 14 
 15 
Proportion of Patients on ART on PI-based Second-line ART 16 
We calibrated our model to estimates of the proportion of patients on ART in Kenya using PI-based ART at two time 17 
points (2006 and 2018), which was used to inform the model inputs for the probability of switching to PI-based second-18 
line ART when virologic failure is detected. 19 
 20 
A multi-country survey conducted in resource-limited settings by WHO found that in 2006, among adults on ART, 21 
4% were on second-line ART (PI-based) and 96% were on first-line ART.33 Based on data published online by the 22 
Kenyan National AIDS/STD Control Programme (NASCOP), we estimate that in 7·4% of patients on ART in Kenya 23 
in 2018 were using PI-based ART.34  NASCOP reports the number of viral load tests that have been performed in 24 
Kenya, providing a breakdown of the number of patients on each specific combination of antiretroviral agents.  We 25 
summed the total number of viral load tests performed for patients on PI-based ART and divided by the total number 26 
of viral load tests performed for all patients on ART. Assuming that the probability of a patient having a viral load 27 
test performed does not significantly differ between different ART regimens, this should provide a reasonable estimate 28 
for the proportion of patients on ART in Kenya using PI-based ART in 2018 year. 29 

 30 
 31 
 32 
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Figure S2. Proportion of adults on ART on PI-based second-line ART 2 
Estimates for 2006 and 2018 calibration targets are from Renaud-Thery et al. and Kenyan National AIDS/STD 3 
Control Programme data.33,34 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
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Section 4: Costs and Resource Utilization 1 
 2 

A. Assumptions for Inpatient Costs 3 
In the model, the probability of an HIV-infected individual developing an opportunistic infection depends on the 4 
patient’s CD4 cell count.  When someone does develop an opportunistic infection, we assume the patient is admitted 5 
to an inpatient health facility, and the number of inpatient days needed depends on the CD4 cell count and ART status 6 
(Table S11).63  After adjusting for inflation, the unit cost of an inpatient day in Kenya is $60 (2019 US$).64 To calculate 7 
the total cost of an opportunistic infection, the number of inpatient days is multiplied by the unit cost of an inpatient 8 
day in Kenya.  9 
 10 

CD4 Cell Count  Mean Length of Stay (days) 
Pre-ART 9·8 
    ≤ 100 cells/mm3 8·1 
    101-200 cells/mm3 7·8 
    201-350 cells/mm3 6·4 
    >350 cells/mm3 7·8 
  
On ART  
    ≤ 100 cells/mm3 12·3 
    101-200 cells/mm3 13·4 
    201-350 cells/mm3 9·5 
    >350 cells/mm3 7·0 
Table S11. Average number of inpatient days per opportunistic infection by ART status and CD4 cell 
count. Adapation of Table 2 from Meyer-Rath et al.63 

 11 
While the unit cost used per inpatient day is based on an estimate from Kenya, the number of inpatient days per 12 
opportunistic infection is based on a South African study.63 To address uncertainty in the total inpatient costs, we 13 
conducted a one-way sensitivity analysis of the unit cost per inpatient day ranging from US$15 to US$240 (base-case 14 
unit = US$ $60). This range was meant to capture uncertainty in both unit cost per inpatient day and the number of 15 
inpatient days per opportunistic infection. For example, the $15-unit cost scenario was meant to represent a situation 16 
in which the unit cost was only $30 (50% of base-case unit cost) and each opportunistic infection resulted in only 50% 17 
the number of inpatient days relative to those found in the South African study. Similarly, the $240-unit cost scenario 18 
was meant to represent a scenario in which the unit cost was $120 (double the base-base unit cost) and each 19 
opportunistic infection resulted in double the number of inpatient days relative to those found in the South African 20 
study. This approach is based on the mathematical relationship that doubling, or halving, the number of inpatient days 21 
per opportunistic infection has the same effect on total inpatient costs as doubling, or halving, the cost per inpatient 22 
day, respectively. 23 
 24 

B. Adjusting for inflation 25 
Unit cost estimates for each inpatient day and each outpatient visit in Kenya were originally reported in 2011 US$.64 26 
For these estimates, we adjusted for inflation in Kenya from 2011 to 2019 by using inflation indices provided by the 27 
International Monetary Fund (IMF).65 28 
 29 
We visited the IMF website on 5/16/19 and obtained the following inflation indices for the Kenyan health sector. 30 

- Kenya Health Inflation Index 2011 M01 = 110.42 31 
- Kenya Health Inflation Index 2019 M01 = 160.89 32 

 33 
The unit cost estimates provided by IHME in 2011 US$ for inpatient day and outpatient visit were:64 34 

- Inpatient day =US$41 35 
- Outpatient visit = US$10 36 

 37 
We used the following equation for adjusting for inflation and converting from 2011 cost to 2019 cost: 38 

- Cost2019 = (Cost2011 * Index2019) / Index2011 39 
- Cost2019 = (Cost2011 * 160.89) / 110.42 40 

 41 



 20 

Using this equation, and after rounding to the nearest dollar, the unit cost estimates that adjust for inflation per inpatient 1 
day and outpatient visit were US$60 and US$15, respectively. 2 
 3 

C. Currency conversion 4 
While other unit cost estimates we obtained were already reported in US$, the unit cost estimate for CD4 cell count 5 
test we obtained in April 2019 was originally in Kenyan shillings (KES). On April 19, 2019 the conversion rate from 6 
Kenyan shillings (KES) to US$ was 0.009863 KES to US$1. Using this conversion rate, the cost per CD4 cell count 7 
test equaled US$11.83. We rounded up to $12 for the base-case, and in sensitivity analysis explored values ranging 8 
from US$6 to US$24 9 
 10 
 11 

D. Results 12 
 13 

 

 
 

Figure S3. Total cost of each strategy over 15 years 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
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Figure S4. Cost for each strategy by spending category over 15 years  2 
This figure does not include HIV screening and background health spending categories. 3 
 4 
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Figure S5. Difference in cost between OLA PDR testing and no testing over 15 years by category 2 
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