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Text S1: Positive and negative adjustments

Processes that lead to enhanced evaporation of smaller droplets in polluted conditions involve mixing of drier ambient air
into clouds at cloud top (8, 9, 75, 76) and cloud sides (10, 77), as well as responses in cloud-scale and cloud-field-scale
dynamics (27, 78, 79). These cloud responses are difficult to parameterize in GCMs because they occur at length scales typical
of turbulent processes (centimeters through kilometers) through mesocale processes (kilometers to tens of kilometers), with
abundant feedbacks across scales that are implicitly represented, at best, by GCM parameterizations. Processes that lead to
precipitation suppression by increased droplet number concentration in polluted clouds, on the other hand, can be parameterized
entirely at the cloud droplet scale within the microphysical warm-phase precipitation processes (see Methods). These cloud
responses are explicitly, albeit crudely, represented in many GCMs (80–83).

Text S2: Caveats

We are not suggesting that the tuning strategies explored here are optimal; they are not able to reduce the warm-rain bias to zero,
nor are they free from compensating biases elsewhere in the model – as shown by the need for scale factors smaller than unity,
opposite to the enhancement factors needed to correct for subgrid variability in liquid water content (61, 84). Rather, we have
chosen these strategies to explore the parameter space of possible model behavior if the far more involved task of addressing
base precipitation process behavior biases were undertaken. These simple experiments suffice to document the likely rewards
in reduced base-process-induced ERFaci uncertainty and reduced equifinality-induced parameter degeneracy and to elicit the
improvements in modeling, observations, and model–observation intercomparison techniques required to realize said rewards.

We also acknowledge that fwarm would ideally be superseded by a diagnostic that does not mix warm and cold rain processes,
such as the warm-rain probability conditioned on the presence of cloud pwarm. We have chosen fwarm to simplify future com-
parison of ECHAM–HAMMOZ with other models that do not implement radar simulators. In these models, a threshold surface
rain rate must be chosen below which the grid box is considered nonprecipitating. The uncertainty associated with the choice
of threshold largely cancels in the ratio pwarm/(pwarm + pcold) = fwarm; if the intensity spectra of warm and cold rain matched,
the cancellation would be exact. However, observations indicate so little warm rain in the extratropics compared to the model
that the magnitude of the denominator in fwarm is relatively unimportant to the constraint mechanism there; the constraint is
simply that warm rain should not occur in those regions. Fortuitously, the adjustments in the model also predominantly occur
in the polluted northern-hemisphere extratropics (41). Nonetheless, we advocate rapid adoption of satellite simulators by all
models, a cobenefit of which is that this analysis can be refined using pwarm.

Finally, we acknowledge that large TOA imbalances, while a necessary evil in these sensitivity studies (see Text S3), are
unacceptable in a production model. Thus, reducing the large model bias in autoconversion will require a similarly large
retuning elsewhere, which will have to be accomplished without introducing or worsening biases in other state variables. We
surmise that revisions that enhance the accretion of cloud water to rain droplets may be a promising avenue, simultaneously
acting as a sink for the excess L resulting from reduced autoconversion, strengthening the intensity and reducing the frequency
of precipitation, and bringing the autoconversion–accretion partitioning into better agreement with observations (14, 85, 86).

Text S3: Rapid-adjustment metrics

It is inherently difficult to quantify the change in ERFaci components in a GCM when parameterized processes are changed.
There are two reasons for this. The first reason is that, for many applications, it is desirable for the model to reproduce the
PD state of the atmosphere as closely as possible; this is especially true in coupled atmosphere–ocean climate runs, where an
energy imbalance in the model will result in a drift of heat content of the climate system over time. Changing one process
in isolation, even if it happens to make that process more realistic, is likely to bring the atmospheric state, including the
energy balance, into worse overall agreement than what had been achieved previously by careful tuning. Thus, the model is
often retuned after implementing the process change, so that the overall quality of the model is not degraded. However, even
apparently unrelated parameter changes used for retuning can impact the ERFaci and its components, masking the effect of the



intentional process change (19). To avoid this problem, we choose not to retune the model for these experiments. In fixed-SST,
nudged simulations, the model climate cannot diverge far from its control climate.

However, we still run into a second reason why quantifying ERFaci components is difficult; namely, that the ERFaci compo-
nents depend on the model base state, and changing the process formulations changes the base state. Assume that the model
can be described by a vector of processes p and a vector of state variables x. The processes map the state variables onto rates
of change of the state variables. In general, the state variables will depend on the processes through an unknown functional ξ:

x = ξ (p); (S3.1)

reformulating the processes so that p→ p′ will therefore change the state vector as well.
Further assume that FL can be decomposed into a factor S that explicitly depends only on the state variables and a factor

FL that depends only on processes:

FL (p, x) = FL (p) ×S(x). (S3.2)

Our aim is to find another variable Φ that does not depend explicitly on p and depends on x in the same way as FL , i.e., Φ(x) ∝
S(x). If we can identify such a variable, the ratio FL/Φ ∝ FL (p) can be used to diagnose the response of the adjustments to
the change in process formulation, free from the confounding effect of unrelated state variable changes x→ x ′.

