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Supporting Information Text11

Related Work12

Work on equilibrium cooperation in repeated games began with studies of reciprocal altruism with general stage games where13

a fixed set of players interacts repeatedly with a commonly known start date and a common notion of calendar time (1–3),14

and has been expanded to allow for various sorts of noise and imperfect observability (4–8). In contrast, most evolutionary15

analyses of repeated games have focused on the prisoner’s dilemma (9–23), though a few evolutionary analyses have considered16

more complex stage games (24, 25). Similarly, most laboratory and field studies of the effects of repeated interaction have also17

focused on the prisoner’s dilemma (9, 26–28), though some papers consider variants with an additional third action (29, 30).18

Reciprocal altruism is an important force in long-term relationships among a relatively small number players, such as19

business partnerships or collusive agreements among firms, but there are many social settings where people manage to cooperate20

even though direct reciprocation is impossible. These interactions are better modelled as games with repeated random matching21

(31). When the population is small compared to the discount factor, cooperation in the prisoner’s dilemma can be enforced by22

contagion equilibria even when players have no information at all about each other’s past actions (32–34). These equilibria do23

not exist when the population is large compared to the discount factor, so they are ruled out by our assumption of a continuum24

population.25

Previous research on indirect reciprocity in large populations has studied the enforcement of cooperation as an equilibrium26

using first-order information. Takahashi (35) shows that cooperation can be supported as a strict equilibrium when the27

PD exhibits strategic complementarity; however, his model does not allow noise or the inflow of new players, and assumes28

players can use a commonly known calendar to coordinate their play. Heller and Mohlin (36) show that, under strategic29

complementarity, the presence of a small share of players who always defect allows cooperation to be sustained as a stable30

(though not necessarily strict) equilibrium when players are infinitely lived and infinitely patient and are restricted to using31

stationary strategies. The broader importance of strategic complementarity has long been recognized in economics (37, 38) and32

game theory (39, 40).33

Many papers study the evolutionary selection of cooperation using image scoring (41–52). With image scoring, each player34

has first-order information about their partner, but conditions their action only on their partner’s record and not on their35

own record. These strategies are never a strict equilibrium, and are typically unstable in environments with noise (47, 53).36

With more complex “higher order” record systems such as standing, cooperation can typically be enforced in a wide range of37

games (32, 44, 54–62). Most research has focused on the case where each player has only two states: for instance, Ohtsuko and38

Iwasa (44, 63) consider all possible record systems of this type, and show that only 8 of them allow an ESS with high levels of39

coooperation. Our first-order records can take on any integer values, so they do not fall into this class, even though behavior is40

determined by a binary classification of the records. Another innovation in our model is to consider steady-state equilibria in a41

model with a constant inflow of new players, even without any evolutionary dynamics. This approach has previously been used42

to model industry dynamics in economics (64, 65), but is novel in the context of models of cooperation and repeated games.43

The key novel aspects of our framework may thus be summarized as follows:44

1. Information (“records”) depends only on a player’s own past actions, but players condition their behavior on their own45

record as well as their current partner’s record.46

2. The presence of strategic complementarity implies that such two-sided conditioning can generate strict incentives for47

cooperation.48

3. Records are integers, and can therefore remain “good” even if they are repeatedly hit by noise (as is inevitable when49

players are long-lived).50

4. The presence of a constant inflow of new players implies that the population share with “good” records can remain51

positive even in steady state.52

Model Description53

Here we formally present the model and the steady-state and equilibrium concepts.54

Time is discrete and doubly infinite: t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. There is a unit mass of individuals, each with survival55

probability γ ∈ (0, 1), and an inflow of 1− γ newborns each period to keep the population size constant.56

Every period, individuals randomly match in pairs to play the PD (Fig. 1). Each individual carries a record k ∈ N :=
{0, 1, 2, ...}. Newborns have record 0. When two players meet, they observe each other’s records and nothing else. A strategy
is a mapping s : N× N→ {C,D}. All players use the same strategy. When the players use strategy s, the distribution over
next-period records of a player with record k who meets a player with record k′ is given by

φk,k′(s) =
{
rk(C) w/ prob. 1− ε, rk(D) w/ prob. ε if s(k, k′) = C

rk(D) w/ prob. 1 if s(k, k′) = Dendequation∗
,

where rk(C) is the next-period record when a player with current record k is recorded as playing C and rk(D) is the next-period57

record when a player with current record k is recorded as playing D. For the Counting D’s record system, rk(C) = k and58

rk(D) = k + 1 for all k ∈ N. More generally, for each k ∈ N, rk(C) and rk(D) can be arbitrary integers.59
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The state of the system µ ∈ ∆(N) describes the share of the population with each record, where µk ∈ [0, 1] denotes the
share with record k. The evolution of the state over time under strategy s is described by the update map fs : ∆(N)→ ∆(N),
given by

fs(µ)[0] := 1− γ + γ
∑
k′

∑
k′′

µk′µk′′φk′,k′′(s)[0],

fs(µ)[k] := γ
∑
k′

∑
k′′

µk′µk′′φk′,k′′(s)[k] for k 6= 0.

A steady state under strategy s is a state µ such that fs(µ) = µ.60

Given a strategy s and state µ, the expected flow payoff of a player with record k is πk(s, µ) =
∑

k′ µk′u(s(k, k′), s(k′, k)),
where u is the (normalized) PD payoff function given by

u(a1, a2) =


1 if (a1, a2) = (C,C)
−l if (a1, a2) = (C,D)
1 + g if (a1, a2) = (D,C)
0 if (a1, a2) = (D,D)

.

Denote the probability that a player with current record k has record k′ t periods in the future by φk(s, µ)t(k′). The continuation61

payoff of a player with record k is then Vk(s, µ) = (1−γ)
∑∞

t=0 γ
t
∑

k′ φk(s, µ)t(k′)πk′(s, µ). A player’s objective is to maximize62

their expected lifetime payoff.63

A pair (s, µ) is an equilibrium if µ is a steady-state under s and, for each own record k and opponent’s record k′,64

s(k, k′) ∈ {C,D} maximizes (1− γ)u(a, s(k′, k)) + γ
∑

k′′ (ρ(k, a)[k′′])Vk′′(s, µ) over a ∈ {C,D}, where ρ(k, a)[k′′] denotes the65

probability that a player with record k who takes action a acquires next-period record k′′. An equilibrium is strict if the66

maximizer is unique for all pairs (k, k′).67

This equilibrium definition encompasses two forms of strategic robustness. First, we allow agents to maximize over all68

possible strategies, as opposed to only strategies from some pre-selected set. Second, we focus on strict equilibria, which remain69

equilibria under “small” perturbations of the model.70

Limit Cooperation under GrimK Strategies71

Under GrimK strategies, a matched pair of players cooperate if and only if both records are below a pre-specified cutoff K:72

that is, s(k, k′) = C if max{k, k′} < K and s(k, k′) = D if max{k, k′} ≥ K.73

We call an individual a cooperator if their record is below K and a defector otherwise. Note that each individual may be a74

cooperator for some periods of their life and a defector for other periods.75

Given an equilibrium strategy GrimK, let µC =
∑K−1

k=0 µk denote the corresponding steady-state share of cooperators.76

Note that, in a steady state with cooperator share µC , mutual cooperation is played in share (µC)2 of all matches. Let µC(γ, ε)77

be the maximal share of cooperators in any GrimK equilibrium (allowing for every possible K) when the survival probability78

is γ and the noise level is ε.79

The following theorem characterizes the performance of equilibria in GrimK strategies in the double limit of interest80

(33, 35, 44, 63, 66) where the survival probability approaches 1—so that players expect to live a long time and the “shadow of81

the future” looms large—and the noise level approaches 0—so that players who play C are unlikely to be recorded as playing D.82

Theorem 1.

lim
(γ,ε)→(1,0)

µCgr(γ, ε) =
{

l
1+l if g < l

1+l
0 if g > l

1+l
.

83

To prove the theorem, let β : (0, 1)× (0, 1)× (0, 1)→ (0, 1) be the function given by84

β(γ, ε, µC) = γ(1− (1− ε)µC)
1− γ(1− ε)µC . [1]85

When players use GrimK strategies and the share of cooperators is µC , β(γ, ε, µC) is the probability that a player with86

cooperator record k survives to reach record k + 1. (This probability is the same for all k < K.)87

Lemma 2. There is a GrimK equilibrium with cooperator share µC if and only if the following conditions hold:88

1. Feasibility:89

µC = 1− β(γ, ε, µC)K . [2]90

2. Incentives:
(1− ε)(1− µC)
1− (1− ε)µC µC > g, [3]

µC <
1

γ(1− ε)
l

1 + l
. [4]
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Note that µC = 0 solves [2] when K = 0. For any K > 0, 0 < 1−β(γ, ε, µC)K and 1 > 1−β(γ, ε, 1)K , so by the intermediate91

value theorem, [2] has some solution µ ∈ (0, 1). Thus, there is at least one steady state for every GrimK strategy. For some92

strategies, there are multiple steady states, but never more than K + 1, because [2] can be rewritten as a polynomial equation93

in µC with degree K + 1.94

The upper bounds on the equilibrium share of cooperators in Figure 2 are the suprema of the µC ∈ (0, 1) that satisfy [3]95

and [4] for the corresponding (γ, ε) parameters. When no µC ∈ (0, 1) satisfy [3] and [4], the upper bound is 0, since Grim096

(where everyone plays D) is always a strict equilibrium.97

To see how the g > l/(1 + l) case of Theorem 1 comes from Lemma 2, note that

(1− ε)(1− µC)
1− (1− ε)µC ≤ 1.

