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NETPHIX Method
Our analysis for the association of gene alteration information utilized

NETPHIX, which was developed to identify network based associations for
continuous cancer phenotypes. While the algorithm can deal with more gen-
eral cases, we used a simple version of NETPHIX, which identifies subnet-
works associated with an increased level of phenotypes. See (Kim et al. 2019)
for the full details of NETPHIX algorithm.

The optimization problem is formally defined as follows. We are given a
graph G = (V,E), with vertices V = {1, . . . , n} representing genes and edges
E representing interactions among genes. Let P denote the set of m patients
(or cell lines). For each sample j ∈ P , we are also given a phenotype profile
value wj ∈ R which quantitatively measures a phenotype (e.g., mutation
counts in our study). Let Pi ⊆ P be the set of patients in which gene i ∈ V
is altered. We say that a patient j ∈ P is covered by gene i ∈ V if j ∈ Pi i.e.
if gene i is altered in sample j. We say that a sample j ∈ P is covered by a
subset of genes (or vertices) S ⊆ V , if there exists at least one vertex v in S
such that j ∈ Pv.

The goal is to identify a connected subgraph S of G of at most k vertices
such that the sum of the weights of the samples covered by S is maximized.
The weights are computed based on mutation counts. Since we are interested
in functionally complementary mutations, we also penalize coverage overlap
when a sample is covered more than once by S by assigning a penalty pj
for each of the additional times sample j is covered by S. Let cS(j) be the
number of times element j ∈ P is covered by S. For a set S of genes, we
define its weight W (S) as:

W (S) =
∑

j∈∪s∈SPs

wj −
∑

j∈∪s∈SPs

(cS(j)− 1)pj (1)

Thus, we define the optimization problem as follows: Given a graph G
defined on a set of n vertices V , a set P , a family of subsets P = {P1, . . . , Pn}
where for each i, Pi ⊆ P is associated with i ∈ V , weights wj and penalties
pj ≥ 0 for each sample j ∈ P , find the subset S ⊆ V of ≤ k connected
vertices maximizing W (S).
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We then formulated the problem as integer linear programming (ILP) as
follows and solved it to optimality with CPLEX.

z(q) = max
∑
j

(wj + pj)zj −
∑
j

pjyj (2)

s.t.
∑
i

xi ≤ k, (3)

yj =
∑
i:j∈Pi

xi, ∀j (4)

yj ≥ zj, ∀j (5)

zj ≥ yj/k, ∀j (6)

xi, zj ∈ B, yj ∈ D ∀i, j (7)∑
l:il∈E

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈V

xl − 1

)
∀i ∈ V (8)

Let xi be a binary variable (denoted with xi ∈ B) equal to 1 if gene
i ∈ V is selected and xi = 0 otherwise. Let zj be a binary variable equal
to 1 if sample j is covered by a gene i and 0 otherwise. Let yj denote the
number of genes in I that cover sample j in the solution. Finally, let wj be
the weight of sample j and pj be the penalty for sample j. Although the
general problem is NP-hard, we obtained the optimal solution to the ILP in-
stances using CPLEX. We ran the program with k = 1...7 and the statistical
significance of the selected modules was then assessed with permutation tests.

Construction of Gene Alteration Table
The gene level alteration information for the input to NETPHIX is con-

structed by utilizing all somatic point mutations and small indels for the
same 560 patients data. In general, we defined a gene g to be altered for a
patient p if it has at least one “valid” mutation in the genomic region of g
for p. The definition of “valid” mutations can be different for each signature
as we further refined the information by removing mutations attributed to
the signature. For example, the input alteration table used for the associ-
ation with Signature 2 is constructed after removing all somatic mutations
assigned to Signature 2. Formally, for the alteration table ALTi used for
association with Signature i, a gene g in ALTi is defined to be altered only
if it has at least one non-silent mutation in the genomic region of g that is
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not attributed to Signature i. For ALT3 and ALT8, we additionally removed
all indels as these signatures are believed to lead to a high burden of indels.
Finally, we augmented the alteration table if the gene is annotated as be-
ing biallelic inactivated (Supplementary Table 4a and 4b from (Davies et al.
2017)).
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Figure S1: Gene expression correlation modules (refers to Fig. 2).
Clustering of all genes significantly correlated with at least one of the sig-
natures. This shows a more fine-grained clustering (12 clusters) than in
Fig. 2. A heatmap of mean expression correlation for each cluster and signa-
ture (left), number of genes in each cluster (middle), and representative GO
terms enriched in each cluster of genes (right) are shown.
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Figure S2: Subnetworks identified by NETPHIX using less stringent cut-off
(refers to Fig. 3). The best m (the module size) using less stringent cut-offs was
selected as maximal index for which the optimal objective function increased more than
1% with respect to previous index and the phenotype p-value did not increase. Panel
for each signature consists of a network view of a module (left) and a heatmap showing
the association of selected gene alterations with signature strength across patients (right).
The network node size indicates the gene robustness (regarding NETPHIX results for
different random initialization runs of SigMa) while the darkness of red color represents
its individual association score (p-value). Each heatmap shows the number of mutations
attributed to a given signature for all samples (orange; top row; log10 scale) sorted from
low to high (columns). For each gene in the module, gene mutations observed in each
sample caused by other signatures are shown in gray, while samples not altered are in
white. The last row shows the mutation profile of the entire subnetwork in black. Only
subnetworks that changed with respect to the normal cut-offs (see Fig. 3 and Materials
and Methods) are shown. Results for Signatures 2D and 3C did not change with respect
to the normal cut-offs and results for Signatures 1D and 5D stayed insignificant (the FDR
adjusted p-value above 0.1).
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Table S1: Subnetwork associated with mutational signatures for
each subtype

Signature Subtype Subnetwork P -value
2C Lum B APC, TP53, SMAD4, PTEN 0.004
2D Lum A PIK3CA, PTEN 0.0049
3C Lum B BRCA2, TP53, MAP9 0.001
3C Basal BRCA1, BRCA2 0.023
3D LumA BRCA1, ARID1A, BRCA2, TP53, NF1 0.002
3D LumB BRCA2, TP53, MAP9 0.001
3D Basal BRCA1, BARD1, BRCA2, FANCA 0.002
8C LumB BRCA2, TP53, KRT19 0.002

13C LumA CASP8, TP53, AR, SIN3A, HDAC2 0.023
13C LumB CREBBP, BRCA2, TP53 0.003
13D LumA HIF1A, BRCA2, TP53, ATM, HDAC2 0.021
13D LumB CREBBP, BRCA2, TP53 0.001
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