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Supplementary Analysis

Comparison to existing machine learning algorithms

Methods It is essential to compare the proposed framework to existing machine learning algo-
rithms. Therefore, an extensive comparative analysis using three state of the art machine learn-
ing techniques was performed. This included least absolute shrinkage and selection operator
(LASSO) regression, random forest-based feature importance weighting, and supersparse linear
integer models (SLIM) [1-3].

Starting with the 77 raw VPIT metrics (i.e., without any confound modelling), we applied (a)
the LASSO approach, (b) SLIM, and (c) the random forest-based feature weighting to compare
the presented results to the established feature selection methods. Subsequently, the metrics
chosen by these machine learning techniques were compared to the evaluation with clinimetric
properties proposed in this manuscript, as clinimetric properties are the most accepted evidence
in neurorehabilitation and other clinical fields.



In more detail, the following variables were normalized as z-scores and used as independent
variables for the models: age, sex, tested hand, dominant hand, session (day 1 or day 2), trial
(1-5), and the 77 metrics. This implies that data from test and retest session (if available) on a
repetition level was used for the analysis, as this is essential to also take the measurement error
and test-retestreliability in the data into account. The knowledge about the history of neurological
injury (binary) was used as dependent variable.

For the LASSO, a leave-one-out cross-validation was performed to choose the optimal value of
the parameter Lambda (Supplementary Figure 1). The trade-off parameter C of SLIM was defined
as 0.005. The random forest was trained using 100 trees and permutation importance was used
as statistical criteria to characterize the relevance of the features.

For this particular subanalysis, we hypothesized that each methodology will identify a different
core set that is optimal according to the respective optimization criteria.
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Supplementary Figure 1: Selection of parameter lambda for the LASSO. By increasing
Lambda, the model tries to reduce the number of used features (i.e. decreases the number of
non-zero model coefficients). The model performs best when relying on all the features, and the
loss increases as the number of used features decreases (with larger lambda). We want to select
a subset of features that can still be used to accurately discriminate between neurologically intact
and affected individuals. Hence, we need to have a trade-off between classification error and num-
ber of features. Lambda was chosen as the value before the exponen-tial increase of the error.
The loss increases slowly up to that point, meaning that the discarded metrics had little effect on
the correctness of the classification, and were discarded during model training.

Results The results for the LASSO, SLIM, and random forest in comparison to the clinimetric
properties can be found in Table 1, 2, and 3 respectively.

The LASSO approach selected 16 VPIT metrics in the final core set. These metrics did fulfil
most, but not all of the proposed criteria for the clinimetric properties, and only two of them were
also part of the core set proposed in the manuscript. The AUC cut-off of 0.7 was fulfilled by 7



Supplementary Table 1: Results for the metric selection using LASSO and comparison with
their clinimetric properties. The metrics in bold highlight the ones that were also selected by the
proposed framework as these fullfilled the evaluation criteria of all clinimetric properties. SPARC:
spectral arc length. GF: grip force. TP: transport. RT: return. HA: hole approach.

Selected metrics AUC ICC SRD% Learningrate Confounds modeling
Age - - - - -
Gender - - - - -
Tested hand - - - - -

Trial - - - - -
Velocity max TP 0.83 0.87 1857 -9.14 Sufficient
Haptic collisions max TP 0.63 0.84 2054 -1.08 Sufficient
Haptic collisions mean RT 0.61 0.72 25.32 -0.07 Sufficient
Haptic collisions max RT 046 0.79 27.02 4.37 Insufficient
SPARC TP 0.84 0.83 23.78 -7.16 Insufficient
Time to max velocity TP 045 0.78 28.70 3.93 Insufficient
Throughput TP 092 0.81 24.07 -12.18 Insufficient
Throughput RT 090 0.78 27.43 -13.21 Sufficient
GF rate SPARC RT 0.64 0.78 23.81 -6.35 Sufficient
Log jerk RT 0.73 0.75 25.33 -6.08 Sufficient
Trajectory errormean RT  0.56 0.84 20.00 1.24 Sufficient
Initial mov angle RT 6, 0.51 0.75 33.90 3.18 Sufficient
Log jerk hole approach 0.57 0.68 30.60 -4.84 Sufficient
GF mean RT 049 0.76 27.62 0.17 Sufficient
Force buildup time 0.70 082 21.36 -6.97 Sufficient
FR SPARC TP 0.74 0.82 2248 -5.71 Sufficient