Thus, [3] requires µC > g. Moreover, combining µC > g with [4] gives γ(1− ε)g < l/(1 + l). Taking the (γ, ε)→ (1, 0) limit of98

this inequality gives g ≤ l/(1 + l). Thus, when g > l/(1 + l), it follows that lim(γ,ε)→(1,0) µ
C(γ, ε) = 0.99

All that remains is to show that lim(γ,ε)→(1,0) µ
C(γ, ε) = l/(1 + l) when g > l/(1 + l). Since limε→0(1− ε)(1−µC)/(1− (1−100

ε)µC) = 1 for any fixed µC and lim(γ,ε)→(1,0) 1/(γ(1− ε)) = 1, it follows that values of µC smaller than, but arbitrarily close to,101

l/(1 + l) satisfy [3] and [4] in the double limit. Thus, the only difficulty is showing the feasibility of µC as a steady-state level102

of cooperation: because K must be an integer, some values of µC cannot be generated by any K, for given values of γ and ε.103

The following result shows that this “integer problem” becomes irrelevant in the limit. That is, any value of µC ∈ (0, 1) can be104

approximated arbitrarily closely by a feasible steady-state share of cooperators for some GrimK strategy as (γ, ε)→ (1, 0).105

Lemma 3. Fix any µC ∈ (0, 1). For all ∆ > 0, there exist γ < 1 and ε > 0 such that, for all γ > γ and ε < ε, there exists µ̂C106

that satisfies [2] for some K such that |µ̂C − µC | < ∆.107

To complete the proof of Theorem 1, we now prove Lemmas 2 and 3.108

Proof of Lemma 2. We first establish the feasibility condition of Lemma 2, and then we establish its incentives condition.109

The feasibility condition comes from the following lemma.110

Lemma 4. In a GrimK equilibrium with cooperator share µC , µk = β(γ, ε, µC)k(1− β(γ, ε, µC)) for all k < K.111

To see why Lemma 4 implies the feasibility condition of Lemma 2, note that

µC =
K−1∑
k=0

β(γ, ε, µC)k(1− β(γ, ε, µC)) = 1− β(γ, ε, µC)K .

Proof of Lemma 4. The inflow into record 0 is 1− γ, while the outflow from record 0 is (1− γ(1− ε)µC)µ0. Setting these equal
gives

µ0 = 1− γ
1− γ(1− ε)µC = 1− β(γ, ε, µC).

Additionally, for every 0 < k < K, the inflow into record k is γ(1 − (1 − ε)µC)µk−1, while the outflow from record k is
(1− γ(1− ε)µC)µk. Setting these equal gives

µk = γ(1− (1− ε)µC)
1− γ(1− ε)µC µk−1 = β(γ, ε, µC)µk−1.

Combining this with µ0 = 1− β(γ, ε, µC) gives µk = β(γ, ε, µC)k(1− β(γ, ε, µC)) for 0 ≤ k ≤ K − 1. �112

We now establish the incentive condition of Lemma 2. We will see that the incentive constraint [3] guarantees that a113

record-0 cooperator plays C against an opponent playing C, and the incentive constraint [4] guarantees that a record-(K − 1)114

cooperator plays D against an opponent playing D. Record-0 cooperators are the cooperators most tempted to defect against115

a cooperative opponent and record-(K − 1) cooperators are the cooperators most tempted to cooperate against a defecting116

opponent, so these constraints guarantee the incentives of all cooperators are satisfied.117

Formally, to establish the incentive condition, we rely on the following lemma.118

Lemma 5. In a GrimK equilibrium with cooperator share µC ,

Vk =
{

(1− β(γ, ε, µC)K−k)µC if k < K

0 if k ≥ K.
119
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To derive the incentive condition of Lemma 2 from Lemma 5, note that the expected continuation payoff of a record-0 player
from playing C is (1− ε)V0 + εV1, while the expected continuation payoff from playing D is V1. Thus, a record 0 player strictly
prefers to play C against an opponent playing C iff (1− ε)γ(V0 − V1)/(1− γ) > g. Combining Lemmas 4 and 5 gives

(1− ε) γ

1− γ (V0 − V1) = 1− ε
1− (1− ε)µC β(γ, ε, µC)KµC = (1− ε)(1− µC)

1− (1− ε)µC µC ,

so [3] follows. Moreover, the expected continuation payoff of a record K − 1 player from playing C is (1− ε)VK−1 + εVK , while
the expected continuation payoff from playing D is VK . Thus, a record K − 1 player strictly prefers to play D against an
opponent playing D iff (1− ε)γ(VK−1 − VK)/(1− γ) < l. Lemma 5 gives

(1− ε) γ

1− γ (VK−1 − VK) = γ(1− ε)µC
1− γ(1− ε)µC ,

and setting this to be less than l gives [4].120

Proof of Lemma 5. The flow payoff for any record k ≥ K is 0, so Vk = 0 for k ≥ K. For k < K, Vk = (1 − γ)µC + γ(1 −121

ε)µCVk + γ(1− (1− ε)µC)Vk+1, which gives Vk = (1− β(γ, ε, µC))µC + β(γ, ε, µC)Vk+1. Combining this with VK = 0 gives122

Vk = (1− β(γ, ε, µC)K−k)µC for k < K. �123

Proof of Lemma 3. The proof first establishes some properties of two functions, K̃ and d, which we now introduce.124

Let K̃ : (0, 1)× (0, 1)× (0, 1)→ R+ be the function given by125

K̃(γ, ε, µC) = ln(1− µC)
ln(β(γ, ε, µC)) . [5]126

By construction, K̃(γ, ε, µC) is the unique K ∈ R+ such that µC = 1− β(γ, ε, µC)K . Let d : (0, 1]× [0, 1)× (0, 1)→ R be the
function given by

d(γ, ε, µC) =

1 + ln(1− µC)(1− µC)
∂β

∂µC
(γ,ε,µC)

β(γ,ε,µC) ln(β(γ,ε,µC)) if γ < 1
1 + (1−ε) ln(1−µC)(1−µC)

1−(1−ε)µC if γ = 1
.

The µC derivative of K̃(γ, ε, µC) is related to d(γ, ε, µC) by the following lemma.127

Lemma 6. K̃ : (0, 1)× (0, 1)× (0, 1)→ R+ is differentiable in µC with derivative given by

∂K̃

∂µC
(γ, ε, µC) = − d(γ, ε, µC)

(1− µC) ln(β(γ, ε, µC)) .

128

Proof of Lemma 6. From [5], it follows that K̃(γ, ε, µC) is differentiable in µC with derivative given by129

∂K̃

∂µC
(γ, ε, µC) = −

ln(β(γ,ε,µC))
1−µC +

ln(1−µC) ∂β

∂µC
(γ,ε,µC)

β(γ,ε,µC)

ln(β(γ, ε, µC))2

= −
1 + ln(1− µC)(1− µC)

∂β

∂µC
(γ,ε,µC)

β(γ,ε,µC) ln(β(γ,ε,µC))

(1− µC) ln(β(γ, ε, µC))

= − d(γ, ε, µC)
(1− µC) ln(β(γ, ε, µC)) . �

The following two lemmas concern properties of d(γ, ε, µC) that will be useful for the proof of Lemma 3.130

Lemma 7. d : (0, 1]× [0, 1)× (0, 1)→ R is well-defined and continuous.131

Proof of Lemma 7. Since β(γ, ε, µC) is differentiable and only takes values in (0, 1), it follows that d(γ, ε, µC) is well-defined.132

Moreover, since β(γ, ε, µC) is continuously differentiable for all µC ∈ (0, 1), d(γ, ε, µC) is continuous for γ < 1. All that remains133

is to check that d(γ, ε, µC) is continuous for γ = 1.134

First, note that d(1, ε, µC) is continuous in (ε, µC). Thus, we need only check the limit in which γ approaches 1, but never135

equals 1. Note that136

∂β

∂µC
(γ, ε, µC)

β(γ, ε, µC) ln(β(γ, ε, µC)) = −
γ(1−ε)(1−γ)

(1−γ(1−ε)µC)2

β(γ, ε, µC) ln(β(γ, ε, µC))

= −
(

γ(1− ε)
β(γ, ε, µC)(1− γ(1− ε)µC)

)(1− β(γ, ε, µC)
ln(β(γ, ε, µC))

)
.

[6]137
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It is clear that138

lim
(γ̃,ε̃,µ̃C)→(1,ε,µC)

γ̃ 6=1

γ̃(1− ε̃)
β(γ̃, ε̃, µ̃C)(1− γ̃(1− ε̃)µ̃C)

= 1− ε
(1− (1− ε)µC) [7]139

for all (ε, µC) ∈ [0, 1)× (0, 1). For γ close to 1,

ln(β(γ, ε, µC)) = β(γ, ε, µC)− 1 +O((β(γ, ε, µC)− 1)2).

