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Figure S1, related to Figure 1. CAD Negatively Regulates NF-kB Activation
(A) The enzyme activity and corresponding metabolic pathway of human GATSs.

(B) TNF-a abundance in 293T cells depleted for CAD by two different shRNAs (shCAD-1 and
shCAD-2) and after infection with Sendai Virus (SeV) or treatment with TNF-a.

(C) CAD and IL-8 abundance in BJ5 cells depleted for CAD by two different ShRNAs (shCAD-
1 and shCAD-2) and after infection with SeV.

(D and E) CAD (D) and IL-8 (E) abundance in HCT116 cells depleted for CAD and after
infection with Salmonella Typhimurium (PhoP¢).

(F) The mRNA abundance of indicated GATs in HCT116 cells after infection with Salmonella
Typhimurium (PhoP¥®).

(G) IFN-B luciferase reporter assay from 293T cells depleted for CAD and transfected with
plasmids containing indicated genes.

(H) NF-«B luciferase reporter assay from 293T cells depleted for CAD, cultured with or without
10 uM of uridine, and transfected with a plasmid containing RelA.

() NF-«B luciferase reporter assay from 293T cells depleted for CAD or UMPS and after
infection with SeV.

(J) NF-kB luciferase reporter assay from 293T cells transfected with plasmids containing IKKf3
or RIG-I-N (1-200) with increasing amount of a plasmid containing CAD.

Data are presented as mean + SD. Significance was calculated using unpaired, two-tailed
Student’s t-test. **,P <0.01; ***, P <0.001; NS, non-significant.
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Figure S2, related to Figure 1. CAD Negatively Regulates NF-xB Activation

(A) NF-xB luciferase reporter assay from 293T cells transfected with a plasmid containing RelA
and increasing amount of a plasmid containing CAD.

(B) Immunoblots of RelA and CAD from whole cell lysates (WCLs) of 293T cells precipitated
with anti-CAD antibody or control (IgG) antibody. HC, heavy chain of IgG.

(C) Immunoblots of CAD, RelB (top), cRel (middle) and p50 (bottom) from WCLs of 293T cells
precipitated with anti-CAD antibody or control (IgG) antibody.

(D) Immunoblots of WCLs of 293T cells transfected with plasmids containing the Flag-CAD
and GFP-RelA truncation mutants and precipitated with anti-Flag antibody.

Data are presented as mean + SD. Significance was calculated using unpaired, two-tailed
Student’s t-test. **, P <0.01; ***, P <0.001; NS, non-significant.
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Figure S3, related to Figure 2. CAD Deamidates RelA to Inactivate NF-xB

(A) Immunoblots of whole cell lysates (WCLs) of HCT116 cells transfected with a plasmid
containing CAD and after regular SDS-PAGE (right panels) or two-dimensional gel
electrophoresis (2DGE) (left panels). Arrow denotes wild-type RelA species.

(B) Immunoblots of WCLs of HCT116 cells depleted for CAD or treated with the supernatant
harvested from CAD-depleted HCT116 cells, after reqular SDS-PAGE (right panels) or 2DGE
(left panels) analysis.

(C and D) The m/z spectra of two peptides containing N64D (C) and N139D (D) are shown,
with D highlighted in red due to deamidation, of the RelA purified from 293T cells transfected
with a plasmid containing Flag-RelA with or without a plasmid containing CAD.

(E) Immunoblots of WCLs of 293T cells transfected with a plasmid containing wild-type RelA
(RelA-WT) or deamidated RelA (RelA-DD) with or without CAD, after regular SDS-PAGE (right
panels) or 2DGE (left panels) analysis.

(F) NF-xB luciferase reporter assay from 293T cells transfected with a plasmid containing wild-
type RelA (RelA-WT), single deamidated RelA (RelA-64D and RelA-139D) or double-
deamidated RelA (RelA-DD).

(G) NF-xB luciferase reporter assay from 293T cells transfected with a plasmid containing
RelA-WT, deamidation-resistant RelA (RelA-64A) or RelA-64D.

(H) Immunoblots of WCLs of 293T cells transfected with a plasmid containing RelA-WT or
RelA-64A with or without CAD, after regular SDS-PAGE (right panels) or 2DGE (left panels)
analysis.

() NF-kB luciferase reporter assay from 293T cells transfected with a plasmid containing RelA-
WT, RelA-N64D or RelA-64A with increasing amount of a plasmid containing CAD.