The assumption that a factorization of the form (S3.2) is possible can be rationalized for changes in model formulation that
result in small changes in x by the following argument. Suppose we artificially made clouds more reflective while keeping
the processes affecting FL the same, e.g., by introducing a perturbation in Nd that is visible only to the radiation scheme; this
would leave FL unchanged by construction but still change FL due to the increased cloud albedo encapsulated in a change in
S.

A more difficult step is identifying candidates for Φ. The preceding proportionality argument suggests that a desirable
property of Φ is covariability with cloud albedo change. An initial set of candidates might therefore include L, which strongly
controls cloud albedo; and the shortwave cloud radiative effect Sc = Sall − Sclr, i.e., the difference in solar-spectrum radiative
flux at the model top of atmosphere between all-sky and clear-sky conditions, which converts the change in cloud albedo
into a radiative flux perturbation. While there is indeed a very tight relationship between L and albedo across all our model
configurations, the albedo saturates at high L, which reduces its utility as a normalization for radiative quantities.

We consider a further candidate for Φ: the radiative forcing FNd
. The process changes we have made do not affect FNd

explicitly, satisfying one of our above criteria for Φ. The state variable changes induced by the process changes do affect FNd
,

however, in that the cloud albedo response to a given Nd perturbation is a nonlinear function of L and Nd . We surmise that
the dependence of FNd

and FL on x are better analogs than the dependence of Sc . The reason is that both components of
ERFaci are sensitive to the spatial covariability of cloud changes and anthropogenic aerosol perturbations (41), whereas Sc is
not; both components are affected by the greater anthropogenic Nd perturbation per unit emissions that results from reduced
wet scavenging when precipitation probability is reduced; and the sensitivity of both components to changes in L and Nd

saturates in a higher-L, higher-Nd state. Evidence for proportionality between FNd
and FL in GCMs is presented based on

spatial correlations in Mülmenstädt et al. (41) and on intermodel correlation in Gryspeerdt et al. (42).
Based on these arguments, we use the normalized adjustment FL/FNd

in this paper. To test the robustness of our conclusions
to this choice, Fig. S8 reproduces Fig. 3 for the other normalization choices we have considered,Φ ∈ {L,Sc }; Tables S1– S3 list
the global-mean ERFaci components and state variables. For all three metrics, there is a bifurcation in the adjustment response
to reduced fwarm bias; the Qaut scaling reduces the adjustment strength according to all three metrics, while the re threshold
tuning increases the adjustment strength according to the FL/FNd

and FL/Sc metrics and causes little change according to
the FL/L metric. Thus, the conclusion that an observational constraint on the rapid adjustment depends on knowing whether
to address the drizzle bias or the rain bias appears robust to the choice of Φ. For all three metrics, increasing β (i.e., tuning
in the direction of stronger susceptibility) results in adjustment changes that are comparable to the experiments modifying
parameters that control base process behavior (α,γ,rc); for all three metrics, large increases in β, which should correspond to
greater process susceptibility, results in weaker adjustment (see also Text S5). Thus, the conclusion that the base precipitation
process behavior and the process susceptibility are both important contributors to the projected adjustment also appears robust
to the choice of Φ.



Text S4: Geographic patterns of adjustment changes

Figure S4 shows the geographic distribution of the changes in normalized adjustment when the scale factor is reduced and
when the re threshold is increased; the most drastic retuning is chosen in each case to produce clear patterns in the presence of
statistical noise.

In the scale factor experiment, the change in normalized adjustment is robustly negative in the northern-hemisphere ex-
tratropics. Given the decrease in warm rain in these regions, this change is consistent with our hypothesis that base process
behavior leading to reduced warm rain reduces FL . In the Sc regions, where cold rain is exceedingly rare, warm rain is still
the dominant form of precipitation even with a reduced scale factor; here, the sign is reversed, presumably because the Golaz
et al. (19) applies; see below.

In the re threshold experiment, there is a robust increase in FL/FNd
over oceans. This is in accordance with the Golaz et al.

