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Supplementary Notes 

After observing weaker neural suppression in the foveal 

hMT+ fMRI response in participants with ASD, we asked 

whether this difference in suppression might be attributable 

to weaker inhibition, consistent with theories of E/I 

imbalance in this disorder1, 2, 3. To attempt to address this 

question, we used MR spectroscopy to measure the 

concentration of GABA+ (GABA, an inhibitory 

neurotransmitter, plus co-edited macromolecules) in a region 

centered around hMT+ in the lateral occipital lobe 

(Supplementary Figure 1B; Supplementary Figure 2A & B). 

We predicted that if weaker spatial suppression was driven 

by reduced inhibition in hMT+, this might be reflected in 

lower GABA+ levels as measured by MRS. However, we found 

no significant difference in GABA+ levels within the MT 

region between participants with ASD versus NTs (main 

effect of group, F1, 60 = 1.21, p = 0.3; Supplementary Figure 

2C). We also found no significant correlations between 

GABA+ levels in hMT+ and measures of suppression (size 

indices or fMRI; averaging across low & high contrast 

conditions to minimize multiple comparisons; correlations for 

both groups combined: |r47-60| < 0.10, uncorrected p-values > 

0.5; for ASD participants alone: |r22-25| < 0.28, uncorrected p-

values > 0.19; for NTs alone: |r23-33| < 0.21, uncorrected p-

values > 0.3; Supplementary Figure 2E & F). This agrees with 

our recent findings from a subset of these NTs5. Although 

these results do not lend support to the hypothesis that weaker spatial suppression in ASD may be attributed to 

differences in the level of GABA+ in hMT+, the lack of a significant relationship precludes us from drawing any strong 

conclusions about the role of GABA+ in spatial suppression among people with ASD. 

Our MRS procedure also allowed us to measure a signal associated with glutamate, an excitatory neurotransmitter. 

Because this signal also includes some contribution from glutamine and glutathione6, we refer to this measure as Glx. 

Some previous studies have suggested that surround suppression is driven primarily by a withdrawal of excitation, 

rather than inhibition of neural activity7, 8. There is also limited evidence suggesting increased glutamatergic excitation in 

ASD9, 10. Therefore, we examined whether weaker suppression in ASD might be related to differences in excitatory 

neurotransmitter levels, which could be reflected in the Glx signal from the hMT+ region. However, we observed no 

significant difference between groups in Glx within hMT+ (main effect of group; F1, 60 = 1.54, p = 0.2; Supplementary 

Figure 2D). Further, Glx levels in hMT+ did not correlate significantly with behavioral or fMRI measures of suppression 

(correlations for both groups combined: |r47-60| < 0.06, uncorrected p-values > 0.6; ASD participants alone: |r22-25| < 

0.28, uncorrected p-values > 0.18; NTs alone: |r23-33| < 0.21, uncorrected p-values > 0.3; Supplementary Figure 2G & H). 

Thus, we found no evidence for an association between Glx levels in hMT+ and spatial suppression, and we cannot form 

a strong conclusion regarding the role of glutamatergic excitation in ASD. 

As MRS data were acquired in both left and right hMT+ in separate scans, we compared data between hemispheres 

to examine potential lateralized differences in metabolite concentrations, or interactions between participant group and 

hemisphere. We found no difference in GABA+ levels between left and right hMT+ across groups (GABA+: left mean = 

3.25 i.u., SD = 0.23; right mean = 3.24 i.u., SD = 0.29; main effect of hemisphere, F1, 60 = 0.02, p = 0.9). In contrast, Glx 

levels were higher in right as compared to left hMT+ (Glx: left mean = 5.51 i.u., SD = 0.90, right mean = 6.70 i.u., SD = 

0.69; main effect of hemisphere, F1, 60 = 103, p = 1 x 10-14). However, there were no significant interactions between 

group & hemisphere for either metabolite (F1, 60 < 1.59, p-values > 0.2). 

Because our GABA+ values were corrected for tissue fraction, while our Glx values were not (see Methods), we 

Supplementary Figure 1. Functional localizers. A) Functional 
localizer scan #1 included blocks of moving vs. static gratings. 
B) Human MT complex (hMT+) was identified in the lateral 
occipital lobe using a correlational analysis (motion > static; 
yellow voxels). Functional localizer scan #2 included blocks of 
flickering checkerboards in the central 2° (C), vs. surrounding 
12° (D). Foveal hMT+ ROIs were defined by (motion > static) & 
(center > surround). 