Data are presented as mean + SD. Significance was calculated using unpaired, two-tailed
Student’s t-test. **, P<0.01; ***, P <0.001; NS, non-significant.
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Figure S4, related to Figure 2. CAD Deamidates RelA to Inactivate NF-xB

(A) Immunoblots of whole cell lysates (WCLs) of mouse embryonic fibroblasts (MEFs) obtained
at Day 14 from mouse embryos of wild-type and RelA-DD knock-in C57BL/6 mice.

(B) Cxcl1, II-8 and Tnfa abundance in MEFs as shown in (A) after infection with Sendai Virus
(SeV).

(C) Immunoblots of WCLs of HCT116 cells depleted for endogenous RelA (top) and
reconstituted with exogenous RelA-WT, RelA-DD or RelA-64A (bottom).

(D) A heatmap representing NF-kB-dependent gene expression from the RNA-sequencing
analysis of reconstituted HCT116 cells as shown in (C).

(E) Immunoblots of WCLs of RelA-WT, RelA-DD or RelA-64A reconstituted Rela’” MEFs
precipitated with anti-Flag antibody.

(F) Immunoblots of the nuclear extract from Rela”” MEFs reconstituted with RelA-WT and RelA-
DD after treatment with mouse TNF-a.

(G) Immunoblots of WCLs of reconstituted HCT116 cells as described in (C) after treatment
with TNF-a and precipitation with anti-Flag antibody.

(H) Immunoblots of WCLs of control (CTL) or p50-knockout 293T cells depleted for CAD.

() IL-6 and IL-8 abundance in control (CTL) or p50-knockout 293T cells depleted for CAD as
shown in (H) after infection with SeV.

(J) Quantification of the promoter DNA from WCLs of reconstituted MEFs as shown in (E) after
infection with SeV and precipitation with anti-Flag antibody.

Data are presented as mean + SD. Significance was calculated using unpaired, two-tailed
Student’s t-test. **, P <0.01; ***, P <0.001; NS, non-significant.
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Figure S5, related to Figure 3. RelA Deamidation and NF-kB Downregulation is Cell Cycle-
dependent

(A and B) Immunoblots of whole cell lysates (WCLs) from HCT116 cells released at indicated
time points after double thymidine block analyzed by regular SDS-PAGE (A) or two-
dimensional gel electrophoresis (2DGE) (B). D: deamidated; W: wild-type.

(C) Immunoblots of WCLs from HCT116 cells released at indicated time points after double
thymidine block.

(D) IL-8 abundance in HCT116 cells after infection with SeV at indicated time points upon
double thymidine block release.

(E) Immunoblots of WCLs from BJ5 cells released at indicated time points after lovastatin
arrest.

(F) The mRNA abundance of ICAM1, EGR1, IFN-g and IFI44 in human BJ5 foreskin fibroblasts
at indicated time points as shown in (E).

(G) The mRNA abundance of IFI44, IRF7 and Mx2 in HCT116 cells without or with
synchronization to S phase by double thymidine block.

(H) Immunoblots of WCLs from HCT116 cells stably expressing control, RelA-WT or RelA-64A
(left panel). The mRNA abundance of IL-6, IL-8 and ICAM1 in HCT116 stable cells
synchronized to GO/G1 and S phase by lovastatin arrest and double thymidine block,
respectively (right panels).

Data are presented as mean + SD. Significance was calculated using unpaired, two-tailed
Student’s t-test. **, P <0.01; ***, P <0.001; NS, non-significant.
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Figure S6, related to Figure 3. RelA Deamidation and NF-kB Downregulation is Cell Cycle-
dependent

(A and B) Immunoblots of the whole cell lysates (WCLs) from HCT116 cells depleted for CAD
(A). The mRNA abundance of EGR1 and ICAM1 in HCT116 stable cells released at indicated
time points after lovastatin arrest (B).

(C) Immunoblots of the WCLs from HCT116 cells after infection with Sendai Virus (SeV) or
treatment with TNF-a by regular SDS-PAGE and two-dimensional gel electrophoresis (2DGE)
analysis.

(D) Immunoblots of in vitro deamidation reactions with GST-RelA and precipitated CAD from
HCT116 Flag-CAD knockin cells that were mock-, LPS-treated or infected with SeV by 2DGE
analysis (left panel). Silver stains of purified CAD (right panel).

Data are presented as mean + SD.
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Figure S7, related to Figure 4. CAD-mediated RelA Deamidation is Crucial for Glycolysis and
Cell Proliferation

(A) Lactate levels in the medium harvested from RelA-knockdown (RelA-KD) HCT116 cells
reconstituted with control (vec), wild-type RelA (WT), RelA-DD (DD) and the deamidation-
resistant RelA-64A (64A).

(B and C) Glucose consumption in the medium harvested from mouse embryonic fibroblasts
(MEFs) of wild-type and RelA-DD knockin genotype (B). Lactate levels in the medium (C).