Supplementary Table 2: Results for the metric selection using SLIM and comparison with
their clinimetric properties. The metrics in bold highlight the ones that were also selected by the
proposed framework as these fullfilled the evaluation criteria of all clinimetric properties. SPARC:
spectral arc length. GF: grip force. TP: transport. RT: return. HA: hole approach.

Selected metrics AUC ICC SRD% Learningrate Confounds modeling
SPARC TP 0.84 0.83 23.78 -7.16 Insufficient
Log jerk TP 0.78 0.74 26.11 -4.82 Sufficient
Haptic collisions max TP 0.61 0.84 2455 -3.99 Sufficient
Number velocity peaks TP 0.82 0.79 21.30 -6.36 Insufficient
Tested hand - - - - -

GF rate SPARC HA 0.84 0.82 26.38 -5.94 Sufficient
GF rate num. peaks HA 0.84 0.82 26.38 -5.94 Sufficient
Gender - - - - -

GF num peaks buildup 0.15 044 57.70 0.77 Insufficient
GF mean RT 049 0.76 27.62 0.17 Sufficient




Supplementary Table 3: Results for the metric selection using the random forest and com-
parison with their clinimetric properties. The 10 variables that yielded the highest feature im-
portance ranking according a random forest are visualized. The metrics in bold highlight the ones
that were also selected by the proposed framework as these fullfilled the evaluation criteria of all
clinimetric properties.

Selected metrics AUC ICC SRD% Learningrate Confounds modeling quality

Session - - - - -

Endpoint error TP - - - - -

Age - - - - -

GF rate mean RT 0.07 0.82 27.79 5.87 Sufficient
Velocity max TP 0.83 0.87 1857 -9.14 Sufficient
GF rate max RT 0.29 0.48 34.05 7.19 Sufficient
Throughput TP 0.92 0.81 24.07 -12.18 Insufficient
Velocity mean TP 0.83 0.88 20.61 -9.99 Sufficient
Velocity max RT 0.83 0.87 1857 -6.27 Sufficient
GF buildup duration 0.70 0.82 21.36 -6.97 Sufficient

metrics and 4 of the remaining ones had AUCs of at least 0.6. Five metrics had an AUC smaller
than 0.6. All metrics except log jerk hole approach fulfilled the ICC and SRD criteria. The learning
rate criteria was not fulfilled by five metrics. For five of the selected metrics, the mixed effects
models could not accurately compensate for learning effects. The partial inter-metric correlations
of the selected feature sets were all below 0.5 except for throughput transport (TP) and log jerk
hole approach (HA), as well as initial movement angle return (RT) 6, and trajectory error mean RT.

SLIM selected eight VPIT metrics in the final core set. These metrics did fulfil most, but not all
of criteria established for the clinimetric properties, and only two of them were also part of the core
set proposed in the manuscript. In more detail, the AUC cut-off of 0.7 was fulfilled by five metrics.
The ICC criteria was fulfilled by all selected metrics expect one. The learning rate criteria was
fulfilled by si metrics. For three metrics, mixed effect models could not accurately compensate for
confounds. The partial inter-correlations of the selected core set were below 0.5, except for grip
force (GF) rate SPARC HA and GF rate peaks HA.

The best VPIT metrics according to the random forest did fulfil most, but not all criteria of the
clinimetric properties, and only two of the metrics were also part of the core set proposed in the
manuscript. Seven metrics showed AUCs above 0.7, and the remaining three had AUCs of 0.07,
0.29, and 0.49. All metrics expect GF rate max RT fulfilled the evaluation criteria for the ICC and
SRD. Four of the metrics did not show strong learning effects. For two of the selected metrics,
the mixed effect models could not accurately compensate for confounds. Four combinations of the
metrics showed partial inert-correlations above 0.5 for the random forest.