Supplementary Figure 2. MR spectroscopy results in hMT+. A) 
Voxel positions for left and right hMT+ in Talairach space for n 
= 27 participants with ASD. Blue-green color indicates overlap 
across individuals. Yellow indicates average hMT+ ROI across 
participants, from fMRI (correlation of predicted vs. observed 
response, thresholded at Pearson’s r123 = 0.25). B) Same, but 
for n = 35 NTs. C) GABA+ concentrations in hMT+ (averaged 
left and right voxels in each participant) in institutional units 
(i.u.). D) Same, but for Glx. Correlation (Pearson’s) between 
GABA+ in hMT+ and E) size indices or F) fMRI suppression (low 
& high contrast averaged). G & H) Same, but for Glx. 

asked whether differences in gray matter, white matter, and 

CSF fractions within the voxel might have contributed to the 

observed difference in Glx levels between left and right 

hMT+. We found that the proportion of CSF was indeed 

higher within left vs. right hMT+ voxels (left mean = 3.79%, 

SD = 1.99%; right mean = 3.30%, SD = 1.54%; F1, 60 = 8.77, p = 

0.004). There were no significant differences in gray or white 

matter content between hemispheres (GM: left mean = 

44.5%, SD = 3.67%; right mean = 44.3%, SD = 3.24%; F1, 60 = 

0.14, p = 0.7; WM: left mean = 51.7%, SD = 4.22%; right mean 

= 52.4%, SD = 3.51%; F1, 60 = 2.64, p = 0.11). Differences in CSF 

were reflected in the water reference; the measured water 

signal was also higher in left vs. right hMT+ (left mean = 30.5 

i.u., SD = 5.33, right mean = 28.9 i.u., SD = 5.46; F1, 60 = 27.4, p 

= 2 x 10-6). However, there were no significant differences 

between participants with ASD and NTs in gray matter, white 

matter, CSF, or water levels (F1, 60 < 3.54, uncorrected p-

values > 0.065), and no significant interactions between 

group and hemisphere (F1, 60 < 2.25, uncorrected p-values > 

0.139). Thus, although differences in Glx values from left vs. 

right hMT+ depended on CSF fraction and the associated 

water reference signal, we did not find evidence to suggest 

that these effects were associated with any differences in 

MRS data between groups.  

To further examine whether our MRS results in hMT+ 

were affected by scaling our metabolite values (GABA+ and 

Glx) relative to water, we repeated our analyses using values 

instead scaled relative to creatine. We found comparable 

results for the creatine scaled data; there were no group 

differences in GABA+ (F1, 60 = 1.42, p = 0.2) or Glx (F1, 60 = 0.84, 

p = 0.4), and no correlations with suppression metrics (size 

indices or fMRI suppression, averaged across contrast 

conditions to minimize multiple comparisons, |r47-60| < 0.16, 

uncorrected p-values > 0.2). Thus, we found no evidence to 

suggest that GABA+ or Glx levels in hMT+, as measured by 

MRS, differed between participants with ASD and NT 

controls. 

 

Additional MRS data were acquired in a mid-occipital 

voxel within early visual cortex (EVC; Supplementary Figure 

3A & B). We first examined whether metabolite values 

(GABA+ or Glx) in EVC differed between groups. No 

significant group differences were observed (main effect of 

group, GABA+: F1, 60 = 0.52, p = 0.5; Glx: F1, 60 = 0.69, p = 0.4; 

Supplementary Figure 3C & D). We also examined 

correlations between GABA or Glx in EVC and size indices 

from our psychophysical task, none of which were significant 

(correlations examined both within and across participant 

groups, size indices averaged across contrast conditions to 



minimize multiple comparisons, |r25-60| < 0.23, uncorrected 

p-values > 0.19). Thus, as in hMT+, we did not find clear 

evidence of an influence of GABA+ or Glx levels in EVC during 

spatial suppression in ASD, and cannot form any strong 

conclusions regarding the possible role(s) of these 

metabolites in this phenomenon and/or disorder. 

 

To reconcile our current modeling work with previous 

studies11, 12, we asked whether spatially narrower top-down 

modulation within the normalization model might be 

sufficient to account for previous findings of lower4 or 

higher12 motion duration thresholds in ASD. Indeed, we 

found that using an overall narrower set of top-down 

modulation parameters (2 vs. 6 arbitrary units) yielded model 

predictions (Supplementary Figure 4A-C) that showed a good 

qualitative match to the results of Foss-Feig and colleagues4. 