(D) Resting extracellular acidification rate (ECAR) of the non-synchronized or S phase
synchronized HCT116 cells depleted for control or CAD.

(E) Resting ECAR of G1/S phase synchronized HCT116 cells stably expressing RelA-WT or
RelA-64A.

(F) Oxygen consumption rate (OCR) of G1/S phase synchronized HCT116 cells stably
expressing RelA-WT and RelA-64A.

(G) Immunoblots of WCLs from RelA-depleted SW480 cells reconstituted with RelA-WT, RelA-
DD or RelA-64A (left panel), and lactate levels in the medium from reconstituted SW480 cells
(right panel).

(H) Proliferation rate of reconstituted SW480 cells as shown in (G).

(I and J) Immunoblots of whole cell lysates (WCLs) from control or CAD-depleted HCT116
cells reconstituted with vector or RelA-DD (1), and proliferation rate of reconstituted HCT116
cells (J).

(K) Tumor growth in mice inoculated with reconstituted HCT116 as shown in (A).

(L) Tumors derived from reconstituted HCT116 cells. One of the tumors derived from HCT116
cells reconstituted with RelA-DD was harvested at day 30 due to ulceration.

Data are presented as mean = SD. Significance was calculated using unpaired (paired for
Figure S7H, S7J and S7K), two-tailed Student’s t-test. **, P <0.01; ***, P <0.001; NS, non-
significant.
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Figure S8, related to Figure 5. Metabolic Reprogramming by Deamidated RelA
(A) The mRNA abundance of glycolytic genes in reconstituted HCT116 cells.

(B) The mRNA abundance of PC, PDK2, PDK3 and PFKP in control or CAD-depleted HCT116
cells reconstituted with vector or RelA-DD.

(C - E) Immunoblots of whole cell lysates (WCLs) of HCT116 cells at indicated time points
released from lovastatin arrest (C). The mRNA abundance of PDKs and indicated glycolytic
genes in HCT116 cells at indicated time points released from lovastatin arrest (D, E).

(F) The mRNA abundance of PFKP, PC, PDK2 and PDK3 in tumors derived from reconstituted
HCT116 cells.

(G) Quantification of the promoter sequence of indicated genes in WCLs of reconstituted
HCT116 cells precipitated with anti-Flag antibody.

(H) The mRNA abundance of PFKP, PC, PDK2 and PDK3 in mouse embryonic fibroblasts
(MEFs) of wild-type and RelA-DD knock-in.

(I and J) A heatmap showing the intracellular concentration of metabolic intermediates of the
TCA cycle () and nucleotide (J) analyzed by the metabolite profiling of reconstituted HCT116
cell lines.

Data are presented as mean + SD. Significance was calculated using unpaired, two-tailed
Student’s t-test. **, P <0.01; ***, P <0.001; NS, non-significant.
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Figure S9, related to Figure 6. CAD-mediated RelA Deamidation is Crucial for Diverse Human
Cancer Cells

(A) Immunobilots for RelA deamidation and CAD expression, and lactate production of twenty-
four cancer cell lines of breast, colon and lung origin. These cell lines were then classified into
high RelA deamidation (Red) and low or no RelA deamidation groups (Blue).

(B) The mRNA abundance of HK4, PC, ATP5ME and UQCRQ in the 24 cancer cell lines as
described in (A) classified into high RelA deamidation and low or no RelA deamidation groups.

(C and D) Immunoblots of six human head and neck cancer cell lines for RelA deamidation
analyzed by two-dimensional gel electrophoresis (C). The mRNA abundance of PC, PDK2,
PDKS3 and PFKP in head and neck cancer cells (D).

(E - G) The mRNA abundance of PDK2, PDK3, HK4 and IL-8 in LoVo colorectal cancer cells
reconstituted with wild-type RelA, RelA-DD and RelA-64A (E), and lactate levels in the medium
(F) and proliferation rate (G) of reconstituted LoVo cells.

Data are presented as mean + SD. Significance was calculated using unpaired, two-tailed
Student’s t-test. **, P <0.01; ***, P <0.001; NS, non-significant.
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Figure S10, related to Figure 6. CAD-mediated RelA Deamidation is Crucial for Diverse Human
Cancer Cells

(A) Immunobilots of whole cell lysates (WCLs) from T47D breast cancer cells reconstituted with
wild-type RelA, RelA-DD and RelA-64A (top panel). The mRNA abundance of PDK2, PDKS,
PFKP and IL-8 in reconstituted T47D cells (bottom panel).