Discussion As expected, each of the feature selection methods (LASSO, SLIM, random forest,
and the proposed clinimetrics-based selection framework) led to a different core set of selected
final metrics. This reflects the fact that these core sets are optimal according to the defined math-
ematical loss function of each method. The metrics selected by LASSO, SLIM, and random forest
did fulfil most, but not all, of the clinimetric properties. The models selected metrics that have a low



AUC value (e.g., GF rate mean RT of 0.07). This is likely because this metric itself does not allow
to accurately discriminate healthy and neurologically affected subjects, but, in combination with all
other metrics, it helps the model to discriminate the two classes (see Figure 1 in [4]). However,
this is not necessarily a desirable property for a metric when attempting to evaluate the effect of an
intervention on sensorimotor impairments, as each metric on its own is expected to carry insightful
information about the impairments. Interestingly, the metrics selected by LASSO, SLIM, and ran-
dom forest fulfilled almost all of the ICC and SRD evaluation criteria. Hence, it seems that metrics
with high intra-subject variability, low inter-subject variability, and low repeatability across sessions
are automatically filtered out by the models. Metrics with strong learning effects were not filtered
by the LASSO and random forests, even though SLIM performed decently (only two metrics with
strong learning effects). Lastly, multiple metrics were included in the core sets by LASSO, SLIM,
and random forest, even though the mixed effect models were not able to accurately compensate
for confounds for these metrics. In these cases, it is unclear if the LASSO, SLIM, and random
forest were able to accurately compensate for confounds or not.

While the metrics selected by the LASSO and SLIM had mostly very low inter-correlation, the
ones selected by the random forest were partly redundant. This is in line with optimization criteria
of these selection methods (i.e., LASSO and SLIM minimize inter-correlations, whereas a random
forest does not explicitly take them into account).

Conclusions Allin all, these analyses suggest that the stepwise clinimetric-based selection pro-
vides a conservative and transparent method that is well-suited for selecting metrics in the specific
application of repeatedly assessing impairments. This makes it an interesting approach for re-
searchers in the field of digital health and an alternative to more established feature selection
algorithms, which are not optimized to consider all relevant clinimetric properties of a metric. How-
ever, the proposed method is not as flexible as the LASSO and random forest, which can be
implemented in the context of many other applications and always yield a mathematically optimal
solution.



Supplementary Methods

Participants

Neurologically intact subjects were recruited at ETH Zurich (Zurich, Switzerland). Stroke patients
were tested at the University Hospital of Zurich (Zurich, Switzerland), the cereneo Center for Neu-
rology and Rehabilitation (Vitznau, Switzerland), and the Zentrum fir ambulante Rehabilitation
(ZAR, Zurich, Switzerland) as part of the Study of Motor Learning and Acute Recovery Time
Course in Stroke (SMARTS) or the synergy-based open-source foundations and technologies for
prosthetics and rehabilitation (SoftPro). Multiple sclerosis (MS) patients were recruited at Has-
selt University (Hasselt, Belgium), at KU Leuven (Leuven, Belgium), and at the Rehabilitation and
MS Center Pelt (Pelt, Belgium). Autosomal-recessive-spastic-ataxia of Charlevoix-Saguenay (AR-
SACS) patients were included at the Neuromuscular Clinic of the Centre de Sante et de Services
Sociaux de Jonquiere (Jonquiere, Canada). Exclusion criteria involved the inability to lift the arm
against gravity, to flex/extend the fingers, and the presence of any concomitant disease affecting
the upper limb. The studies involving stroke patients additionally used increased muscle tone, se-
vere sensory deficits, hemorrhagic infarct, traumatic brain injury as exclusion criteria. MS patients
had to be diagnosed according to the McDonald criteria. All clinical assessments were performed
within the same or few days of the Virtual Peg Insertion Test (VPIT) assessment.