Similar to our model predictions, they observed smaller 

duration thresholds across stimulus sizes for high contrast 

gratings, and for large, low contrast stimuli in participants 

with ASD. Their results had previously been modeled by 

Rosenberg and colleagues11 using weaker divisive 

normalization. However, weaker normalization was not 

sufficient to account for our observation of weaker spatial 

suppression in ASD, as reducing normalization did not 

dramatically affect size indices (red arrows, Figure 5A-C). 

Thus, our narrower top-down modulation model is capable 

of describing our own behavioral results (Figure 2A-C) as well 

as the findings of Foss-Feig and colleagues4 (Supplementary 

Figure 4A-C), whereas a weaker normalization model11 is 

suited only for the latter case. 

Additionally, we found a different pattern of results 

using an even narrower top-down modulation field (1 vs. 6 arbitrary units). Model duration thresholds differed less at 

high contrast, and were actually higher at low contrast for very-narrow vs. broader top-down modulation in our model 

(Supplementary Figure 4D-F). This occurs because the top-down modulation field is actually narrower than the response 

region that is read out (i.e., averaged when computing the predicted threshold; rw; Supplementary Equation 5). 

Schauder and colleagues12 found either equivalent or higher duration thresholds for participants with ASD (depending 

on stimulus condition; see also 13), and modeled this in terms of an increase in the width of excitatory spatial filters. 

Although we found that wider excitatory spatial filters yielded weaker spatial suppression, the pattern of duration 

thresholds predicted by this model did not match our observations in participants with ASD (model duration thresholds 

were higher for small stimuli, rather than lower for large stimuli; red arrows, Figure 5D-F). 

Spatially narrower top-down gain modulation may offer a parsimonious explanation for the difference in motion 

discrimination duration thresholds in ASD vs. NT participants. We found this computational approach was sufficient to 

model both the pattern of results we observed in the current study (Figure 5D G-I) and those of previous studies4, 12, 13 

(Supplementary Figure 4), while previous models11, 12 were not sufficient to describe our observation of weaker spatial 

suppression in ASD. In Supplementary Figure 5, we provide a more thorough comparison of predictions across model 

variants. This figure illustrates that in the model proposed by Rosenberg and colleagues11, reducing normalization does 

not yield weaker spatial suppression (red arrows, Supplementary Figure 5D). Likewise, we show that increasing the 

width of excitatory spatial filters, as suggested by Schauder and colleagues12, predicts higher duration thresholds for 

small stimuli, rather than lower thresholds for larger gratings (red arrows, Supplementary Figure 5E & F). 

Supplementary Figure 3. MRS results in EVC. A) Average voxel 
positions for EVC in Talairach space for n = 27 participants with 
ASD. Blue-green color indicates percent overlap across 
individuals. B) Same, but for n = 35 NT participants. C) GABA+ 
concentrations in EVC. Values are in institutional units (i.u.). D) 
Same, but for Glx. 



Previous studies have 

suggested that age14, 15, 16, 

biological sex17, and IQ17, 18, 

19 may each influence 

motion discrimination 

thresholds. None of these 

demographic factors 

differed significantly 

between our groups of 

participants with ASD and 

NTs (Table 1). Nevertheless, 

to further control for these 

factors, we conducted post-

hoc analyses to examine 

group differences in 

duration thresholds, size 

indices, and fMRI 

suppression, with age, sex, 

and non-verbal IQ included 

as covariates. In each case, 

the results reported in the 

main text were 

recapitulated in the post-

hoc analyses; we saw a 

significant interaction 

between group and size in 

our analysis of motion 

duration thresholds, and 

significant group differences 

for size indices and fMRI 

suppression in hMT+ (linear 

mixed-effect models, 

thresholds: interaction 

between group and size, 

parameter estimate [SE]: 3.77 [0.59], t1420 = 6.40, p = 2 x 10-10; size indices: main effect of group, parameter estimate 

[SE]: 0.152 [0.042], t497 = 3.60, p = 4 x 10-4; fMRI suppression: main effect of group, parameter estimate [SE]: 0.176 

[0.061], t93 = 2.91, p = 0.005). These post-hoc results suggest that our observations of weaker suppression during motion 

discrimination and in the fMRI response within hMT+ among participants with ASD vs. NTs are not explained by subtle 

differences between groups in demographic factors such as age, sex, or IQ. 