(B) Immunoblots of whole cell lysates (WCLs) from H1975 lung cancer cells reconstituted with
wild-type RelA, RelA-DD and RelA-64A (top panel). The mRNA abundance of IL-8, PDK2,
PDK3, PFKP and HK4 in reconstituted H1975 cells (bottom panel).

(C) The mRNA abundance of IL-8, PDK2, PDK3, HK4, PC and PFKP in the SW480 cells
depleted for endogenous RelA and reconstituted with wild-type RelA, RelA-DD and RelA-64A.

(D) Cell viability of 24 human cancer cell lines treated with 2-DG. Red and blue lines denote
individual data point of cancer cell lines with high and low levels of RelA deamidation,
respectively.

(E and F) Cell viability of the panel of 24 cancer cell lines treated with PFK-158 (a PFKFB3
inhibitor), plotted as the mean of a group (E) and individual cell line (F). Red: High deamidation
cell lines. Blue: Low or no deamidation cell lines.

(G) Representative tumors derived from HT29, HCT116 and LoVo colorectal cancer cells in
nude mice, treated with vehicle or PFK158 (25 mg/kg) (n = 6 for both treated groups).

Data are presented as mean = SD. Significance was calculated using unpaired (paired for
Figure S10E), two-tailed Student’s t-test. **, P <0.01; ***, P <0.001; NS, non-significant.



Gene Name

TABLE S1, related to METHODS DETAILS

Forward Primer

Reverse Primer

Realtime PCR primers

Human CAD
Human CCL2
Human EGR1
Human GOT1
Human GOT2
Human GPT2
Human HK1
Human HK2
Human ICAM-1
Human IFl44
Human IFNB
Human IL-6
Human IL-8
Human IRF7
Human LDHA
Human LDHB
Human MX2
Human PDK1
Human PDK2
Human PDK3
Human PDK4
Human PFKP
Human PKM1
Human PKM2
Human PC
Human TNF-a
Human B-actin
Mouse Ccl-5
Mouse Mip2
Mouse B-actin
Human DDX60
Human Glut3
Human HK3
Human HK4
Human PFKM
Human PFKL
Human PKLR
Human PDHA1
Human PDHB
Human PC
Human GPT

Human ATP5ME

Human UQCRQ

5-TGCTCACCTATCCTCTGATCG-3
5-AAGATCTCAGTGCAGAGGCTCG-3
5-CTCTCCAGCCTGCTCGTC-3'
5-ACCTGGGAGAATCACAATGC-3’
5-CAATGGCTGCAAGAAGTGAA-3’
5'-GGAGCTAGTGACGGCATTTCTACGA-3'
5-GGTGAAATCGTCCGCAAC-3
5-CGGCCGTGCTACAATAGG-3’
5'-GGCCGGCCAGCTTATACAC-3'
5-CCACCGAGATGTCAGAAAGAG -3’
5-AGGACAGGATGAACTTTGAC-3
5-CCAGCTATGAACTCCTTCTC - 3
5-GGCACAAACTTTCAGAGACAG-3'
5-TGCAAGGTGTACTGGGAG-3'
5-AGCCCGATTCCGTTACCT-3'
5-TTGTGGTTTCCAACCCAGTGGACA-3'
5'-AGAAATTACATTCTTTCAAACACATCC-3'
5'-CCGCTCTCCATGAAGCAGTT-3'
5-CCGCTGTCCATGAAGCAGTT-3'
5'-CAAGCAGATCGAGCGCTACTC-3'
5'-CCCGAGAGGTGGAGCATTT-3'
5-CGGAAGTTCCTGGAGCACCTCTC-3'
5-CTATCCTCTGGAGGCTGTGC-3'
5'-CCACTTGCAATTATTTGAGGA A-3'
5-ACCAACTGCCGTGATGCTGA-3'
5-AGG CGC TCC CCA AGA AGA CA-3'
5-CTGGCACCCAGCACAATG-3’
5-CCTGCTGCTTTGCCTACCTCTC-3
5-CTCTCAAGGGCGGTCAAAAAGTT-3’
5-ACGGCCAGGTCATCACTATTG-3’
5-AAGGTGTTCCTTGATGATCTCC-3'
5-CAGCGAGACCCAGAGATG-3
5-CTCCAGGCTGGTGTCAGTGA-3'
5-GCTTGTGATTCTGGGATGGA-3'
5-GAGTGACTTGTTGAGTGACCTCCAGAAA-3'
5-GGCATTTATGTGGGTGCC AAAGTC-3'
5'-GAAAGGCCCAAGGTATCCAA-3'
5'-GTTACCACGGACACAGTATGAG-3'
5'-GGAGTAGGAGCTGAAATCTGTG-3'
5-GATAGTGTCTGCCTTCTGGAGAGC-3'
GGAGCTAGTGACGGCATTTCTACGA-3'
5-GAGAAGGCACCGTCGATGG-3'
5-TGGTGGAGTCTTGCACTAAAG-3'