Thus,140

lim
(γ̃,ε̃,µ̃)→(1,ε,µC)

γ̃ 6=1

1− β(γ̃, ε̃, µ̃C)
ln(β(γ̃, ε̃, µ̃C))

= −1 [8]141

for all (ε, µC) ∈ [0, 1)× (0, 1). Equations 6, 7, and 8 together imply that d(γ, ε, µC) is continuous for γ = 1. �142

Lemma 8. d(1, 0, µC) has precisely one zero in µC ∈ (0, 1), and the zero is located at µC = 1− 1/e.143

Proof of Lemma 8. This follows from the fact that d(1, 0, µC) = 1 + ln(1− µC). �144

With these preliminaries established, we now present the proof of Lemma 3.145

Completing the Proof of Lemma 3. Fix some µ̃C ∈ (0, 1) such that µ̃C 6= 1− 1/e. Lemma 8 says d(1, 0, µ̃C) 6= 0. Because of146

this and the continuity of d, there exist some λ > 0 and some δ > 0, γ′ < 1, and ε > 0 such that |d(γ, ε, µC)| > λ for all γ > γ′,147

ε < ε, and |µC − µ̃C | < δ.148

Additionally, note that limγ→1 inf(ε,µC)∈(0,ε)×(µC−δ,µC+δ) β(γ, ε, µC) = 1. Together these facts imply that there exists some
γ < 1 such that ∣∣∣∣ ∂K̃∂µC (γ, ε, µC)

∣∣∣∣ =
∣∣∣∣ d(γ, ε, µC)
(1− µC) ln(β(γ, ε, µC))

∣∣∣∣ > 2
min{δ,∆}

and K̃(γ, ε, µC) ≥ 1 for all γ > γ, ε < ε, and |µC − µ̃C | < δ. It thus follows that

sup
|µC−µ̃C |≤min{δ,∆}

|K̃(γ, ε, µC)− K̃(γ, ε, µ̃C)| > 1

for all γ > γ, ε < ε. Hence, there exists some µ̂C within ∆ of µ̃C and some non-negative integer K̂ such that K̃(γ, ε, µ̂C) = K̂,149

which implies that µ̂C is feasible since µ̂C = 1− β(γ, ε, µ̂C)K̂ . �150

Limit Cooperation under Trigger Strategies151

We characterize the maximum level of cooperation that the class of trigger strategies can achieve in the (γ, ε)→ (1, 0) limit.152

Recall that this is the class of strategies that satisfy the following properties: (i) The set of all possible records can be partitioned153

into two classes, “good records” G and “bad records” B. (ii) Partners cooperate if and only if they both have good records:154

s(k, k′) = C for all pairs (k, k′) ∈ G×G, and s(k, k′) = D for all other pairs (k, k′). (iii) The class B is absorbing: if k ∈ B,155

then every record k′ that can be reached starting at record k is also in B. As with GrimK, let µC =
∑

k∈G µk denote the156

steady-state share of cooperators in a trigger strategy equilibrium, and let µC(γ, ε) be the maximal share of cooperators in any157

trigger strategy equilibrium when the survival probability is γ and the noise level is ε.158

Theorem 9.

lim
(γ,ε)→(1,0)

µ
C(γ, ε) =

{
l

1+l if g < l
1+l

0 if g > l
1+l

.

159

This result shows that the maximum level of cooperation in the double limit achieved by strategies in the GrimK class160

equals that of the broader trigger strategy class. Since every GrimK strategy is a trigger strategy, the maximum level of161

cooperation achieved by trigger strategies weakly exceeds the maximum level achieved by GrimK strategies. Thus, it suffices162

to show that lim sup(γ,ε)→(1,0) µ
C(γ, ε) ≤ l/(1 + l) when g < l/(1 + l) and lim sup(γ,ε)→(1,0) µ

C(γ, ε) = 0 when g > l/(1 + l).163

This is a consequence of the following two lemmas.164

Lemma 10. In any trigger strategy equilibrium, γ(1− ε)µC < l/(1 + l).165

Lemma 11. In any trigger strategy equilibrium, µC > g.166

To see that Theorem 9 follows from Lemmas 10 and 11, note that γ(1− ε)µC < l/(1 + l) implies that µC ≤ l/(1 + l) in the167

(γ, ε)→ (1, 0) limit. Thus, lim sup(γ,ε)→(1,0) µ
C(γ, ε) ≤ l/(1 + l). Moreover, combining µC ≤ l/(1 + l) with µC > g implies that168

lim sup(γ,ε)→(1,0) µ
C(γ, ε) = 0 when g > l/(1 + l).169

We now present the proofs of Lemma 10 and 11.170
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Proof of Lemma 10. Let k be a cooperator record. It must be that if a player with current record k is recorded as playing C,171

their next period record would also be a cooperator record. Otherwise, the player with record k would be better-off always172

playing D.173

We can use this to obtain a lower bound on the value functions at cooperator records. Let V G := infk∈G Vk be the infimum174

of the value functions at cooperator records. We will show that175

V G ≥ 1− γ
1− γ(1− ε) (µC(1 + l)− l). [9]176

The reason for this is that it must be suboptimal for a player with a cooperator record k to play C against D, so Vk must satisfy

Vk > (1− γ)(µC(1 + l)− l) + γ(1− ε)Vrk(C) + γεVrk(D),

> (1− γ)(µC(1 + l)− l) + γ(1− ε)Vrk(C),

where the second inequality follows from the fact that Vk′ ≥ 0 for all k′ ∈ N, which implies Vrk(D) ≥ 0. Thus,

Vk > (1− γ)(µC(1 + l)− l) + γ(1− ε)V G

for all cooperator records r ∈ G, which likewise implies

V G ≥ (1− γ)(µC(1 + l)− l) + γ(1− ε)V G.

Solving this for V G gives
V G ≥ 1− γ

1− γ(1− ε) (µC(1 + l)− l),

so we conclude that the expression in [9] does indeed give a lower bound for V G.177

Let k′ be a cooperator record at which a player will transition to defector status if they are recorded as playing D. There
must be such a record in any equilibrium with cooperation, as otherwise every player would always play D. A necessary
condition for record k′ players to prefer to rather play D rather than C against D is

−(1− γ)l + γ(1− ε)Vrk′ (C) < 0.

Since Vrk′ (C) ≥ V G, it follows that
−(1− γ)l + γ(1− ε)V G < 0,

which by [9] implies
−(1− γ)l + γ(1− ε) 1− γ

1− γ(1− ε) (µC(1 + l)− l) < 0.

Solving this inequality gives
γ(1− ε)µC <

`

1 + `
.

�178

Proof of Lemma 11. For any cooperator record k, we have179

Vk = (1− γ)µC + γ(1− ε)µCVrk(C) + γ(1− (1− ε)µC)Vrk(D). [10]180

The condition for a record k preciprocator to prefer playing C rather than D against C is181

(1− ε)γ(Vrk(C) − Vrk(D)) > (1− γ)g. [11]182

Combining [10] and [11] gives183

1− ε
1− (1− ε)µC

(
µC − Vr −

γ

1− γ (Vk − Vrk(C))
)
> g. [12]184

Let V G := supk∈G Vk be the supremum of the value functions at cooperator records. Since [12] holds for all cooperator185

records k ∈ G and Vrk(C) ≤ V
G, we have186

1− ε
1− (1− ε)µC

(
µC − V G

)
≥ g. [13]187

The expected lifetime payoff of a newborn player is V0 =
(
µC
)2, so V G ≥ (µC)2. Combining this with [13] gives

(1− ε)(1− µC)
1− (1− ε)µC µC ≥ g,

which implies µC > g, since (1− ε)(1− µC)/(1− (1− ε)µC) < 1. �188
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Convergence of GrimK Strategies189

We now derive a key stability property of GrimK strategies. Fix an arbitrary initial record distribution µ0 ∈ ∆(N). When all190

individuals use GrimK strategies, the population share with record k at time t, µtk, evolves according to191

µt+1
0 = 1− γ + γ(1− ε)µC,tµt0,
µt+1
k = γ(1− (1− ε)µC,t)µtk−1 + γ(1− ε)µC,tµtk for 0 < k < K,

[14]192

where µC,t =
∑K−1

k=0 µtk.193

Fixing K, we say that distribution µ dominates (or is more favorable than) distribution µ̃ if, for every k < K,
∑k

k̃=0 µk̃ ≥194 ∑k

k̃=0 µ̃k̃; that is, if for every k < K the share of the population with record no worse than k is greater under distribution µ195

than under distribution µ̃. Under the GrimK strategy, let µ̄ denote the steady state with the largest share of cooperators, and196

let µ denote the steady state with the smallest share of cooperators.197

Theorem 12.198

1. If µ0 dominates µ̄, then limt→∞ µ
t = µ̄.199

2. If µ0 is dominated by µ, then limt→∞ µ
t = µ.200

Let xk =
∑k

k̃=0 µk̃ denote the share of the population with record no worse than k. From Equation 14, it follows that201

xt+1
0 = 1− γ + γ(1− ε)xtK−1x

t
0,

xt+1
k = 1− γ + γxtk−1 + γ(1− ε)xtK−1(xtk − xtk−1) for 0 < k < K.

[15]202

To see this, note that x0 = µ0 and xK−1 = µC , so rewriting the first line in Equation 14 gives the first line in Equation 15.
Additionally, for 0 < k < K, Equation 14 gives

xt+1
k =

∑
k̃≤k

µt+1
k̃

= 1− γ + γ
∑
k̃≤k−1

µtk̃−1 + γ(1− ε)µC,tµtk,

= 1− γ + γxtk−1 + γ(1− ε)xtK−1(xtk − xtk−1).

