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Supplementary Information Text 

S1. Experimental Platform and Particle Tracking 

Experimental platform. The confinement mechanism we used in our experiments is composed 
of six main components (Fig. S1a): (1) a bottom surface, (2) 12 identical moving leaves, (3) a 
rotating confinement wheel, (4) a DC motor, (5) four fixing gears and (6) a confining, transparent 
top lid. The bottom surface (20 cm x 20 cm x 0.5 cm, acrylic plate (Plexiglass® EvonikTM)) was 
produced using a CO2 laser cutter (Epilog Laser Mini). We referred to the center of the surface, 
where the particles slide during the experiments, as the arena. The perimeter of the arena 
contained the sliding rails and the holes that guide the linear motion of the leaves. We coated the 
arena with 3 µm-thick Parylene C to reduce frictional effects (heat production, contact 
electrification) with the sliding particles. Each leaf was 3 mm-thick, had a triangular shape and was 
fabricated out of the same acrylic material. There were two extrusions on each leaf structure: a 
column on the bottom, and a pushing pin on the top. The column fitted in the sliding rails of the 
bottom surface and the pin fitted in the circular slots on the confinement wheel. Both of these 
extrusions converted the rotational motion of the confinement wheel into the translational motion of 
the leaves and enforced them to slide on the surface. We coated the bottom surface of the leaves 
with 300 µm-thick copper film to minimize charge build-up upon contact electrification within the 
Parylene, and we electrically grounded the whole mechanism. The adjacent leaves were arranged 
in tight contact so that they preserved a dodecagonal arena shape at all positions. The confinement 
wheel fitted on top of the leaves and had gear teeth on its exterior side that meshed with another 
smaller gear fitted to the shaft of a DC motor (MaxonTM DCX®). This coupled gear mechanism made 
the sliding motion of the leaves bidirectional and reversible. We used Maxon’s DC motor controller 
(MaxonTM EPOS4® 50/5 Module) to control the position and velocity of the confinement mechanism 

– that is, to control R and its linear rate of change over time dR dt⁄ = Ṙ. We could change R from 

RMAX = 47.5 mm to RMIN = 20.5 mm and Ṙ within the range of 0.042 mm/s to 46.240 mm/s. In our 

experiments, we used a subset of the total Ṙ range. Note that a linear radius rate of change 
corresponded to a non-linear rate of change in the arena volume. We additionally used four small 
gears to fix the confinement wheel to avoid shaking while the wheel rotated on its axis. There were 
two limit switches and a marker on the confinement wheel for calibration and homing procedures 
(Fig. S1b). A transparent lid fitted over the leaves and the central gap on the confinement wheel to 
confine the particles into the two-dimensional arena (see Movie S1). There was a 100 µm spacer 
in between the lid and the top of the leaves to avoid additional sliding friction with the particles. The 
complete mechanism was mounted on top of the aluminum platform of the orbital shaker The 
complete setup, except for the top-view high-speed camera, can be seen in Fig. S1b. 

Particle tracking. A high-speed camera (Basler Ace acA800-510uc) was mounted on the same 
orbital shaker platform to sync the reference frame of the camera to that of the arena. This 
configuration allowed us to fix the arena in the reference frame of the camera and track the particle 
motion relative to the center of the arena. According to the camera’s distance to the physical setup 
(~225 mm) and image resolution (800 x 600 pixel2), we could achieve a resolution of ~0.195 mm 
per pixel. We used MATLAB®’s built-in image processing toolbox (1) to extract the high-contrast 
‘T’-shaped markers in a single grayscale image (Fig. S1d). We found the center of mass of the total 
number of pixels that corresponded to the T-marker and used this information to determine the 
position of a particle. We compared the performance of this method to a generic circular Hough 
transform (2) and found the difference between detected centroid points to be 0.19 ± 0.06 mm (i.e., 
less than a pixel) for the average of 102 examples (Fig. S1d). We used the same toolbox to 
determine the orientation of each particle on the plane from the angle between the x-axis of the 
image and the long and short vertices of the T-shape. The high-speed image acquisition (360 
frames per second) allowed us to easily associate two particles across consecutive frames by 
comparing their position and orientation data.  
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S2. Magnetic Model and Arena Coverage by Particles 

In our experiments, the particles are confined within the 2D domain of the arena and interact 
with each other repulsively on the same horizontal plane, as sketched in Fig. S2a. Therefore we 
measured the magnetic repulsion force between a pair of approaching particles on a horizontal axis 
using a rheometer setup (TA Instruments, DHR-3). The measurements are compared with the 
theoretical dipole model in Fig. S2b. The modeled and measured forces agree very closely, hence 
we used the magnetic dipole model to approximate the magnetic force and magnetic potential 
energy between particles in the rest of our experiments using: 