Across both ASD and NT participants there was a significant effect of biological sex on motion duration thresholds, 

with males showing lower threshold values (mean = 50.3 ms) versus females (mean = 72.4 ms; linear mixed-effect 

model, main effect of sex, parameter estimate [SE]: 18.1 [5.66], t1420 = 3.20, p = 0.001). There was also a significant effect 

of sex on size indices, such that males showed weaker spatial suppression (mean = 0.25) during psychophysics versus 

females (mean = 0.34; main effect of sex, parameter estimate [SE]: -0.080 [0.037], t497 = -2.17, p = 0.030), but no effect 

on fMRI suppression in hMT+ (main effect of sex, parameter estimate [SE]: 0.035 [0.047], t93 = 0.739, p = 0.5). This 

agrees with our recent work17 showing lower duration thresholds among males across multiple experiments (note that 

the first cohort of participants in our previous study overlaps with the NTs in the current experiments).  

Finally, we explored the possible role of demographic factors in our MRS results. There were no significant group 

differences (NT vs. ASD) in GABA or Glx in either hMT+ or EVC when including age, sex, and IQ as factors in linear mixed 

Supplementary Figure 4. Supplementary model results. A-C) A narrower set of top-down 
modulation field parameters (the spatial width of the parameter M from Supplementary Equation 
1), abbreviated M width; 2 vs. 6 arbitrary units) yields model predictions that are reasonably well 
matched to the observations of Foss-Feig and colleagues4; duration thresholds are lower across 
sizes at high contrast, and for large, low contrast stimuli. D-F) Further reducing the width of the 
narrower top-down modulation (to 1 arbitrary unit) reveals a different, mixed pattern; duration 
thresholds are lower for high contrast, but higher for low contrast stimuli. 



Supplementary Figure 5. 
Normalization model surfaces. 
A) Diagram showing how model 
surfaces were generated. The 
effect of manipulating different 
model parameters was 
examined by finding the 
difference in duration 
thresholds between the base 
model (i.e., designed to match 
NT data; left) and the altered 
model (i.e., intended to match 
data from participants with 
ASD; middle) … 

effects models (|t59-119| < 

1.26, p-values > 0.2), and no 

significant main effects of 

sex (|t59-119| < 1.81, p-

values > 0.075). 

 

We also considered 

whether our fMRI results 

showing weaker 

suppression in hMT+ in 

participants with ASD might 

be explained by differences 

in head motion or a lack of 

engagement in the color-

shape conjunction task 

(performed at fixation). To 

this end, we excluded fMRI 

blocks (10 s) with excessive 

head motion, and scans (4 

min) in which there was 

poor fixation task 

performance (see 

Supplementary Methods 

for details). Data from 2 

ASD participants and 1 NT 

were completely excluded, 

as there was not a sufficient 

amount of data for analysis 

following the above 

exclusion. Despite the 

reduction in sample size, 

the results of this 

secondary analysis were 

qualitatively the same as 

those reported for the full 

data set (Figure 2D-F); in 

response to larger drifting 

gratings, suppression of the 



(Supplementary Figure 5, continued). These threshold differences were then plotted within the model surface (black arrow and box). 
This was done for each parameter value along the y-axis of the model surface. The same subtraction procedure was also performed 
for size indices. B-M) Left & middle panels: difference in predicted thresholds (i.e., group difference) for different parameter values. 
Right panels: the same for size indices (medium vs. big). Y-axes show the parameter of interest. Differences in thresholds and size 
indices are calculated relative to the model prediction using the top-most value in each panel (i.e., the base model that shows a 
good match to data from NTs; Supplementary Table 2). B-D) Weaker normalization. E-G) Wider excitatory spatial filters. H-J) 
Narrower top-down gain. K & L) Average difference in duration thresholds for NT - ASD participants (the actual pattern of behavioral 
data we observed, as in Figure 2A-B), for comparison. M) Same, but for size indices. Colored boxes encompass different model 
variants, as in Figures 4 & 5. Red arrows in B-J show where predictions of these model variants are a poor match to the results we 
observed in participants with ASD vs. NTs, green arrows indicate a good match (compare with K-M). Weak normalization predicts 
little to no change in size indices (D), whereas wider excitatory spatial filters predict higher rather than lower thresholds (a negative 
difference; E & F). 
 