Lemma 13. The update map in Equation 15 is weakly increasing: If (xt0, ..., xtK−1) ≥ (x̃t0, ..., x̃tK−1), then (xt+1
0 , ..., xt+1

K−1) ≥203

(x̃t+1
0 , ..., x̃t+1

K−1).204

Proof of Lemma 13. The right-hand side of the first line in Equation 15 depends only on the product of xt0 and xtK−1, and it is205

strictly increasing in this product. The right-hand side of the second line in Equation 15 depends only on xtk−1, xtk, and xtK−1,206

and, holding fixed any two of these variables, it is weakly increasing in the third variable. �207

Proof of Theorem 12. We prove the first statement of Theorem 12. A similar argument handles the second statement. Let208

(x̃t0, ..., x̃tK−1) denote the time-path corresponding to the highest possible initial conditions, i.e. (x̃0
0, ..., x̃

0
K−1) = (1, ..., 1). By209

Lemma 13, (x̃t+1
0 , ..., x̃t+1

K−1) ≤ (x̃t0, ..., x̃tK−1) for all t. Thus, it follows that limt→∞(x̃t0, ..., x̃tK−1) = inft(x̃t0, ..., x̃tK−1), so in210

particular limt→∞(x̃t0, ..., x̃tK−1) exists. Since the update rules in Equation 15 are continuous, it follows that limt→∞(x̃t0, ..., x̃tK−1)211

must be a steady state of the system. By Lemma 13 and the fact that (x0, ..., xK−1) is the steady state with the highest share212

of cooperators, it follows that limt→∞(x̃t0, ..., x̃tK−1) = (x0, ..., xK−1).213

Now, fix some (x0
0, ..., x

0
K−1) ≥ (x0, ..., xK−1). By Lemma 13,

(x0, ..., xK−1) ≤ (xt0, ..., xtK−1) ≤ (x̃t0, ..., x̃tK−1)

for all t, so it follows that limt→∞(xt0, ..., xtK−1) = (x0, ..., xK−1). �214

Evolutionary Analysis215

We have so far analyzed the efficiency of GrimK equilibrium steady states (Theorem 1) and convergence to such steady states216

when all players use the GrimK strategy (Theorem 12). To further examine the robustness of GrimK strategies, we now217

perform two types of evolutionary analysis. In the next subsection, we show that, when g < l/(1 + l), there are sequences of218

GrimK equilibria that obtain the maximum cooperator share of l/(1 + l) as (γ, ε)→ (1, 0) that are robust to invasion by a219

small mass of mutants who follow any other GrimK′ strategy, such as Always Defect (i.e., Grim0). In the following subsection,220

we report simulations of the evolutionary dynamic when a GrimK steady state is invaded by mutants playing another GrimK′221

strategy.222
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Steady-State Robustness. We consider the following notion of steady-state robustness.223

Definition 1. A GrimK equilibrium with share of cooperators µC is steady-state robust to mutants if, for every K′ 6= K224

and α > 0, there exists some δ > 0 such that when the share of players playing GrimK is 1− δ and the share of players playing225

GrimK′ is δ with δ < δ, then226

• There is a steady state where the fraction of players playing GrimK that are cooperators, µ̃C , satisfies |µ̃C − µC | < α,227

and228

• It is strictly optimal to play GrimK.229

We show that, whenever strategic complementarities are strong enough to support a cooperative GrimK equilibrium, there230

is a sequence of GrimK equilibria that are robust to mutants and attains the maximum cooperation level of l/(1 + l) when231

expected lifespans are long and noise is small.232

Theorem 14. Suppose that g < l/(1 + l). There is a family of GrimK equilibria giving a share of cooperators µC(γ, ε) for233

parameters γ, ε such that:234

1. lim(γ,ε)→(1,0) µ
C(γ, ε) = l/(1 + l), and235

2. There is some γ < 1 and ε > 0 such that, when γ > γ and ε < ε, the GrimK equilibrium with share of cooperators236

µC(γ, ε) is steady-state robust to mutants.237

Proof. We assume that K′ < K; the proof for K′ > K is analogous. Fix some g < µ̃C < l/(1 + l) satisfying µ̃C 6= 1− 1/e. By238

Lemmas 2 and 3, we know that there exists some family of GrimK equilibria with share of cooperators µ̃C(γ, ε) such that239

lim(γ,ε)→(1,0) µ̃
C(γ, ε) = µ̃C . Fix some γ, ε, and consider the modified environment where share 1− δ of the players use the240

GrimK strategy corresponding to µ̃C(γ, ε) and share δ of the players use some other GrimK′.241

Let µKK denote the share of the players playing GrimK that have record less than K, let µKK′ be the share of GrimK players242

with record less than K′, and let µK′K′ be the share of the players playing GrimK′ that have record less than K′. Then in an243

steady state we have244

µKK = 1− β(γ, ε, (1− δ)µKK + δµK
′

K )K ,

µKK′ = 1− β(γ, ε, (1− δ)µKK + δµK
′

K )K
′
,

µK
′

K = 1− γK−K
′
β(γ, ε, (1− δ)µKK′ + δµK

′

K′)
K′ ,

µK
′

K′ = 1− β(γ, ε, (1− δ)µKK′ + δµK
′

K′)
K′ .

This can be rewritten as245

fKK (γ, ε, µKK , µ
K
K′ , µ

K′

K , µK
′

K′) := µKK + β(γ, ε, (1− δ)µKK + δµK
′

K )K − 1 = 0,

fKK′(γ, ε, µKK , µ
K
K′ , µ

K′

K , µK
′

K′) := µKK′ + β(γ, ε, (1− δ)µKK + δµK
′

K )K
′
− 1 = 0,

fK
′

K (γ, ε, µKK , µ
K
K′ , µ

K′

K , µK
′

K′) := µK
′

K + γK−K
′
β(γ, ε, (1− δ)µKK′ + δµK

′

K′)
K′ − 1 = 0,

fK
′

K′ (γ, ε, µKK , µ
K
K′ , µ

K′

K , µK
′

K′) := µK
′

K′ + β(γ, ε, (1− δ)µKK′ + δµK
′

K′)
K′ − 1 = 0.

[16]246

Note that µKK = µ̃C(γ, ε), µKK′ = 1 − β(γ, ε, µ̃C(γ, ε))K′ , µK′K = 1 − γK−K
′
β(γ, ε, 1 − β(γ, ε, µ̃C(γ, ε))K′)K′ , µK′K′ =247

1− β(γ, ε, 1− β(γ, ε, µ̃C(γ, ε))K′)K′ solves [16] when δ = 0. The partial derivatives of the left-hand side of [16] evaluated at248

this point are given by249 

∂fKK
∂µK
K

∂fKK
∂µK
K′

∂fKK

∂µK
′

K

∂fKK

∂µK
′

K′
∂fK
K′

∂µK
K

∂fK
K′

∂µK
K′

∂fK
K′

∂µK
′

K

∂fK
K′

∂µK
′

K′

∂fK
′

K

∂µK
K

∂fK
′

K

∂µK
K′

∂fK
′

K

∂µK
′

K

∂fK
′

K

∂µK
′

K′

∂fK
′

K′
∂µK
K

∂fK
′

K′
∂µK
K′

∂fK
′

K′

∂µK
′

K

∂fK
′

K′

∂µK
′

K′



=


1 +KβK−1 ∂β

∂µC
0 0 0

K′βK
′−1 ∂β

∂µC
1 0 0

0 γK−K
′
K′βK

′−1 ∂β

∂µC
1 0

0 K′βK
′−1 ∂β

∂µC
0 1

 .
[17]250
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Because µ̃C(γ, ε) = 1− β(γ, ε, µC(γ, ε))K and K = ln(1− µ̃C(γ, ε))/ ln(β(γ, ε, µ̃C(γ, ε))),

1 +Kβ(γ, ε, µ̃C(γ, ε))K−1 ∂β

∂µC
(γ, ε, µ̃C(γ, ε))

=1 + ln(1− µ̃C(γ, ε))(1− µ̃C(γ, ε))
∂β

∂µC
(γ, ε, µ̃C(γ, ε))

β(γ, ε, µ̃C(γ, ε)) ln(β(γ, ε, µ̃C(γ, ε)))
.

Recall that
β(γ, ε, µC) = γ(1− (1− ε)µC)

1− γ(1− ε)µC = 1− 1− γ
1− γ(1− ε)µC .

Thus, lim(γ,ε)→(1,0) β(γ, ε, µ̃C(γ, ε)) = 1. Hence, it follows that for high γ and small ε, ln(β(γ, ε, µ̃C(γ, ε))) = −(1 −
β(γ, ε, µ̃C(γ, ε))) +O(1− β(γ, ε, µ̃C(γ, ε))2. Moreover,

∂β

∂µC
(γ, ε, µ̃C(γ, ε)) = − (1− γ)γ(1− ε)

(1− γ(1− ε)µC(γ, ε))2

= − γ(1− ε)
1− γ(1− ε)µ̃C(γ, ε)

(1− β(γ, ε, µ̃C(γ, ε))).

Combining these results gives us

lim
(γ,ε)→(1,0)

∂β

∂µC
(γ, ε, µ̃C(γ, ε))

β(γ, ε, µ̃C(γ, ε)) ln(β(γ, ε, µ̃C(γ, ε)))
= 1

1− µ̃C
.