5-GCTGGGAGTAGGACAGCAC-3
5-TTGCTTGTCCAGGTGGTCCAT-3’
5-AGCAGCATCATCTCCTCCAG-3'
5-GCGGCTGTGCCCGCCGGTGC-3
5-GGCTTTAGCCCTGTGAAACA-3’
5'-CCCAGGGTTGATTATGCAGAGCA-3'
5-CCCGGGTCTT CATCGTC-3
5-CTCGGGATCATGTG AGGG-3
5-TAGACACTTGAGCTCGGGCA-3'
5-TGGTACATGTGGCTTTGCTC -3
5-TGATAGACATTAGCCAGGAG-3
5-GCTTGTTCCTCACATCTCTC - 3’
5'-ACACAGAGCTGCAGAAATCAGG-3'
5-TCAAGCTTCTGCTCCAGCTCCATAAG-3'
5'-CACCAGCAACATTCATTCCA-3'
5'-AAAATCCATCCATGGCAGCTGCTG-3'
5-GATCTCAAATGTCTTGTAGTTGACAAA-3'
5-TTGCCGCAGAAACATAAATGAG-3'
5'-TGCCTGAGGAAGGTGAAGGA-3'
5-CGAAGTCCAGGAATTGTTTGATG-3'
5-GCATTTTCTGAACCAAAGTCCAGTA-3'
5-AAGTACACCTTGGCCCCCACGTA-3'
5-CCATGAGGTCTGTGGAGTGA-3'
5-GTGAGCAGACCTGCCAGACT-3'
5-ACACACGGATGGCAATCTCACC-3'
5-TCC TTG GCA AAA CTG CAC CT-3'
5’-GCCGATCCACACGGAGTACT-3’
5’-ACACACTTGGCGGTTCCTTCGA-3’
5-TCAGACAGCGAGGCACATCAGGTA-3’
5-CAAGAAGGAAGGCTGGAAAAGA-3
5-TGACAATGGGAGTTGATATTCC-3'
5-TTGGAAAGAGCCGATTGTAG-3’
5’-CTCCGATTGCAAAAAGGTGACT-3'
5'-GCTATGGGAGCTGAAGATGTAG-3'
5-CACAATGTTCAGGTAGCTGGACTTCG-3'
5-CAGTTGGCCTGCTTGATGTTCTCA-3'
5'-GCAGAGTGAGGGTGGTAAAG-3'
5-CATCCTGTCCTTGAGAAGCATAA-3'
5'-GCATAAGGCATAGGGACATCA-3'
5-ACACACGGATGGCAATCTCACC-3'
5'-CCCAGGGTTGATTATGCAGAGCA-3'
5-ACACTCTGAATAGCTGTAGGGAT-3'
5'-CTCCTGGCACAGAAACAGAA-3'

ChIP-PCR primers

Human TNF-a
Human IkBa

5-GATTCCTTGATGCCTGGGTGTC-3'
5'-GCTTCTCAGTGGAGGACGAG-3'

5-GAGCTTCTGCTGGCTGGCTGT-3'
5-CTGGCAGGGGATTTCTCAG-3'



TABLE S1, related to METHODS DETAILS

Human IL-8 5-GTGTGATGACTCAGGTTTGCCC-3' 5-GTGTGATGACTCAGGTTTGCCC-3'
Human GLUT3 5'-CCCCTGAAGCAATCTTGTGATC-3' 5'-AAAAACCCAGGGTGGAGAGAG-3'
Human HK4 5-AACTTTGGTGTGACCCTTAC-3' 5'-CCAAAGCATCTACCTCTTAGC-3'
Human PDK2 5-CCGGAGTTGTTTGTGAGTGG-3' 5'-GCCTCCTCCCTACCCTTG-3'
Human PDK3 5'-CCGGACAAAACACAAACGTC-3' 5'-CAGCAGCAGCTCCAGGAC-3'
Human PFKP 5-TCATCTCTAGAGCCCCCAAC-3' 5-GTGTGGGCAGGAGCATCTAC-3'
SgRNA

Human CAD 5-ACCTGTCTTTGGGATCTGCCTGG-3 Exon 6

Human CAD 5-GAACGGCATGTACATCCGCATGG-3’ Exon 43

Human NF-kB1

5-TGTGAAGGCCCATCCCATGGTGG-3’

Exon 5
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