Data preprocessing

First, temporal gaps larger than 50 samples in the recorded position, force, and haptic time-series
were linearly interpolated. Such gaps can stem from a delayed communication between the soft-
and hardware components during the data recordings. Subsequently, a 1D trajectory d(t) defining
the distance d covered until timepoint ¢ was estimated from the 3D cartesian position trajecto-
ries p., py, and p, by summing up their absolute first time-derivatives relative to the start of the

repetition:
t

d(t) =Y llpell + I18yll + 152 (1)
1

Afterwards, velocity (first time-derivative) and jerk (third time-derivative) signals were derived
from d(t). Also, single grasping force and grip force rate (first time-derivative) trajectories were
generated by averaging across the signals of the three piezoresistive sensors. All time-series
were low-pass filtered initially and after each derivation using a zero-phase Butterworth filter (4"
order, cut-off frequency 8 Hz). Data from an entire peg were removed if it was dropped and not
inserted into a hole before another peg was picked up, which occurred for 1.6% of all pegs.

To isolate rapid ballistic movements, the trajectories of each peg were segmented into the
transport (i.e., ballistic movement while transporting the peg to a hole) and return (i.e., ballistic
movement while returning the cursor to the next peg) phases (Supplementary Figure 1). The
fransport phase started at the last occasion the velocity exceeded a threshold 6,.; 1, after the peg
was picked up and before maximum velocity v, +, Was reached. The threshold 6,.; ., was set
to 10% of vnas.1p that occurred before the insertion of the peg into the next hole. The end of the
fransport was defined as the first time the velocity dropped below 8,.; +, after v,z +p. TO €nsure
a robust segmentation, the transport phase of a peg was discarded in case the peg was taken at
Umaa,tp» the velocity never dropped below 8,.; +, after v,,4. ¢, before oreleasing the peg,r the length



of the phase was below 0.1 s. The same criteria were applied to segment the return phase, which
was defined as the main ballistic movement component between releasing a peg and picking up
the next peg, given the maximal velocity vp,qz -+ during return and 6,.;,.. For segmenting the
transport and return phases, only the horizontal component of d(¢) was used. For the analyzed
pegs, approximately 0.43% of the transport, 2.5% of the return, 2.89% of the peg approach, and
0.31% hole approach phases were removed in neurologically affected subjects due to the velocity
criteria.

To isolate the overshoot when reaching for a target as well as the precise position adjustments
related to virtual object manipulations, the trajectories were additionally segmented into the peg
approach and hole approach phases. The former was defined from the end of the return until the
next peg was picked up. The latter was defined from the end of the transport until the current peg
was inserted into a hole.

Further, grasping forces were additionally segmented into the force buildup (i.e., behaviour
during the most rapid production of force) and force release phases (i.e., behaviour during the most
rapid release of force), by first identifying the position of the maximum and minimum value in grip
force rate between approaching and inserting each peg (Supplementary Figure 1). Subsequently,
the start and end of the force buildup phase was defined as the last and first time the grip force
rate was below 10% of its maximum before and after the maximum, respectively. Similarly, the
start and end of the force release phase was determined based on the last and first time the grip
force rate was above 10% of its minimum value before and after the minimum, respectively.

Supplementary Results

The metrics that did not fullfil the required quality of the models, according to the C1 and C2 criteria,
were spectral arc length transport, number of velocity peaks transport, distance to max. velocity
transport, time to max. velocity transport, number of velocity peaks return, throughput transport,
initial movement angle transport 6., initial movement angle 65, collision force max. return, grip force
rate number of peaks buildup, grip force rate spectral arc length buildup, grip force rate number
of peaks release, and simulated Gaussian noise. The metrics that were altered by stereo vision
deficits were initial movement angle transport 6, 05, 03, number of movement ends, number of
dropped pegs, and grip force rate number of peaks buildup.



Supplementary Table 4: Detailed demographics and clinical information for each body side
of each included neurologically impaired subject.