Since lim(γ,ε)→(1,0) ln(1− µ̃C(γ, ε))(1− µ̃C(γ, ε)) = ln(1− µ̃C)(1− µ̃C), it further follows that251

lim
(γ,ε)→(1,0)

1 +Kβ(γ, ε, µ̃C(γ, ε))K−1 ∂β

∂µC
(γ, ε, µ̃C(γ, ε)) = 1 + ln(1− µ̃). [18]252

Since µ̃ 6= 1− 1/e, we have 1 + ln(1− µ̃) 6= 0. Thus, using [18], we conclude that the determinant of the matrix of partial253

derivatives in [17] is non-zero, and so can appeal to the implicit function theorem to conclude that for sufficiently high γ and254

small ε, for each K′ 6= K and α > 0, there is some δ1 > 0 such that when the share of players playing GrimK is 1− δ and the255

share of players playing GrimK′ is δ with δ < δ1, there is a steady state where the fraction of players using GrimK that are256

cooperators, µC′ , is such that |µC′ − µ̃C(γ, ε)| < α. Additionally, because the GrimK equilibrium with share of cooperators257

µ̃C(γ, ε) is a strict equilibrium where players have uniformly strict incentives to play according to GrimK at every own record258

and partner record, it follows that there is some 0 < δ < δ1 such that, when the share of players playing GrimK is 1 − δ259

and the share of players playing GrimK′ is δ with δ < δ, there is a steady state with share of cooperators µC′ such that260

|µC
′
− µ̃C(γ, ε)| < α where it is strictly optimal to play GrimK.261

�262

Dynamics. We performed a simulation to capture dynamic evolution. We considered a population initially playing the Grim5263

equilibrium with steady-state share of cooperators of µC ≈ 0.8998 when γ = 0.9, ε = 0.1, g = 0.4, l = 2.8 that is infected264

with a mutant population playing Grim1 at t = 0. The initial share of the population that played Grim5 was .95, and the265

complementary share of 0.05 played Grim1. At t = 0, all of the Grim1 mutants had record 0, while the record shares of the266

Grim5 population were proportional to those in the original steady state. At period t, the players match, observe each others’267

records (but not what population their opponent belongs to), and then play as their strategy dictates. We denote the average268

payoff of the Grim5 players and Grim1 players at period t by πGrim5,t and πGrim1,t, respectively.269

The evolution of the system from period t− 1 to t was driven by the average payoffs and sizes of the two populations at t− 1.
In particular, at any period t > 0, the share of the newborn players that belonged to the Grim5 population (µNGrim5,t) was
proportional to the product of µGrim5,t−1 and πGrim5,t−1, and similarly the share of the 1− γ newborn players that belonged
to the Grim1 population (µNGrim1,t) was proportional to the product of µGrim1,t−1 and πGrim1,t−1. Formally,

µNGrim5,t = µGrim5,t−1πGrim5,t−1

µGrim5,t−1πGrim5,t−1 + µGrim1,t−1πGrim1,t−1 (1− γ)

µNGrim1,t = µGrim1,t−1πGrim1,t−1

µGrim5,t−1πGrim5,t−1 + µGrim1,t−1πGrim1,t−1 (1− γ).

Fig. S1 presents the results of this simulation. Fig. S1a depicts the evolution of the share of players that use Grim5 and270

are cooperators (i.e. have record k < 5). Initially, this share is below the steady-state value of ≈ 0.8998, and is decreasing as271

the Grim1 mutants obtain high payoffs relative to the normal Grim5 players on average. However, the share of cooperator272

Grim5 players eventually begins to increase and approaches its steady-state value as the mutants die out.273

The reason the mutants eventually die out is that their payoffs eventually decline, as depicted in Fig. S1b. The tendency274

of the Grim1 players to defect means that they tend to move to high records relatively quickly, and so while they initially275

receive a high payoff from defecting against cooperators, this advantage is short lived.276
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We found similar results when the mutant population plays Grim9 rather than Grim1, although the average payoff in the277

mutant population never exceeded that in the normal population. And we again found similar results when a population initially278

playing the Grim8 equilibrium with steady-state share of cooperators of µC ≈ 0.613315 and γ = 0.95, ε = 0.05, g = 0.5, l = 4279

is infected with a mutant population playing Grim3 at t = 0, and for when it is infected with a mutant population playing280

Grim13.281

Public Goods282

Our analysis so far has taken the basic unit of social interaction to be the standard 2-player prisoner’s dilemma. However, there283

are important social interactions that involve many players: the management of the commons and other public resources is a284

leading example (67–70). Such multiplayer public goods games have been the subject of extensive theoretical and experimental285

research (48, 71–75). Here we show that a simple variant of GrimK strategies can support positive robust cooperation in the286

multiplayer public goods game when there is sufficient strategic complementarity.287

We use the same model as considered so far, except that now in each period the players randomly match in groups of size n,288

for some fixed integer n ≥ 2. All players in each group simultaneously decide whether to Contribute (C) or Not Contribute (D).289

If exactly x of the n players in the group contribute, each group member receives a benefit of f(x) ≥ 0, where f : N → R+290

is a strictly increasing function with f(0) = 0. In addition, each player who contributes incurs a private cost of c > 0. This291

coincides with the 2-player PD when n = 2, f(1) = 1 + g, f(2) = l + 2 + g, and c = l + 1 + g.292

For each x ∈ {0, . . . , n − 1}, let ∆(x) = f(x + 1) − f(x) denote the marginal benefit to each member when there is an293

additional contribution. Assume that ∆(x) < c < n∆(x) for each x ∈ {0, . . . , n− 1}. This assumption makes the public good294

game an n-player PD, in that D is the selfishly optimal action while everyone playing C is socially optimal.295

We consider the same record system as in the 2-player PD: Newborns have record 0. If a player plays D, their record296

increases by 1. If a player plays C, their record increases by 1 with probability ε > 0, and remains constant with probability297

1− ε.298

As in the 2-player PD, we find that a key determinant of the prospects for robust cooperation is the degree of strategic299

complementarity or substitutability in the social dilemma. In the public good game, we say that the interaction exhibits300

strategic complementarity if ∆(x) is increasing in x (i.e., contributing is more valuable when more partners contribute), and301

exhibits strategic substitutability if ∆(x) is decreasing in x.302

We first show that with strategic substitutability the unique strict equilibrium is Never Contribute. This generalizes our303

finding that Always Defect is the unique strict equilibrium in the 2-player PD when g ≥ l.304

Theorem 15. For any n ≥ 2, if the public good game exhibits strategic substitutability, the unique strict equilibrium is Never305

Contribute.306

Proof. Suppose n players who all have the same record k meet. By symmetry, either they all contribute or none of them307

contribute. In the former case, contributing is optimal for a record-k player when all partners contribute, so by strategic308

substitutability contributing is also optimal for a record-k player when a smaller number of partners contribute. Thus, a309

record-k player contributes regardless of their partners’ records. In the latter case, not contributing is optimal for a record-k310

player when no partners contribute, so by strategic substitutability not contributing is also optimal for a record-k player when311

a larger number of partners contribute.312

We have established that, for each k, record-k players do not condition their behavior on their opponents’ records. Hence,313

the distribution of future opposing actions faced by any player is independent of their record. This implies that not contributing314

is always optimal. �315

We now turn to the case of strategic complementarity and consider the following simple generalization of GrimK strategies:316

Records k < K are considered to be “good,” while records k ≥ K are considered “bad.” When n players meet, they all317

contribute if all of their records are good; otherwise, none of them contribute.318

For GrimK strategies to form an equilibrium, two incentive constraints must be satisfied: First, a player with record 0 (the319

“safest” good record) must want to contribute in a group with n− 1 other good-record players. Second, a player with record320

K − 1 (the “most fragile” good record) must not want to contribute in a group where no one else contributes.321

We let g = c−∆(n− 1) and l = c−∆(0). Note that

V0 = (1− γ)(µC)n−1(f(n)− c) + γ(1− ε)(µC)n−1V0 + γ(1− (1− ε)(µC)n−1)V1,

which gives
(1− ε) γ

1− γ (V0 − V1) = 1− ε
1− (1− ε)(µC)n−1 ((µC)n−1(f(n)− c)− V0).

By a similar argument to Lemma 5, it can be established that V0 = µC(µC)n−1(f(n)− c). We thus find that the cooperation322

constraint for a record 0 player is323

1− ε
1− (1− ε)(µC)n−1 (1− µC)(µC)n−1(f(n)− c) > g. [19]324

In addition,
VK−1 = (1− γ)(µC)n−1(f(n)− c) + γ(1− ε)(µC)n−1VK−1
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gives
(1− ε) γ

1− γ VK−1 = γ(1− ε)
1− γ(1− ε)(µC)n−1 (µC)n−1(f(n)− c).

Thus, the defection constraint for a record K − 1 player is

γ(1− ε)
1− γ(1− ε)(µC)n−1 (µC)n−1(f(n)− c) < l,

which gives325

(µC)n−1 <
1

γ(1− ε)
l

f(n)− c+ l
⇔ µC <

(
1

γ(1− ε)

) 1
n−1

(
l

f(n)− c+ l

) 1
n−1

. [20]326

This gives µC ≤ (l/(f(n)− c+ l))1/(n−1) in the (γ, ε)→ (1, 0) limit.327

Moreover, in the limit where ε→ 0, [19] gives

1− µC
1− (µC)n−1 (µC)n−1(f(n)− c) ≥ g ⇔ 1∑n−2

m=0(µC)m
(µC)n−1(f(n)− c) ≥ g.