Supplementary Figure 6. FMRI results with blocks excluded for excess head motion and poor task 
performance. A) As in Figure 2, fMRI responses in foveal hMT+ to an increase in stimulus size; at 
time = 0 s, high contrast drifting gratings increased in size from medium (m) to big (b). B) The 
same, but for low contrast gratings. C) Average fMRI responses for each group (from shaded 
regions in A & B). Dots show group means; error bars are S.E.M. Asterisks indicate a significant 
main effect of group (ANOVA) at p = 0.049. 

fMRI signal in hMT+ was weaker in participants with ASD (Supplementary Figure 6; ANOVA, main effect of group: F1, 44 = 

4.10, p = 0.049). This suggests that differences in head motion or fixation task performance between groups may not 

account for weaker fMRI suppression within hMT+ in ASD. 

Further, we examined whether differences in eye movements between groups might account for weaker spatial 

suppression in our participants with ASD. We conducted a series of analyses to examine relationships between 

suppression metrics from our behavioral and fMRI experiments, and eye tracking data collected simultaneously. We 

used 3 eye tracking metrics: mean distance from center (a measure of gaze accuracy in space), the standard deviation of 

fixation distance from center (a spatial measure of gaze variability), and mean fixation duration (a measure of fixation 

stability across time). Eye tracking data were drift corrected post-hoc (see Supplementary Methods for eye tracking 

analysis details). To assess whether fixation behavior may have influenced our observation of weaker spatial suppression 

in ASD, we examined group differences in eye tracking metrics, and correlations between these metrics and 

psychophysical or fMRI measures of suppression across both ASD and NT participants.  

Eye tracking data were obtained during psychophysics for 14 participants with ASD and 25 NTs. We found no 

evidence of reliable differences in eye tracking metrics during psychophysics between groups (Mann-Whitney tests, Z-

values < 0.63, uncorrected p-values > 0.5). Eye tracking metrics were also not correlated with psychophysical 

suppression measures (SI at 98% or 3% contrast) across participants (|r37 < 0.28|, uncorrected p-values > 0.091). 

Eye tracking data were obtained during fMRI for 14 participants with ASD and 24 NTs. The drift corrected mean and 

SD of distance from fixation were numerically higher for ASD vs. NT participants, but these differences were not 

statistically significant (Mann-Whitney tests, Z-values < 1.59, uncorrected p-values > 0.11). There was also no reliable 

difference in fixation time between groups (Z = 0.5, p = 0.6). Of the participants for whom eye tracking data were 

collected during fMRI, foveal 

MT ROIs were identified for 

12 individuals with ASD and 

19 NTs. Eye tracking metrics 

were not significantly 

correlated with fMRI 

suppression within hMT+ (at 

98% or 3% contrast) across 

participants (|r29 < 0.33|, 

uncorrected p-values > 

0.071). Although the 

conclusions that may be 

drawn from our eye tracking 

data are limited by the small 

sample size, we do not find 

evidence to suggest that 

weaker spatial suppression in 

ASD may be explained by 



gross systematic differences in fixation behavior during psychophysical or fMRI task performance. 

Finally, we compared MRS data quality metrics between ASD and NT participants, to determine whether differences 

in data quality may have contributed to the observed pattern of MRS results. We found that data quality was 

comparable overall between the two groups; we did not see significant differences between ASD and NT participants in 

frequency variability of water throughout the scan, number of TRs rejected for artifacts during frequency correction, or 

Glx fit residuals in either hMT+ or EVC (Mann-Whitney tests, Z-values < 1.53, uncorrected p-values > 0.126). The residual 

signal for GABA in hMT+ after fitting was higher for ASD (median = 5.2) versus NT participants (median = 4.7, Mann-

Whitney test, Z = 2.21, uncorrected p = 0.027), and the spectral width of the creatine signal (FWHM) in EVC was broader 

for ASD participants (median = 8.7 Hz) versus NTs (8.3 Hz; Mann-Whitney test, Z = 2.48, uncorrected p = 0.013), 

suggesting somewhat lower data quality in participants with ASD on these metrics. However, neither of these were 

significant following correction for multiple comparisons (FDR corrected p = 0.24 and p = 0.13, respectively). There were 

no significant group differences for GABA residuals in EVC or creatine FWHM in hMT+ (Mann-Whitney tests, Z-values < 

1.59, uncorrected p-values > 0.112). Thus, we do not find strong evidence to suggest that systematic differences in MRS 

data quality between groups may have greatly impacted the observed pattern of results.  



† Individuals excluded for poor catch trial performance were excluded from all 
analyses (psychophysics, fMRI, and MRS). These individuals are not included in 
the total sample sizes reported in the first row. 
‡ We were unable to identify voxels in hMT+ with significant foveal selectivity 
(center > surround) in these participants. 
 