Disease Age Sex Tested side Affected side Dominant side Chronicity FMA-UE ARAT NHPT EDSS

(yrs) (yrs) (0-66) (0-57) (s) (0-10)
Stroke 67 Male Right Left Right 2.09 66 57 23.25 -
Stroke 55 Male Left Left Right 1.69 54 56 33.25 -
Stroke 55 Male Right Left Right 1.69 66 57 21.85 -
Stroke 55 Male Left Right Right 2.01 65 57 22.82 -
Stroke 55 Male Right Right Right 2.01 49 55 29.28 -
Stroke 52 Male Left Left Right 2.74 55 52 35.36 -
Stroke 52 Male Right Left Right 2.74 65 57 20.99 -
Stroke 73 Male Left Right Right 0.89 62 - - -
Stroke 69  Female Right Left Right 0.86 61 57 20.32 -
Stroke 67 Male Left Left Right 2.42 50 - - -
Stroke 67 Male Right Left Right 2.42 66 - - -
Stroke 40 Female Left Right Right 0.77 56 45 - -
Stroke 40 Female Right Right Right 0.77 49 49 - -
Stroke 71 Male Left Left Left 4.49 40 35 196.69 -
Stroke 71 Male Right Left Left 4.49 65 57 15.03 -
Stroke 59 Female Left Left Right 4.35 50 47 17.70 -
Stroke 59  Female Right Left Right 4.35 66 57 12.57 -
Stroke 88  Female Left Left Right 1.65 37 39 4217 -
Stroke 88 Female Right Left Right 1.65 63 - 14.33 -
Stroke 69  Female Left Right Right 0.58 63 57 19.81 -
Stroke 69  Female Right Right Right 0.58 44 39 49.16 -
Stroke 59  Female Left Right Right 1.94 66 57 21.50 -
Stroke 59  Female Right Right Right 1.94 57 56 21.63 -
Stroke 50 Female Right Left Right 4.83 64 - - -
Stroke 61 Male Left Right Right 8.70 66 56 24.51 -
Stroke 61 Male Right Right Right 8.70 38 42 34.95 -
Stroke 59 Male Left Left Right 1.64 46 40 40.84 -
Stroke 59 Male Right Left Right 1.64 63 57 14.85 -
Stroke 69 Male Left Left Right 0.51 53 51 23.08 -
Stroke 69 Male Right Left Right 0.51 63 56 13.67 -
Stroke 55 Male Left Left Right 1.45 59 57 28.08 -
Stroke 55 Male Right Left Right 1.45 66 57 18.50 -
Stroke 42 Male Left Left Right 0.48 39 30 - -
Stroke 42 Male Right Left Right 0.48 65 57 20.47 -
Stroke 51 Female Left Right Right 0.97 66 57 21.01 -
Stroke 51 Female Right Right Right 0.97 61 57 25.70 -
Stroke 58 Male Left Right Right 0.48 62 57 23.33 -
Stroke 58 Male Right Right Right 0.48 42 53 26.00 -
Stroke 46 Male Left Left Right 1.05 57 42 24.03 -
Stroke 46 Male Right Left Right 1.05 66 57 23.09 -
Stroke 76 Male Left Right Right 2.74 66 55 39.73 -
Stroke 76 Male Right Right Right 2.74 60 54 29.19 -




Supplementary Table 4: Continued.