Note that (µC)n−1/
∑n−2

m=0(µC)m is increasing in µC . Thus, this inequality, along with the previous upper bound for µC , puts
the following requirement on the parameters:

1− ( l
f(n)−c+l )

1
n−1

f(n)−c
f(n)−c+l

l

f(n)− c+ l
(f(n)− c) ≥ g,

which simplifies to328

g ≤

(
1−

(
l

f(n)− c+ l

) 1
n−1
)
l. [21]329

So far we have established [21], which is a necessary condition on the g, l parameters for any cooperation to be sustainable330

with GrimK strategies in the (γ, ε)→ (1, 0) limit. We can further characterize the maximum limit share of cooperators in331

GrimK equilibria using very similar arguments as those in Lemmas 2 and 3.332

Theorem 16.

lim
(γ,ε)→(1,0)

µCn (γ, ε) =


(

l
f(n)−c+l

) 1
n−1 if g <

(
1−

(
l

f(n)−c+l

) 1
n−1
)
l

0 if g >
(

1−
(

l
f(n)−c+l

) 1
n−1
)
l

.

333

Theorem 16 shows that GrimK strategies can support robust social cooperation in the n-player public goods game in much334

the same manner as in the 2-player PD. To see how this result reduces to Theorem 1 in the 2-player PD, note that f(2)− c = 1,335

so (l/(f(n)− c+ l))1/(n−1) = l/(1 + l) when n = 2.336

In the 2-player PD, we found that the class of GrimK strategies could achieve the same level of cooperation as a more337

general class of trigger strategies in the limit where (γ, ε)→ (1, 0). We note that such a result holds here as well for the class of338

trigger strategies that satisfy: (i) The set of all possible records can be partitioned into two classes, “good records” G and “bad339

records” B. (ii) When n players meet, they all contribute if all of their records are good and none of them contribute if any340

one of them has a bad record. (iii) The class B is absorbing: if k ∈ B, then every record k′ that can be reached starting at341

record k is also in B.342

Appendix343

Convergence Matlab Files.344

1 % Parameters345

2 gamma = 0 . 8 ;346

3 ep s i l o n = 0 . 0 2 ;347

4 T = 100 ; % Time pe r i od s348

5349

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%350

7 % Grim1351

8 k = 1 ;352

9353

10 % I n i t i a l i z e Cooperator Share Arrays354
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11 cooperator_share_high = ze ro s (T, 1 ) ; % Highest t r a j e c t o r y355

12 cooperator_share_steady = 0.248359∗ ones (T, 1 ) ; % Steady s t a t e356

13 cooperator_share_low = ze ro s (T, 1 ) ; % Lowest t r a j e c t o r y357

14358

15 % I n i t i a l i z e Period Share D i s t r i bu t i on Arrays359

16 share_di s t r ibut ion_high = ze ro s (k , 1 ) ;360

17 share_di s t r ibut ion_high (1 ) = 1 ; % Highest t r a j e c t o r y361

18 share_dis t r ibut ion_low = ze ro s (k , 1 ) ; % Lowest t r a j e c t o r y362

19363

20 % I t e r a t e Over Time Per iods364

21 f o r t = 1 :T365

22 % Highest Tra jec tory366

23 cooperator_share_high ( t ) = sum( share_di s t r ibut ion_high ) ; % Compute cooperator share367

24 share_di s t r ibut ion_high = update_grim_k (gamma, eps i l on , k , . . .368

25 share_di s t r ibut ion_high ) ; % Update per iod share d i s t r i b u t i o n369

26370

27 % Lowest Tra jec tory371

28 cooperator_share_low ( t ) = sum( share_dis t r ibut ion_low ) ; % Compute cooperator share372

29 share_dis t r ibut ion_low = update_grim_k (gamma, eps i l on , k , . . .373

30 share_dis t r ibut ion_low ) ; % Update per iod share d i s t r i b u t i o n374

31 end375

32376

33 % Format Figure377

34 t = 0 :T−1;378

35 dimensions = [ 0 , 0 , 1 0 , 6 ] ;379

36 f i g u r e ( ’ un i t s ’ , ’ inch ’ , ’ p o s i t i o n ’ , d imensions )380

37 hold on381

38 p lo t ( t , cooperator_share_high , ’−∗ ’ , ’ l i n ew id th ’ , 2 ) ;382

39 p lo t ( t , cooperator_share_steady , ’−∗ ’ , ’ l i n ew id th ’ , 2 ) ;383

40 p lo t ( t , cooperator_share_low , ’−∗ ’ , ’ l i n ew id th ’ , 2) ;384

41 hold o f f385

42 s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;386

43 s e t ( gca , ’ FontSize ’ ,32 , ’ FontWeight ’ , ’ bold ’ ) ;387

44 x l ab e l ( ’Time ( $t$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;388

45 y l = y l ab e l ( ’ Share o f Cooperators ( $\mu^{C}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;389

46 y l . Po s i t i on (1 ) = y l . Po s i t i on (1 ) + abs ( y l . Po s i t i on (1 ) ∗ 0 . 4 ) ;390

47 y l . Po s i t i on (2 ) = y l . Po s i t i on (2 ) − abs ( y l . Po s i t i on (2 ) ∗ 0 . 1 ) ;391

48 ylim ( [ 0 , 1 ] ) ;392

49 xlim ( [ 0 , 3 0 ] ) ;393

50 l egend ({ ’ Highest Tra jec tory ’ , ’ Steady State ’ , ’ Lowest Tra j ec tory ’ } , . . .394

51 ’ Locat ion ’ , ’ no r theas t ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;395

52 s e t ( gcf , ’ c o l o r ’ , ’w ’ ) ;396

53 hold o f f397

54398

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%399

56 % Grim2400

57 k = 2 ;401

58402

59 % I n i t i a l i z e Cooperator Share Arrays403

60 cooperator_share_high = ze ro s (T, 1 ) ; % Highest t r a j e c t o r y404

61 cooperator_share_high_steady = .985542∗ ones (T, 1 ) ; % Highest steady s t a t e405

62 cooperator_share_middle_steady = .918367∗ ones (T, 1 ) ; % Middle stead s t a t e406

63 cooperator_share_low_steady = .647111∗ ones (T, 1 ) ; % Lowest steady s t a t e407

64 cooperator_share_low = ze ro s (T, 1 ) ; % Lowest t r a j e c t o r y408

65409

66 % I n i t i a l i z e Period Share D i s t r i bu t i on Arrays410

67 share_di s t r ibut ion_high = ze ro s (k , 1 ) ;411

68 share_di s t r ibut ion_high (1 ) = 1 ; % Highest t r a j e c t o r y412

69 share_dis t r ibut ion_low = ze ro s (k , 1 ) ; % Lowest t r a j e c t o r y413

70414

71 % I t e r a t e Over Time Per iods415
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72 f o r t = 1 :T416

73 % Highest Tra jec tory417

74 cooperator_share_high ( t ) = sum( share_di s t r ibut ion_high ) ; % Compute cooperator share418

75 share_di s t r ibut ion_high = update_grim_k (gamma, eps i l on , k , . . .419

76 share_di s t r ibut ion_high ) ; % Update per iod share d i s t r i b u t i o n420

77421

78 % Lowest Tra jec tory422

79 cooperator_share_low ( t ) = sum( share_dis t r ibut ion_low ) ; % Compute cooperator share423

80 share_dis t r ibut ion_low = update_grim_k (gamma, eps i l on , k , . . .424

81 share_dis t r ibut ion_low ) ; % Update per iod share d i s t r i b u t i o n425

82 end426

83427

84 % Format Figure428

85 t = 0 :T−1;429

86 dimensions = [ 0 , 0 , 1 0 , 6 ] ;430

87 f i g u r e ( ’ un i t s ’ , ’ inch ’ , ’ p o s i t i o n ’ , d imensions )431

88 hold on432

89 p lo t ( t , cooperator_share_high , ’−∗ ’ , ’ l i n ew id th ’ , 2 ) ;433

90 p lo t ( t , cooperator_share_high_steady , ’−∗ ’ , ’ l i n ew id th ’ , 2 ) ;434

91 p lo t ( t , cooperator_share_middle_steady , ’−∗ ’ , ’ l i n ew id th ’ , 2 ) ;435

92 p lo t ( t , cooperator_share_low_steady , ’−∗ ’ , ’ l i n ew id th ’ , 2 ) ;436

93 p lo t ( t , cooperator_share_low , ’−∗ ’ , ’ l i n ew id th ’ , 2) ;437

94 hold o f f438

95 s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;439

96 s e t ( gca , ’ FontSize ’ ,32 , ’ FontWeight ’ , ’ bold ’ ) ;440

97 x l ab e l ( ’Time ( $t$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;441

98 y l = y l ab e l ( ’ Share o f Cooperators ( $\mu^{C}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;442

99 y l . Po s i t i on (1 ) = y l . Po s i t i on (1 ) + abs ( y l . Po s i t i on (1 ) ∗ 0 . 4 ) ;443

100 y l . Po s i t i on (2 ) = y l . Po s i t i on (2 ) − abs ( y l . Po s i t i on (2 ) ∗ 0 . 1 ) ;444

101 ylim ( [ 0 , 1 ] ) ;445

102 xlim ( [ 0 , 3 0 ] ) ;446

103 l egend ({ ’ Highest Tra jec tory ’ , ’ Highest Steady State ’ , ’ Middle Steady State ’ , . . .447

104 ’ Lowest Steady State ’ , ’ Lowest Tra jec tory ’ } , ’ Locat ion ’ , ’ s outheas t ’ , . . .448

105 ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;449

106 s e t ( gcf , ’ c o l o r ’ , ’w ’ ) ;450

107 hold o f f451

452

1 f unc t i on updated_share_distr ibut ion = update_grim_k (gamma, eps i l on , k , . . .453