Supplementary Table 1. Summary of missing or excluded data. The number of 
individuals with missing data is reported for each group. 

 

Supplementary Methods 

Supplementary Table 1 summarizes the 

missing or excluded data points from both 

participant groups across all experiments. 

Details for the exclusion procedures are 

provided in the relevant sections of the 

Methods in the main text. 

 

Our computational approach is a direct 

application of the normalization model 

published by Reynolds and Heeger20. We 

have previously used a similar modeling 

technique to describe motion duration 

threshold data across a variety of 

experimental conditions in NT participants5. 

A summary of the current model approach 

is provided in the Methods; a thorough description of the method is provided below. 

The core of the model, summarized in Equation 1, is reprinted here as: 

𝑅(𝑥, 𝛩, 𝑐) =
𝐸(𝑥, 𝛩, 𝑐) × 𝑀(𝑥, 𝛩, 𝑀𝑔)

𝑆(𝑥, 𝛩, 𝑐) × 𝑆𝑔 + 𝜎
 

(1) 

where R is the predicted model response as a function of stimulus space (x), orientation (Θ), and contrast (c). The 

suppressive gain parameter Sg is a scalar that controls the strength of divisive normalization11, and σ is the semi-

saturation constant, which controls the non-linearity of the predicted response as a function of stimulus contrast, as well 

as preventing the value of R from being undefined when S equals zero. 

The parameters E, S, and M are each 2-dimensional representations of a population of computational processes, 

with selectivity across a spatial dimension (x) and an orientation dimension (Θ). The magnitudes of E and S are a function 

of stimulus contrast (c). Thus: 

𝐸(𝑥, 𝛩, 𝑐) = 𝑒(𝑥𝑤_𝑒 , 𝛩𝑤_𝑒) ∗ 𝑁(𝑥, 𝛩, 𝑐) 

(2) 

where N is the stimulus image, which is a population-level representation of the stimulus input for the model, and ∗ 

denotes convolution. Specifically, N is a 2-dimensional Gaussian function whose amplitude is set by c. The widths of N in 

the x and Θ dimensions are determined by the shape of the stimulus being modeled. Likewise, e is a 2-dimensional 

Gaussian function, where the spatial and orientation selectivity for the excitatory drive (E) are determined by the width 

of spatial (xw_e) and orientation (Θw_e) Gaussian parameters, referred to as excitatory spatial filters and orientation 

filters, respectively. These filter parameters can be thought of as the model equivalent of the spatial and orientation 

selectivity of neural receptive fields in visual cortex. The amplitude of e is set to 1, such that c determines the amplitude 

of E. 

As with the stimulus parameter N, the top-down gain modulation field parameter M is a 2-dimensional Gaussian 

function: M(x, Θ, Mg). The center and width of top-down modulation in the spatial (x) and orientation (Θ) dimensions 

are determined by the mean and tuning width of M(x) and M(Θ), while the amplitude is set by the top-down modulation 

gain factor Mg. The minimum value of M is set to 1, such that there is no effect of multiplying E x M (in the numerator of 

Supplementary Equation 1) outside of the region where top-down processing is focused (see Figure 4, cyan box). 

The suppressive drive S is a function of both E and A, such that: 

𝑆(𝑥, 𝛩, 𝑐) =  𝑠(𝑥𝑤_𝑠, 𝛩𝑤_𝑠) ∗ (𝐸(𝑥, 𝛩, 𝑐) × 𝑀(𝑥, 𝛩, 𝑀𝑔)) 

(3) 

Data type ASD (total n = 28) NT (total n = 35) 

Psychophysics:   
Missing: thresholds for the smallest 
stimulus size 

5 5 

Excluded: catch trial accuracy < 80%† 1 2 
Functional MRI:   

Missing: hMT+ data‡ 3 10 
Excluded: all fMRI data 1 0 
Excluded: EVC data 4 1 

MR Spectroscopy:   
Excluded: all MRS data 1 0 



Supplementary Table 2. Model parameters. Parameters marked with an asterisk (*) varied 
across the three model versions in Figure 5. Top-down spatial width values in parentheses 
are from the model variants shown in Supplementary Figure 4. Inf. = infinite. 
 

where s is another 2-dimensional Gaussian, like e in Supplementary Equation 2. Importantly, normalization models20, 21 

generally assume that the selectivity of s (in space; xw_s) is broader than e. This produces the characteristic size tuning in 

the predicted model response, such that increasing stimulus size leads to a peak and then a decrease in the predicted 

response (see Figure 2F from our recent paper5 for a graphical depiction of size tuning from this model). 