Disease Age Sex Tested side Affected side Dominant side Chronicity FMA-UE ARAT NHPT EDSS
(yrs) (yrs) (0-66) (0-57) (s) (0-10)
Stroke 53  Female Left Right Right 2.98 66 57 22.99 -
Stroke 53  Female Right Right Right 2.98 58 55 20.67 -
Stroke 62 Male Left Right Right 14.65 66 57 19.58 -
Stroke 62 Male Right Right Right 14.65 34 33 154.00 -
Stroke 62 Male Left Right - - - 57 24.60 -
Stroke 62 Male Right Right - - - 43 86.00 -
Stroke 54  Female Left Left Right 1.00 66 57 - -
Stroke 54  Female Right Left Right 1.00 66 57 - -
Stroke 67 Male Left Left Right 0.46 66 57 - -
Stroke 67 Male Right Left Right 0.46 66 57 - -
Stroke 52 Male Left Left Right 0.23 66 57 - -
Stroke 52 Male Right Left Right 0.23 66 57 - -
Stroke 46 Male Left Right Right 0.23 66 57 - -
Stroke 71 Male Left Left Right 0.23 64 57 - -
Stroke 71 Male Right Left Right 0.23 66 57 - -
Stroke 48 Male Left Right Right 0.02 57 57 - -
Stroke 48 Male Right Right Right 0.02 66 47 - -
Stroke 45  Female Right Left Right 0.02 66 57 - -
Stroke 55  Female Right Left Right 0.08 66 57 - -
Stroke 65 Male Left Left Right 0.23 60 - - -
Stroke 65 Male Right Left Right 0.02 62 53 - -
Stroke 43 Male Left Right Right 0.46 66 57 - -
Stroke 43 Male Right Right Right 0.46 66 56 - -
Stroke 41 Female Right Left Right 0.02 64 - - -
Stroke 35 Male Left Left Right 0.46 61 57 - -
Stroke 35 Male Right Left Right 0.02 64 57 - -
Stroke 76 Male Right Left Left 0.23 66 57 - -
Stroke 86 Male Right Left Right 0.02 62 56 - -
Stroke 50 Male Left Left Left 1.00 65 57 - -
Stroke 49 Male Right Left Left 0.23 66 57 - -
Stroke 74 Male Left Right Right 0.02 66 57 - -
Stroke 81 Female Left Right Right 0.23 66 57 - -
Stroke 65 Female Left Left Right 0.23 66 56 - -
Stroke 65 Female Right Left Right 0.23 66 57 - -
Stroke 21 Male Left Right Right 0.02 63 57 - -
Stroke 21 Male Right Right Right 0.02 66 56 - -
Stroke 87 Female Left Right Left 0.02 66 57 - -
Stroke 87  Female Right Right Left 0.02 50 29 - -
Stroke 54 Male Left Right Left 0.46 66 57 - -
Stroke 54 Male Right Right Left 0.46 54 57 - -
Stroke 57 Male Left Left Right 0.02 66 57 - -
Stroke 57 Male Right Left Right 0.02 61 57 - -
Stroke 70  Female Right Left Right 0.53 66 - 16.46 -




Supplementary Table 4: Continued.

Disease Age Sex Tested side Affected side Dominant side Chronicity FMA-UE ARAT NHPT EDSS
(yrs) (yrs) (0-66) (0-57)  (s)  (0-10)
Stroke 57 Male Right Right - 0.48 66 - 22.61 -
Stroke 73 Male Left Left Right 0.53 63 - 28.55 -
Stroke 56 Male Left Left Right 0.03 25 - 60.81 -
Stroke 63 Male Left Right Right 0.48 66 - 14.33 -
ARSACS 41 Female Left Both Right - - - 28.59 -
ARSACS 41 Female Right Both Right - - - 37.14 -
ARSACS 29 Male Left Both Right - - - 56.98 -
ARSACS 29 Male Right Both Right - - - 40.34 -
ARSACS 56 Female Left Both Left - - - 83.59 -
ARSACS 56 Female Right Both Left - - - 95.20 -
ARSACS 37 Male Left Both Left - - - 36.36 -
ARSACS 37 Male Right Both Left - - - 46.72 -
ARSACS 26 Female Left Both Right - - - - -
ARSACS 26 Female Right Both Right - - - - -
ARSACS 37 Female Left Both Right - - - - -
ARSACS 37 Female Right Both Right - - - - -
ARSACS 31 Male Left Both Right - - - 29.88 -
ARSACS 31 Male Right Both Right - - - 23.52 -
ARSACS 58 Male Left Both Right - - - 60.43 -
ARSACS 58 Male Right Both Right - - - 47.33 -
MS 52  Female Left Both Right 29.00 = 37 45.25 7.0
MS 52  Female Right Both Right 29.00 - 47 24.75 7.0
MS 69 Male Right Both Right 19.00 - 44 140.27 7.5
MS 25  Female Left Both Right 6.00 - 52 29.35 6.0
MS 25  Female Right Both Right 6.00 - 53 29.62 6.0
MS 42  Female Left Both Right 1.00 = 56 27.81 4.0
MS 42 Female Right Both Right 1.00 - 54 20.48 4.0
MS 59  Female Left Both Left 5.00 - 49 27.76 7.0
MS 56  Female Left Both Right 10.00 - 49 33.72 7.0
MS 56  Female Right Both Right 10.00 - 29 89.79 7.0
MS 65 Male Left Both Left 19.00 - 52 39.90 8.0
MS 63 Female Left Both Right 8.00 - 57 20.84 4.5
MS 63  Female Right Both Right 8.00 - 54 35.04 45
MS 76  Female Left Both Right 38.00 - 43 27.01 5.0
MS 76  Female Right Both Right 38.00 - 34 34.46 5.0
MS 60 Male Left Both Right 21.00 - 52 31.48 7.0
MS 60 Male Right Both Right 21.00 - 53 25.29 7.0
MS 42  Female Right Both Right 21.00 - 39 74.39 75
MS 46 Male Left Both Right 11.00 - 55 30.58 5.5
MS 46 Male Right Both Right 11.00 - 56 23.23 55
MS 70  Female Left Both Right 37.00 - 53 29.86 6.0
MS 70  Female Right Both Right 37.00 - 45 53.21 6.0
MS 36 Female Right Both Right 6.76 61 56 22.87 7.5
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Supplementary Table 4: Continued.