2 sha r e_d i s t r i bu t i on )454

3455

4 % I n i t i a l i z e Updated Share D i s t r i bu t i on Array456

5 updated_share_distr ibut ion = ze ro s (k , 1 ) ;457

6458

7 % Update Share D i s t r i bu t i on Array459

8 updated_share_distr ibut ion (1 , 1 ) = 1 − gamma + . . .460

9 gamma∗(1 − ep s i l o n ) ∗sum( sha r e_d i s t r i bu t i on ) ∗ sha r e_d i s t r i bu t i on (1 ) ;461

10462

11 i f k>1463

12 f o r i = 2 : k464

13 updated_share_distr ibut ion ( i , 1 ) = . . .465

14 gamma∗(1−(1− ep s i l o n ) ∗sum( sha r e_d i s t r i bu t i on ) ) ∗ sha r e_d i s t r i bu t i on ( i −1) . . .466

15 + gamma∗(1− ep s i l o n ) ∗sum( sha r e_d i s t r i bu t i on ) ∗ sha r e_d i s t r i bu t i on ( i ) ;467

16 end468

17 end469

18470

19 end471

472

Evolutionary Dynamics Matlab Files.473
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1 % Parameters474

2 gamma = 0 . 9 ;475

3 ep s i l o n = 0 . 1 ;476

4 g = 0 . 4 ;477

5 l = 2 . 8 ;478

6 T = 100 ; % Time pe r i od s479

7480

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%481

9 % Normal − Grim5 , Mutant − Grim1482

10 k_normal = 5 ;483

11 k_mutant = 1 ;484

12 k = max( k_normal , k_mutant ) ;485

13486

14 % I n i t i a l i z e Normal Cooperator Share Arrays487

15 normal_cooperator_shares = ze ro s (T, 1 ) ; % Time s e r i e s488

16 normal_cooperator_shares_steady = 0.899754∗ ones (T, 1 ) ; % Steady s t a t e489

17490

18 % I n i t i a l i z e Normal Total Share Array491

19 normal_total_share = ze ro s (T, 1 ) ; % Time s e r i e s492

20 period_normal_total_share = 0 . 9 5 ; % Period value493

21494

22 % I n i t i a l i z e Normal Share D i s t r i bu t i on Arrays495

23 normal_share_distr ibut ion = ze ro s (T, k ) ; % Time s e r i e s496

24 per iod_normal_share_distr ibut ion = ze ro s (1 , k ) ; % Period value497

25498

26 % Set i n i t a l normal share d i s t r i b u t i o n to be p ropo r t i ona l to steady s t a t e499

27 % d i s t r i b u t i o n500

28 f o r i =1:k_normal501

29502

30 per iod_normal_share_distr ibut ion (1 , i ) = . . .503

31 period_normal_total_share ∗beta (gamma, eps i l on , 0 . 8 99754 ) ^( i −1) . . .504

32 ∗(1−beta (gamma, eps i l on , 0 . 8 99754 ) ) ;505

33506

34 end507

35508

36 i f k>k_normal509

37510

38 f o r i=k_normal+1:k511

39512

40 per iod_normal_share_distr ibut ion (1 , i ) = . . .513

41 period_normal_total_share ∗beta (gamma, eps i l on , 0 . 8 99754 ) ^(k_normal ) . . .514

42 ∗gamma^( i−k_normal−1)∗(1−gamma) ;515

43516

44 end517

45518

46 end519

47520

48 % I n i t i a l i z e Normal Average Payof f Array521

49 normal_payoff = ze ro s (T, 1 ) ;522

50523

51 % I n i t i a l i z e Mutant Total Share Array524

52 mutant_total_share = ze ro s (T, 1 ) ; % Time s e r i e s525

53 period_mutant_total_share = 1−period_normal_total_share ; % Period value526

54527

55 % I n i t i a l i z e Mutant Share D i s t r i bu t i on Arrays528

56 mutant_share_distr ibut ion = ze ro s (T, k ) ; % Time s e r i e s529

57 per iod_mutant_share_distr ibut ion = ze ro s (1 , k ) ; % Period value530

58 per iod_mutant_share_distr ibut ion (1 , 1 ) = period_mutant_total_share ; % I n i t i a l mutants have531

record 0532

59533

60 % I n i t i a l i z e Mutant Average Payof f Array534
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61 mutant_payoff = ze ro s (T, 1 ) ;535

62536

63 % I t e r a t e Over Time Per iods537

64 f o r t = 1 :T538

65 % Update Shares539

66 normal_total_share ( t , 1 ) = period_normal_total_share ;540

67 normal_share_distr ibut ion ( t , : ) = per iod_normal_share_distr ibut ion ( 1 , : ) ;541

68 normal_cooperator_shares ( t ) = sum( per iod_normal_share_distr ibut ion ( 1 , 1 : k_normal ) ) ;542

69 mutant_total_share ( t , 1 ) = period_mutant_total_share ;543

70 mutant_share_distr ibut ion ( t , : ) = per iod_mutant_share_distr ibut ion ( 1 , : ) ;544

71545

72 % Compute Period Payo f f s546

73 [ period_normal_payoff , period_mutant_payoff ] = . . .547

74 payo f f s_genera l ( g , l , k_normal , k_mutant , period_normal_total_share , . . .548

75 per iod_normal_share_distr ibut ion , period_mutant_total_share , . . .549

76 per iod_mutant_share_distr ibut ion ) ;550

77551

78 % Update Payof f Time S e r i e s552

79 normal_payoff ( t , 1 ) = period_normal_payoff ;553

80 mutant_payoff ( t , 1 ) = period_mutant_payoff ;554

81555

82 % Compute Updated Period Shares556

83 [ period_normal_total_share , per iod_normal_share_distr ibut ion ( 1 , : ) , . . .557

84 period_mutant_total_share , per iod_mutant_share_distr ibut ion ( 1 , : ) ] . . .558

85 = dynamic_update_general (gamma, eps i l on , k_normal , k_mutant , . . .559

86 period_normal_total_share , per iod_normal_share_distr ibut ion ( 1 , : ) , . . .560

87 period_mutant_total_share , per iod_mutant_share_distr ibut ion ( 1 , : ) , . . .561

88 period_normal_payoff , period_mutant_payoff ) ;562

89563

90 end564

91565

92566

93 % Format Figures567

94 t = 0 :T−1;568

95 dimensions = [ 0 , 0 , 1 0 , 6 ] ;569

96570

97 f i g u r e ( ’ un i t s ’ , ’ inch ’ , ’ p o s i t i o n ’ , d imensions )571

98 hold on572

99 p lo t ( t , normal_cooperator_shares , ’−∗ ’ , ’ l i n ew id th ’ , 1) ;573

100 p lo t ( t , normal_cooperator_shares_steady , ’−∗ ’ , ’ l i n ew id th ’ , 1) ;574

101 s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;575

102 s e t ( gca , ’ FontSize ’ ,24 , ’ FontWeight ’ , ’ bold ’ ) ;576

103 x l ab e l ( ’Time ( $t$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;577

104 y l = y l ab e l ( ’ Share o f Normal Cooperators ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;578

105 y l . Po s i t i on (1 ) = y l . Po s i t i on (1 ) + abs ( y l . Po s i t i on (1 ) ∗ 0 . 4 ) ;579

106 y l . Po s i t i on (2 ) = y l . Po s i t i on (2 ) + abs ( y l . Po s i t i on (2 ) ∗ 0 . 05 ) ;580

107 ylim ( [ . 8 , 1 ] ) ;581

108 xlim ( [ 0 , 6 0 ] ) ;582

109 l egend ({ ’ $Grim5$ Cooperators ’ , ’ Steady State ’ } , ’ Locat ion ’ , ’ no r theas t ’ , . . .583

110 ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;584

111 s e t ( gcf , ’ c o l o r ’ , ’w ’ ) ;585

112 hold o f f586

113587

114 f i g u r e ( ’ un i t s ’ , ’ inch ’ , ’ p o s i t i o n ’ , d imensions )588

115 hold on589

116 p lo t ( t , normal_payoff , ’−∗ ’ , ’ l i n ew id th ’ , 1) ;590

117 p lo t ( t , mutant_payoff , ’−∗ ’ , ’ l i n ew id th ’ , 1) ;591

118 s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;592

119 s e t ( gca , ’ FontSize ’ ,24 , ’ FontWeight ’ , ’ bold ’ ) ;593

120 x l ab e l ( ’Time ( $t$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;594

121 y l = y l ab e l ( ’ Average Payo f f s ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;595
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122 y l . Po s i t i on (1 ) = y l . Po s i t i on (1 ) + abs ( y l . Po s i t i on (1 ) ∗ 0 . 25 ) ;596

123 y l . Po s i t i on (2 ) = y l . Po s i t i on (2 ) + abs ( y l . Po s i t i on (2 ) ∗ 0 . 2 ) ;597

124 ylim ( [ 0 , 1 . 5 ] ) ;598

125 xlim ( [ 0 , 6 0 ] ) ;599

126 l egend ({ ’ $Grim5$ Players ’ , ’ $Grim1$ Players ’ } , ’ Locat ion ’ , ’ no r theas t ’ , . . .600

127 ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;601

128 s e t ( gcf , ’ c o l o r ’ , ’w ’ ) ;602

129 hold o f f603

604

1 f unc t i on f = beta (gamma, eps i l on , cooperator_share )605

2606

3 f = gamma∗(1−(1− ep s i l o n ) ∗ cooperator_share ) /(1−gamma∗(1− ep s i l o n ) ∗ cooperator_share ) ;607