The predicted motion duration threshold is given by Equation 2, reprinted here: 

𝑇 =  
𝐶

𝑅peak
 

(4) 

where T is the predicted threshold in arbitrary units, and C is the criterion response level for the model. The value of 

Rpeak is an average of the region surrounding the peak of the predicted model response R, such that: 

𝑅peak = 𝑚𝑒𝑎𝑛(𝑅(𝑥max − 𝑟𝑤: 𝑥max + 𝑟𝑤 , 𝛩max − 𝑟𝑤: 𝛩max + 𝑟𝑤  , 𝑐)) 

(5) 

where R(xmax, Θmax) is the maximum value of R, which happens to correspond to the center of the modeled stimulus. The 

parameter rw determines the width of the region surrounding the peak in which the average is taken. In essence, using 

Supplementary Equation 5, we find the mean response in the region of the peak predicted response. While there is 

empirical support from electrophysiology in non-human primates for the notion that motion duration thresholds depend 

on the response of neurons whose spatial receptive field is centered on the stimulus22, we note that this method differs 

slightly from our previous work5, in which the threshold T depended strictly on the maximum of the predicted response 

R. Values for each model parameter across all three model variants (from Figure 5) are provided in Supplementary Table 

2, and are adapted from our previous work5. 

By reducing the amplitude of the suppressive gain term Sg by 25% (i.e., from 1 to 0.75; Supplementary Table 2, Figure 

4, Figure 5A-C), we sought to 

model weaker divisive 

normalization using the method 

described by Rosenberg and 

colleagues11. This 25% reduction 

in normalization strength is 

directly comparable to their 

published work (see their SI 

Appendix, pg. 2). Our two divisive 

normalization models are quite 

similar overall. One difference 

worth noting is that their model 

includes a first level consisting of 

model simple cells that are 

sensitive to spatial phase, and a 

second level of model complex 

cells for which divisive 

normalization is implemented, 

whereas our model does not 

include a phase-sensitive layer. 

By adjusting the size of xw_e 

from 4 to 5 (Supplementary Table 

2, Figure 4, Figure 5D-E), we 

sought to model the effect of 

larger excitatory spatial filters on 

motion discrimination using an 

Parameter name Weak norm. 
model 

Large excitatory SF 
model 

Narrow top-
down model 

Stimulus contrast 0.03 or 0.98 0.03 or 0.98 0.03 or 0.98 
Stimulus spatial center (x, a.u.) 0 0 0 
Stimulus spatial width (a.u.) 1, 2, or 12 1, 2, or 12 1, 2, or 12 
Stimulus orientation (Θ, °) -90 -90 -90 
Stimulus orientation width (°) 3 3 3 
*Excitatory spatial 
pooling width (xw_e , a.u.) 

4 5 vs. 4 4 

Excitatory orientation 
pooling width (Θw_e , °) 

25 25 25 

Top-down spatial center (x, a.u.) 0 0 0 
*Top-down spatial width (a.u.) 14 14 6 vs. 14 

(1 or 2 vs. 6) 
Top-down orientation (Θ, °) -90 -90 -90 
Top-down orientation width (°) Inf. Inf. Inf. 
Top-down gain (Mg) 4 4 4 
Suppressive spatial 
pooling width (xw_s , a.u.) 

40 40 40 

Suppressive orientation 
pooling width (Θw_s , °) 

25 25 25 

*Suppressive gain (Sg) 0.75 vs. 1 1 1 
Semi-saturation constant 
(σ, a.u.) 

0.0002 0.0002 0.0002 

Criterion (C, a.u.) 600 600 600 
Response region width (rw, a.u.) 1 1 1 



approach comparable to that of Schauder and colleagues12. This difference in excitatory spatial filter size (25% larger for 

ASD; see their Figure 2) is in line with the increased model RF size reported in their study. While generally comparable, a 

key difference between our normalization model and their divisive center-surround model is that their model includes 

separate parameters for the contrast sensitivity of the excitatory and suppressive drive (see their Equations 3 & 4). In 

our model, the contrast sensitivity of the excitatory and suppressive drive is the same, but the latter is simply more 

broadly tuned in space. 