F⃗⃗ ( r , m1⃗⃗ ⃗⃗  ⃗, m2⃗⃗ ⃗⃗  ⃗ ) = 
3μ0

4π| r  |
4 (m2⃗⃗ ⃗⃗  ⃗(m1⃗⃗ ⃗⃗  ⃗ ∙ r̂) + m1⃗⃗ ⃗⃗  ⃗(m2⃗⃗ ⃗⃗  ⃗ ∙ r̂) + r̂(m1⃗⃗ ⃗⃗  ⃗ ∙ m2⃗⃗ ⃗⃗  ⃗) - 5r̂(m1⃗⃗ ⃗⃗  ⃗ ∙ r̂)(m2⃗⃗ ⃗⃗  ⃗ ∙ r̂))  (1) 

Equation (1) shows the magnetic force vector F⃗⃗  that depends on the distance vector r  and unit 

vector r̂ that points between two magnetic dipoles with magnetic moments m1⃗⃗ ⃗⃗  ⃗ and m2⃗⃗ ⃗⃗  ⃗. In our 

experiments, each particle had the same magnetic moment mi⃗⃗⃗⃗  = [0 0 BrV μ
0

⁄ ] where Br is the 

flux density (Br = 1.32 T, 3 mm diameter, 1 mm height, N48 grade, Supermagnete, Fig. S1c), V is 

the volume of the cylindrical magnet (V ≅ 7.07 × 10
-9

 m3) and μ
0
 is the permeability of the vacuum 

(μ
0
= 4π × 10

-7
 H/m). As the particles were confined in a 2D domain in our experiments, we assumed 

r  = [rx ry 0] and the unit vector r̂ accordingly. Similarly, we approximated the magnetic potential 

energy EU = - mi⃗⃗⃗⃗  ∙ B⃗⃗ (r ), with the magnetic field B⃗⃗ (r ) measured at a distance r  from for a single 

magnetic dipole with moment mi⃗⃗⃗⃗ : 

B⃗⃗ (r ) = 
μ0

4π | r  ⃗|
3 3(r | r  ⃗|⁄ ) ((r | r  ⃗|⁄ ) ∙ mi⃗⃗⃗⃗ )  - mi⃗⃗⃗⃗     (2) 

We calculated the total magnetic potential of the self-assembly patterns in our experiments by 
summing up the magnetic field shown in Equation (2) for all the 25 particles. 

To show the importance of mutual inter-particle magnetic repulsion for a homogeneous 
exploration of the arena, we used a separate set of 25 particles (identical to the ones used in the 
experiments) and demagnetized their inner permanent magnets by heating them above their Curie 
temperature (~400°C). We placed these particles within the arena and recorded their position for 
30 s while fr = 6 Hz and R = RMAX. Figure S2c shows the probability distribution function of their 
position as a 2D histogram that divides the dodecagonal arena into 100 x 100 equal-sized bins. It 
can be seen that the particles tend to follow the trajectory dominantly set by the orbital shaker 
(shown with the smaller dotted circle). Despite the disturbances caused by physical impacts with 
each other and the hard walls of the arena and the friction on the arena surface, the particles did 
not explore the arena homogeneously and got collected at the center while dissipating their energy 
(3). The influence of the magnetic repulsion can be easily appreciated when this result is compared 
with the case of magnetized particles and their arena exploration with  fr = 6 Hz, shown in Fig. S2g. 
In the latter case, the exploration was more homogenous thanks to the repulsion force between 
particles. These histogram figures also show the influence of fr on particle exploration in addition 
to the magnetic repulsion. Even in the presence of magnetic repulsion, the particles remained 
mostly stationary if the shaking frequency was not high enough (i.e., fr  ≤ 3 Hz) to overcome static 

friction. Figure S2d shows the condition (fr = 3.3 Hz) for which the particles could overcome the 
friction but their trajectories were governed by the magnetic repulsion and the orbital shaker motion. 
This trend started to diminish for fr = 4 Hz and particles formed a cohesive structure noticeable as 

a circular path with R ≅ 30 mm ≅ 6ρ in Fig. S2e. Increasing fr from 5 Hz to 7 Hz, the particles 
gained more kinetic energy to work against the magnetic potential and hard interactions started to 
happen, and the particles consequently explored the available space more homogeneously. In all 
of the cases, particles tried to avoid close contact with each other to reduce the magnetic potential 
energy, hence they tended to escape the arena. However, the hard walls stopped them at the arena 
edges, as evidenced by a higher particle distribution probability at the hard boundaries (Fig. S2e-
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h). Therefore, the homogeneous exploration of the particles excludes the dodecagonal strip that 
immediately neighbors the hard wall boundary.  

S3. Physical Analogies with Brownian systems  

To investigate the role of the shaking frequency (fr) on the particle behavior, we performed 33 
isochoric experiments with 25 magnetic particles under constant arena volume with radius 
R = RMAX. We picked fr values from the list [3.0, 3.3, 3.7, 4.0, 5.0, 5.3, 5.7, 6.0, 6.3, 6.7, 7.0] Hz and 
repeated three experiments for each value while video recording the motion of the particles for 30 
s at the rate of 360 fps. We computed the radial distribution function g(r) and performed mean-
squared displacement analysis for all 10800 frames of each experiment.  