Disease Age Sex Tested side Affected side Dominant side Chronicity FMA-UE ARAT NHPT EDSS
(yrs) (yrs) (0-66) (0-57) (s) (0-10)
MS 40 Male Right Both Left 12.55 53 44 56.17 7.5
MS 35 Male Left Both Right 0.97 65 57 22.90 4.5
MS 35 Male Right Both Right 0.97 65 52 24.90 4.5
MS 52  Female Left Both Right 9.66 62 56 35.13 5.5
MS 52  Female Right Both Right 9.66 65 56 29.31 55
MS 65 Female Right Both Both 14.48 61 52 55.37 7.5
MS 53 Male Right Both Right 9.66 62 56 23.93 25
MS 59 Male Left Both Right 1.93 63 56 28.70 4.0
MS 59 Male Right Both Right 1.98 63 55 47.49 4.0
MS 35 Female Left Both Right 14.48 62 51 50.17 7.5
MS 38 Male Left Both Right 2.90 - - - 35
MS 38 Male Right Both Right 2.90 - - - 3.5
MS 66 Female Left Both Left 16.42 - - - 7.5
MS 66  Female Right Both Left 16.42 - - - 7.5
MS 22 Male Left Both Right 3.86 - - - 6.5
MS 22 Male Right Both Right 3.86 - - - 6.5
MS 38 Female Left Both Right 8.69 - - - 7.0
MS 38 Female Right Both Right 8.69 - - - 7.0
MS 61 Male Left Both Right 5.79 - - 20.00 5.0
MS 61 Male Right Both Right 5.79 - - 26.27 5.0
MS 63  Female Right Both Right 6.76 - - 28.00 6.0
MS 63 Male Right Both Right 29.93 - - 16.00 3.0
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Supplementary Figure 1: Temporal segmentation of kinematic and kinetic trajectories. Rep-
resentative example from one neurologically intact subject (49yrs, female, tested hand left, domi-

nant hand right).
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Supplementary Figure 3: Scree plot for estimating the number of latent variables & in the factor
analysis. Parallel analysis was used to simulate a lower bound of an eigenvalues magnitude that
each eigenvalue in the observed data needs to fulfill. The chosen number of factors was set to five
accordingly.

15



References

[1] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society, 58(1):267—288, 1996.

[2] Leo Breiman. Random Forests. Machine Learning, 45(1):5-32, aug 2001.

[3] Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized medical scor-
ing systems. Machine Learning, 102(3):349-391, 2016.

[4] Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature Selection. Journal
of Machine Learning Research (JMLR), 3(3):1157-1182, 2003.

16



	Supplementary Analysis
	Comparison to existing machine learning algorithms

	Supplementary Methods
	Participants
	Data preprocessing

	Supplementary Results