(19) argument. To summarize the argument, we first note that effective radius and liquid-water mixing ratio are related:

ql =
4
3
π
ρl
ρ

r3
eNd , (S4.1)

where ρl is the density of water and ρ is the density of air; strictly, the relationship holds for the volumetric-mean radius (by
definition), but the ratio between re and volumetric radius is close to unity. Next, we note that precipitation is a sufficiently
important sink of ql in the model that reducing the ability of clouds to precipitate below a threshold re (or equivalently ql)
causes cloud water to build up until the new, higher threshold is reached. The mean ql is thus strongly controlled by the
threshold re:

ql ∼
4
3
π
ρl
ρ

r3
cNd . (S4.2)

An anthropogenic Nd perturbation ∆Nd thus leads to a ql response that is proportional to r3
c:

∆ql ∼
4
3
π
ρl
ρ

r3
c∆Nd , (S4.3)

so that models with higher rc will have a stronger ql response to a give anthropogenic aerosol perturbation than models with
lower rc .

For this argument to work, the moisture must not be limited by source processes, such as limits on surface evaporation,
or other sink processes, such as consumption by parameterized convection. Over oceans, where Fig. S4 shows an increase
in FL/FNd

, we expect the moisture supply to be unrestricted. Figure S4 also shows a reduction in FL/FNd
over parts of the

continents, which may be explained by a lower evaporative flux or a more convective atmosphere that limits the applicability
of the Golaz et al. (19) argument.

Text S5: Susceptibility versus base process behavior

The thinking underlying Wang et al. (27) is that the susceptibility of precipitation to aerosol (87) controls the model estimate
of FL . Accordingly, some modeling studies find that varying β, which changes the susceptibility of precipitation to aerosol, is
the main control on ERFaci (88, 89). The difficulty of diagnosing FL separately from other components of ERFaci, as well as
the retuning process after perturbing a parameter of the model (90), complicates the assessment to what extent FL responds to
changes in β in such studies (see also Text S3).

A more detailed calculation of the process susceptibility (91, 92) shows that β is not the only contribution to the autocon-
version rate susceptibility to Nd; rather, the susceptibility receives contributions both from exponents in (2):

d lnQaut

d ln Nd
= −β + α

d lnql
d ln Nd

, (S5.1)



i.e., the susceptibility both influences and depends on rapid adjustments (d lnql/d ln Nd , in a global-mean sense, controlling
FL). In light of the model diversity in FL estimates (42), we can assume that the relative contribution of β to the process
susceptibility will also be diverse. These considerations notwithstanding, FL/FNd

decreases at large β, when the process
susceptibility should be maximal, indicating that the presence of multiple terms in (S5.1) is not the dominant source of the
insensitivity of the rapid adjustments to β in this model. A more likely explanation is that the components of ERFaci are
emergent properties of a complex system (83), so we should not expect a straightforward correspondence between FL and
process rates or susceptibility (93).
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Figure S1. Distributions of cloud properties in different experiments.
Distributions of C, 〈Nd〉/C, and L/C} are shown, where C is the two-dimensional projected liquid-cloud fraction, and 〈Nd〉 is the vertical
average of Nd over the liquid cloud column; the normalization by C is chosen to approximate an “in-cloud” liquid water path and “in-cloud”
droplet number concentration, although the concept is not well defined in clouds spanning multiple model levels. Frequencies are normalized
to the mode of the frequency distribution.



Drizzle Rain

Q
aut ×

0.04
Q

aut ×
0.1

Q
aut ×

0.4
Q

aut ×
1

Q
aut ×

4
S

atellite

120◦W 0 120◦E 120◦W 0 120◦E

60◦S

0

60◦N

60◦S

0

60◦N

60◦S

0

60◦N

60◦S

0

60◦N

60◦S

0

60◦N

60◦S

0

60◦N

fwarm

0.05 0.1 0.2 0.4 0.6 0.8 1

Figure S2. Warm-rain fraction from satellite and model in various scaling configurations.
The reference configuration is Qaut×4. As the scale factor is reduced, warm rain decreases rapidly, but warm drizzle is relatively unaffected.
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Figure S3. Warm-rain fraction from satellite and model in various re threshold configurations.
The reference configuration is re > 0. As the threshold is increased, warm drizzle decreases rapidly, but warm rain is relatively unaffected.
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Figure S5. The relationship between fwarm bias and FL/FNd
when varying α.

This figure reprises Fig. 3 but varies α instead of rc and γ.
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Figure S6. The relationship between fwarm bias and FL/FNd
when varying β.

This figure reprises Fig. 3 but varies β instead of rc and γ.
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Figure S7. The relationship between fwarm bias and FL/FNd
over land and ocean.

This figure reprises Fig. 3 but separates the FL/FNd
responses over land and ocean.