 

We used linear mixed effects modeling in our post-hoc analyses that controlled for age, sex, and non-verbal IQ. With 

the addition of these 3 factors, we chose to use linear mixed effects models rather than ANOVAs, in order to make our 

analyses robust against missing factor combinations (i.e., rank deficiency). Linear mixed effects models were fit using a 

maximum likelihood procedure via the fitlme.m function in MATLAB. For our control analyses, we used Mann-Whitney in 

cases where data were not normally distributed. 

 

To account for possible residual effects of head motion in our fMRI results, we performed control analyses in which 

we excluded individual fMRI blocks (10 s) in individual participants in which excessive head motion was detected. 

Although we performed motion correction in BrainVoyager (Brain Innovation, Maastricht, Netherlands) as part of our 

fMRI preprocessing, such corrections are incomplete at best, and large head movements may still negatively affect data 

quality even after correction. Our motion correction procedure yielded estimates of translation in x, y, and z dimensions, 

as well as roll, pitch, and yaw rotations between each pair of subsequent TRs. Framewise displacement23 was calculated 

by taking the sum of the absolute value of the displacement in each of these six dimensions, with rotation converted 

from degrees to millimeters on the surface of a sphere with a radius of 50 mm. The threshold for excessive head motion 

was defined as a framewise displacement > 0.9 mm using a pre-defined criterion24. We excluded all fMRI blocks that 

contained TRs with any framewise displacement values larger than this threshold. In order to account for the slow time 

course of the hemodynamic response, framewise displacement data were scrutinized within a time window spanning 

from 16 s before to 4 s after each 10 s fMRI block. 

We also sought to account for possible effects of task disengagement during fMRI by excluding individual fMRI scans 

in which the participant performed poorly on the fixation task. The task consisted of a color-shape conjunction search, in 

which the participant responded with a button press to the appearance of a green circle in a series of small, briefly 

presented colored shapes. Poor task performance was defined based on a post-hoc threshold of 60% hit rate; we 

excluded all fMRI scans (4 min) in which performance was below this threshold. 

 

Eye tracking data were acquired during both psychophysics and fMRI using an SR Research (Ottawa, Canada) EyeLink 

1000 infrared eye tracking camera system. Data were acquired at a sampling rate of 1000 Hz. 

We identified fixation periods using a sliding window analysis along with post-hoc drift correction. Specifically, we 

used a dispersion-based fixation detection algorithm25, 26. Fixations were defined within set periods of at least 100 ms for 

which the maximum distance of any gaze position measurement within the set compared to the set's centroid does not 

exceed a threshold radius of 1°. In this algorithm, subsequent time points were added to a set until this distance 

threshold was exceeded, at which point a new set was defined. The parameters that defined fixation periods were taken 

from previous work using this method26. Next, post-hoc drift correction was performed by calculating the average gaze 

position across all fixations within a 10 s period, taking the difference between this average fixation position and the 

intended fixation position (i.e., the fixation mark at the center of the screen), and subtracting this value from all gaze 

position measures within the 10 s period. This analysis assumes that participants understood the instructions to 

maintain fixation at the center of the screen and were attempting to do so throughout the task. We further assumed 

that systematic differences between measured and instructed gaze position may be accounted for by drift in the eye 

tracking camera calibration over time (e.g., due to slight postural changes). We believe these assumptions are 

reasonable given that fixation performance was monitored by study staff, who verified comprehension of the fixation 

protocol with the participants prior to task initiation. This drift correction method is a subtractive version of an algorithm 

developed by Vadillo and colleagues27. We chose a subtractive method, rather than a multiplicative one (as used in their 

original paper), as we found the former was better suited to drift correction during a central fixation task, and did not 



dramatically alter the magnitude of gaze position variability metrics. 

We calculated three different eye tracking metrics: mean distance from center (a measure of gaze accuracy in 

space), the standard deviation of fixation distance from center (a spatial measure of gaze variability), and mean fixation 

duration (a measure of fixation stability across time). Because we found that these data were not normally distributed, 

we used Mann-Whitney tests to assess group differences, and Spearman’s Rho to test for correlations. 



  

Supplementary Figure 7. MR spectra from hMT+. A) MR spectroscopy data from n = 27 participants with ASD. Signal intensity is 
shown in arbitrary units. B) GABA+ peak in ASD. Data are shown in black, Gaussian fits are shown in red, residuals are shown in blue. 
Panels C & D show the same, but for n = 35 NT participants. Lines show means; shaded areas show 1 SD. Axes are scaled equally in 
panels A & C, and in panels B & D. 
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