
 

Supplementary Information 

 

Table S1. Mutations cited in the text. 

Allele Mutation Protein Organism Phenotype Ref. 

rad50-48 S679R, 
P682R  Rad50 H. sapiens defect in Rad50 dimerization [1] 

 R805E Rad50 P. furiosus slow ATP hydrolysis [2] 

 L828F Rad50 P. furiosus defect in ATM activation [3] 

 D829N Rad50 P. furiosus defect in ATM activation [3] 

 A78T Rad50 S. cerevisiae defect in Tel1 activation [4] 

 E115K Rad50 E. coli reduced endo/exonuclease and altered DNA 
binding activity [5] 

rad50S K6E Rad50 S. cerevisiae defective in removing Spo11 from DSB end [6] 

rad50S R20M Rad50 S. cerevisiae defective in removing Spo11 from DSB end [6] 

rad50S K81I Rad50 S. cerevisiae defective in removing Spo11 from DSB end [6] 

 Y328A Mre11 S. cerevisiae DNA damage sensitivity [7] 

 N113S Mre11 S. pombe defective Mre11 interaction with Nbs1 [8]  

 S499P Mre11 S. cerevisiae defective Mre11-Rad50 interaction [4] 

 K149E Mre11 E. coli reduced endo/exonuclease and altered DNA 
binding activity [5] 

mre11S T188I Mre11 S. cerevisiae defective Spo11 removal from DSB end [9] 

 R184A Mre11 S. cerevisiae DNA damage sensitive in sgs1∆ background [10] 

 H125N Mre11 S. cerevisiae nuclease deficient [11] 

 H52S Mre11 P. furiosus loss of exonuclease activity [12] 

 Y187C Mre11 P. furiosus loss of exonuclease activity [13] 

 R10T Mre11 S. cerevisiae sae2∆ DNA damage and resection defect rescue [14] 

  













 

Supplementary figure legends 

 

Supplementary Figure S1. Structural features and structural alignment of Rad50 orthologs. (A) 

Scheme depicting the conserved domains present in Rad50 orthologues from the indicated organisms. 

(B,C) Structural alignment of the lobe I (B) and lobe II (C) of Rad50 orthologues from eubacteria T. 

maritima (PDB ID: 4W9M) and E. coli (PDB ID: 6S6V), eukaryotes S. cerevisiae (model from 

reference [4]) and C. thermophilum (PDB ID:5DAC), and archaea P. furiosus (PDB ID:3QKU) and 

M. jannaschii (PDB ID:3AV0). Secondary structures are indicated, wherever the structure is available 

(otherwise the sequence is marked by a red rectangle), as follows: solid yellow rectangles, alpha helix; 

solid green rectangles, beta sheets. Alignment residues coloring is according to ClustalW style. 

Conserved functionally relevant motifs are underlined and labelled. 

 

Supplementary Figure S2. Structural features and structural alignment of Mre11 orthologs. A. 

Scheme depicting the conserved domains present in Mre11 orthologs from the indicated organisms. 

(B) Structural alignment of the N-terminal regions of Mre11 orthologues from eubacteria T. maritima 

(PDB ID: 4NZV) and E. coli (PDB ID: 6S6V), eukaryotes S. cerevisiae (model from reference [15]), 

H. sapiens (PDB ID:3T1I), C. thermophilum (PDB ID:4KYE), and S. pombe (PDB ID:4FCX), and 

archaea P. furiosus (PDB ID:1II7) and M. jannaschii (PDB ID:3AV0). Secondary structures are 

indicated, wherever the structure is available (otherwise the sequence is marked by a red rectangle), 

as follows: solid yellow rectangles, alpha helix; solid green rectangles, beta sheets. Alignment 

residues coloring is according to ClustalW style. Functional regions of the proteins are indicated by 

open boxes: black box, endonuclease domain; green box, capping domain; purple box, latching loop; 

blue box, fastener loop. Orange bars highlight conserved phosphoesterase signature motifs (I to V). 

Green triangles indicate the residues identified for Nbs1 binding in S. pombe [8]. 

 

Supplementary Figure S3. DNA tethering can be achieved by bridging the DSB ends through an 

intercomplex dimerization at the Zn-hook interface of two distinct MR complexes.  
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