Qaut, re tuning α,β tuning

−
F L

/L
(W

kg
−

1
)

F L
/S

c
(%

)

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

5

10

0.75

1

1.25

1.5

fwarm bias

Intensity Rain Drizzle Tuning Qaut Reference re α β

Figure S8. The relationship between fwarm bias and multiple adjustment metrics.
This figure reprises Figs. 3, S5, and S6, but for alternate adjustment metrics −FL/L (the negative prefactor is chosen so that a larger value
of the metric indicates a stronger adjustment, in common with the other metrics) and FL/Sc . (Note that the α ∈ {1.75,2} data points are off
scale in the −FL/L panel.)



0

0.25

0.5

0.75

1

0.01 1 100
P (mm day−1)

C
D

F
(P

)

Radar simulator column classification cloud drizzle rain

Figure S9. Correspondence between simulated radar reflectivity and surface precipitation rate.
Cumulative distribution functions (CDFs) of surface precipitation rate P by radar-simulator reflectivity-based classification of the column as
cloudy, drizzling, or rainy show that reflectivity-based intensity classifications correspond closely with surface precipitation rate. The gray
dashed lines correspond to 0.01, 0.1, and 1 mm h−1.



Table S1. Rapid adjustments and cloud state (global mean) across experiments.
Compared to the reference model, the reduced scaling factor configurations estimate a weaker normalized adjustment FL/FNd

, while the
increased threshold re configurations estimate a stronger normalized adjustment. The large TOA radiative imbalance RTOA in the reference
run is a result of nudging; the non-nudged version of the reference run for the same time period has a more plausible RTOA = 0.34 W m−2.
Despite large changes in warm cloud properties, the ice water path I changes are within approximately 1%.

ERF contributions (W m−2) State variables
Case FNd

FL FL/FNd
RTOA (W m−2) Sc (W m−2) I (g m−2) L (g m−2)

Qaut × 0.04 −0.66 −0.57 0.87 −9.98 −58.97 10.56 214
Qaut × 0.1 −0.65 −0.59 0.91 −8.23 −57.10 10.55 184
Qaut × 0.4 −0.62 −0.64 1.02 −4.76 −53.33 10.53 139
Qaut × 1 −0.59 −0.64 1.07 −1.93 −50.24 10.50 110
Reference −0.52 −0.57 1.08 2.89 −44.95 10.45 73
re > 10 µm −0.51 −0.59 1.15 2.82 −45.04 10.45 73
re > 12 µm −0.52 −0.61 1.17 2.41 −45.46 10.46 76
re > 15 µm −0.59 −0.73 1.24 0.26 −47.84 10.50 92
re > 17 µm −0.65 −0.81 1.25 −2.31 −50.60 10.52 114



Table S2. Rapid adjustments and cloud state (global mean) across experiments scanning α.
This table reprises Table S1 but varies α.

ERF contributions (W m−2) State variables
Case FNd

FL FL/FNd
RTOA (W m−2) Sc (W m−2) L (g m−2)

α = 1.75 −0.09 −0.30 3.30 25.80 −17.75 2
α = 2 −0.24 −0.42 1.77 18.39 −27.80 13
α = 2.25 −0.38 −0.50 1.32 9.71 −37.50 38
α = 2.47 (reference) −0.52 −0.57 1.08 2.89 −44.95 73
α = 2.8 −0.62 −0.60 0.96 −4.84 −53.43 139
α = 3.2 −0.65 −0.52 0.79 −10.01 −59.01 215
α = 3.6 −0.65 −0.46 0.70 −12.35 −61.49 270
α = 4 −0.65 −0.45 0.69 −13.67 −62.98 308
α = 4.5 −0.64 −0.40 0.62 −14.71 −64.16 340
α = 5 −0.64 −0.37 0.58 −15.36 −64.91 361



Table S3. Rapid adjustments and cloud state (global mean) across experiments scanning β.
This table reprises Table S1 but varies β.

ERF contributions (W m−2) State variables
Case FNd

FL FL/FNd
RTOA (W m−2) Sc (W m−2) L (g m−2)

β = 1 −0.23 −0.24 1.06 14.59 −32.23 21
β = 1.2 −0.29 −0.31 1.07 11.79 −35.28 30
β = 1.4 −0.36 −0.38 1.08 8.80 −38.51 41
β = 1.6 −0.42 −0.46 1.09 5.82 −41.78 56
β = 1.79 (reference) −0.52 −0.57 1.08 2.89 −44.95 73
β = 2 −0.58 −0.67 1.17 −0.23 −48.35 95
β = 2.4 −0.65 −0.75 1.15 −5.50 −54.07 147
β = 2.8 −0.68 −0.75 1.10 −9.31 −58.20 202
β = 3.2 −0.67 −0.68 1.01 −11.72 −60.85 252
β = 3.6 −0.64 −0.47 0.75 −13.11 −62.36 291
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