4608

5 end609

1 f unc t i on [ ratio_normal , ratio_mutant ] = . . .610

2 proper_rat ios_genera l ( period_normal_total_share , period_mutant_total_share , . . .611

3 period_normal_payoff , period_mutant_payoff )612

4613

5 i f ( period_normal_payoff >0) && ( period_mutant_payoff >0)614

6 ratio_normal = period_normal_total_share ∗period_normal_payoff / . . .615

7 ( period_normal_total_share ∗period_normal_payoff + . . .616

8 period_mutant_total_share ∗period_mutant_payoff ) ;617

9 ratio_mutant = period_mutant_total_share ∗period_mutant_payoff / . . .618

10 ( period_normal_total_share ∗period_normal_payoff + . . .619

11 period_mutant_total_share ∗period_mutant_payoff ) ;620

12 end621

13622

14 i f ( period_normal_payoff >0) && ( period_mutant_payoff<=0)623

15 ratio_normal = 1 ;624

16 ratio_mutant = 0 ;625

17 end626

18627

19 i f ( period_normal_payoff <=0) && ( period_mutant_payoff >0)628

20 ratio_normal = 0 ;629

21 ratio_mutant = 1 ;630

22 end631

23632

24 i f ( period_normal_payoff <=0) && ( period_mutant_payoff<=0)633

25 ratio_normal = period_normal_total_share /( period_normal_total_share + . . .634

26 period_mutant_total_share ) ;635

27 ratio_mutant = period_mutant_total_share /( period_normal_total_share + . . .636

28 period_mutant_total_share ) ;637

29 end638

30639

31 end640

1 f unc t i on [ period_normal_payoff , period_mutant_payoff ] = payo f f s_genera l ( g , l , . . .641

2 k_normal , k_mutant , period_normal_total_share , per iod_normal_share_distr ibut ion , . . .642

3 period_mutant_total_share , per iod_mutant_share_distr ibut ion )643

4644

5 normal_cooperator_share = sum( per iod_normal_share_distr ibut ion ( 1 , 1 : k_normal ) ) ;645

6 mutant_cooperator_share = sum( per iod_mutant_share_distr ibut ion ( 1 , 1 : k_mutant ) ) ;646

7647

8 i f k_normal>k_mutant648

9 % Compute the Share o f Mutant Players Misperce ived by Normal Players649

10 misperceived_mutant_share = . . .650

11 sum( per iod_mutant_share_distr ibut ion (1 , k_mutant+1:k_normal ) ) ;651

12652

13 % Compute " Total Populat ion Payof f s "653
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14 total_normal_payoff = normal_cooperator_share ∗ ( ( normal_cooperator_share . . .654

15 +mutant_cooperator_share ) ∗1 − misperceived_mutant_share∗ l ) ;655

16 total_mutant_payoff = mutant_cooperator_share ∗( normal_cooperator_share . . .656

17 +mutant_cooperator_share ) ∗1 + . . .657

18 misperceived_mutant_share∗normal_cooperator_share ∗(1+g ) ;658

19659

20 end660

21661

22 i f k_mutant>k_normal662

23 % Compute the Share o f Normal Players Misperce ived by Mutant Players663

24 misperceived_normal_share = sum( per iod_normal_share_distr ibut ion (1 , k_normal+1:k_mutant )664

) ;665

25666

26 % Compute " Total Populat ion Payof f s "667

27 total_normal_payoff = normal_cooperator_share ∗( normal_cooperator_share . . .668

28 +mutant_cooperator_share ) ∗1 + misperceived_normal_share ∗mutant_cooperator_share∗(1+669

g ) ;670

29 total_mutant_payoff = mutant_cooperator_share ∗ . . .671

30 ( ( normal_cooperator_share + mutant_cooperator_share ) ∗1 − . . .672

31 misperceived_normal_share ∗ l ) ;673

32674

33 end675

34676

35 % Compute Average Payo f f s677

36 period_normal_payoff = total_normal_payoff / period_normal_total_share ;678

37 period_mutant_payoff = total_mutant_payoff /period_mutant_total_share ;679

38 end680

1 f unc t i on [ updated_period_normal_total_share , updated_period_normal_share_distr ibution , . . .681

2 updated_period_mutant_total_share , updated_period_mutant_share_distribution ] = . . .682

3 dynamic_update_general (gamma, eps i l on , k_normal , k_mutant , . . .683

4 period_normal_total_share , per iod_normal_share_distr ibut ion , . . .684

5 period_mutant_total_share , per iod_mutant_share_distr ibution , . . .685

6 period_normal_payoff , period_mutant_payoff )686

7687

8 k = max( k_normal , k_mutant ) ;688

9689

10 % Compute Rat ios o f Incoming Players that are Normal or Mutant690

11 [ ratio_normal , ratio_mutant ] = . . .691

12 proper_rat ios_genera l ( period_normal_total_share , . . .692

13 period_mutant_total_share , period_normal_payoff , period_mutant_payoff ) ;693

14694

15 % Compute Updated Total Share o f Normal and Mutant Players695

16 updated_period_normal_total_share = gamma∗period_normal_total_share + (1−gamma) ∗696

ratio_normal ;697

17 updated_period_mutant_total_share = gamma∗period_mutant_total_share + (1−gamma) ∗698

ratio_mutant ;699

18700

19 % I n i t i a l i z e Updated Share D i s t r i bu t i on Arrays701

20 updated_period_normal_share_distr ibution = ze ro s (1 , k ) ;702

21 updated_period_mutant_share_distribution = ze ro s (1 , k ) ;703

22704

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%705

24 % Compute Updated Period Normal Share D i s t r i bu t i on706

25707

26 % Compute Share o f P layers Perce ived as Cooperators by Normal Players708

27 mu_c = sum( per iod_normal_share_distr ibut ion ( 1 , 1 : k_normal ) ) + . . .709

28 sum( per iod_mutant_share_distr ibut ion ( 1 , 1 : k_normal ) ) ;710

29711

30 % Computed Updated Normal Shares712

31 updated_period_normal_share_distr ibution (1 , 1 ) = . . .713

32 gamma∗(1− ep s i l o n ) ∗mu_c∗ per iod_normal_share_distr ibut ion (1 , 1 ) + . . .714
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33 (1−gamma) ∗ ratio_normal ;715

34716

35 f o r i =2:k_normal717

36 updated_period_normal_share_distr ibution (1 , i ) = . . .718

37 gamma∗(1−(1− ep s i l o n ) ∗mu_c) ∗ per iod_normal_share_distr ibut ion (1 , i −1) + . . .719

38 gamma∗(1− ep s i l o n ) ∗mu_c∗ per iod_normal_share_distr ibut ion (1 , i ) ;720

39 end721

40722

41 i f k_mutant>k_normal723

42 updated_period_normal_share_distr ibution (1 , k_normal+1) = . . .724

43 gamma∗(1−(1− ep s i l o n ) ∗mu_c) ∗ per iod_normal_share_distr ibut ion (1 , k_normal ) ;725

44726

45 i f k_mutant>k_normal+1727

46 f o r i=k_normal+2:k_mutant728

47 updated_period_normal_share_distr ibution (1 , i ) = . . .729

48 gamma∗per iod_normal_share_distr ibut ion (1 , i −1) ;730

49 end731

50 end732

51733

52 end734

53735

54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%736

55 % Compute Updated Period Mutant Share D i s t r i bu t i on737

56738

57 % Compute Share o f P layers Perce ived as Cooperators by Normal Players739

58 mu_c = sum( per iod_normal_share_distr ibut ion ( 1 , 1 : k_mutant ) ) + . . .740

59 sum( per iod_mutant_share_distr ibut ion ( 1 , 1 : k_mutant ) ) ;741

60742

61 % Computed Updated Mutant Shares743

62 updated_period_mutant_share_distribution (1 , 1 ) = . . .744

63 gamma∗(1− ep s i l o n ) ∗mu_c∗per iod_mutant_share_distr ibut ion (1 , 1 ) + . . .745

64 (1−gamma) ∗ ratio_mutant ;746

65747

66 f o r i =2:k_mutant748

67 updated_period_mutant_share_distribution (1 , i ) = . . .749

68 gamma∗(1−(1− ep s i l o n ) ∗mu_c) ∗ per iod_mutant_share_distr ibut ion (1 , i −1) + . . .750

69 gamma∗(1− ep s i l o n ) ∗mu_c∗per iod_mutant_share_distr ibut ion (1 , i ) ;751

70 end752

71753

72 i f k_normal>k_mutant754

73 updated_period_mutant_share_distribution (1 , k_mutant+1) = . . .755

74 gamma∗(1−(1− ep s i l o n ) ∗mu_c) ∗ per iod_mutant_share_distr ibut ion (1 , k_mutant ) ;756

75 end757

76758

77 i f k_normal>k_mutant+1759

78 f o r i=k_mutant+2:k_normal760

79 updated_period_mutant_share_distribution (1 , i ) = . . .761

80 gamma∗per iod_mutant_share_distr ibut ion (1 , i −1) ;762

81 end763

82 end764

83765

84 end766

767
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a

b

Fig. S1. Evolutionary dynamics. a, The blue curve depicts the evolution of the share of players that use Grim5 and are cooperators (i.e. have some record k < 5). b, The
average payoffs in the normal Grim5 population (blue curve) and in the mutant Grim1 population (red curve).
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