We have previously observed that the static friction of the arena surface dominated the mobility 
of the particles when fr = 3.0 Hz. The spiky g(r) in Fig. S3a shows a clear sign of a mostly static 
structure that was preserved among the particles as they could not gain enough mobility and 
relocate even after 30 s of shaking. The maximum value of the mean-squared displacement (MSD) 
of these particles in Fig. S3c also shows that particles could not move more than ~ 5 mm in total. 
To this end, the static friction was the dominant force on the particles and the influence of the fr  
could not be observed.  

We started observing particle motion after fr ≥ 3.3 Hz. We saw that for fr = 3.3 Hz, the particles 
gained certain mobility (max. MSD in Fig. S3c ≈ 14 mm) and the static structure between 25 
particles started to disappear slowly (shown with a smoother g(r) in Fig. S3a). Even though particles 
were moving in this case, their trajectories (as shown in Fig. S2d) were still following the circular 
pattern governed by the orbital shaker and they could not explore the maximum area of the arena 
(the dashed horizontal line in Fig. S3c describes the maximum area a particle can cover within the 

assembly arena boundaries, Dmax = (2RMAX - ρ)
2
. Only after fr ≥ 4.0 Hz, we could see that particles 

gained enough mobility to explore the assembly arena, but the magnetic potential field was still the 
dominant effect on the particle motion. 

We further investigated the shaking frequency within the range where hard particle interactions 
became observable (as seen in Fig. S3b). In this range (i.e., fr ≥ 5.3 Hz), the kinetic energy provided 
by the shaking balanced the active forces on the particles, revealing interesting interactions taking 
place in our system. Even though our particles are in the millimeter scale, the analysis of the particle 
MSDs (Fig. S3d) and of the probability distribution of velocities (Fig. S3e) and angular change of 
orientation (Fig. S3g) revealed behavior reminiscent of a Brownian system at certain time scales. 
For this analysis, we filtered out the orbital component from the particle motion due to the global 
mechanical forcing (4) (explained in detail in SI section S4). The particles experienced a sequence 
of ballistic and diffusive motion regimes between 0 − 0.05 s and 0.1 − 0.5 s respectively, before 
reaching saturation at around 3 s due to the hard boundaries of the arena (Fig. S3d). Particle 
velocities averaged over the x-coordinate (in the diffusive regime) are well fit by the 2D Maxwell-

Boltzmann (i.e., Rayleigh) distribution, P(v) = (v σf
2⁄ ) exp (- v2 2σf

2⁄ ), characterized by a single 
parameter, the velocity mode σf (Fig. S3e). Particle velocity increased with increasing fr (Fig. S3c), 

and σf scaled linearly with fr (Fig. S3f). The change in the orientation of the particles, ΔΘ, showed 

a behavior similar to a biased random walker. We calculated the distribution of ΔΘ by finding the 
angular difference between each particle’s orientation for every consecutive frame within the 
diffusive regime. As notable by the positive mean of the unfiltered distribution in Fig. S3g, the 
particles followed the orbital trajectory. The filtering of the global forcing yielded a zero-mean 
normal angular distribution, corresponding in the analogy to angular Brownian motion with memory. 
Accordingly, the updated particle orientation was selected within a finite range biased around the 
prior orientation (zero mean) and with equal likelihood toward positive or negative differences 
(symmetry). 

The analysis indicates that the shaking frequency of the granular system at certain time scales 
was acting similarly to an effective temperature when fr ≥ 5.3 Hz. We aim to establish stronger 
correlations by increasing the particle count in our system in future works. 
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S4. Filtering of Shaking Frequencies 

In our experiments, the particles moved on the arena surface propelled by the momentum 
transferred from the orbital shaker employing sliding friction and collisions with the hard arena walls. 
The shearing force applied by the shaker equally and synchronously to all particles scaled with 

their mass m ≅ 0.093 g, ẍ(t) = -Lω2 cos (ωt) and ÿ(t) = -Lω2 sin (ωt) where ω = 2 π fr. The orbital 
shaking generated a global forcing influence, such that the orbital motion component is equally 
superposed to the trajectory of all particles. However, the particle interactions depended on the 
mutual magnetic repulsion, collisions with each other, spatial particle densities and hard boundary 
effects. To extract and highlight the relative particle motion over the orbital forcing, we filtered out 
the influence of the orbital shaker (fr) by applying a band-stop filter to the Fast Fourier Transform 
(FFT) on the x- and y-coordinates of the particles during the experiments (4). For a single 
experiment, we initially converted the particle coordinates into the frequency domain (Fig. S4a). It 
was found that the orbital shaking influenced the frequency space amplitudes up to three orders of 
magnitude near the shaking frequency, fr = 6 Hz (see Fig. S4c for fr = 7 Hz). We applied a band-

stop filter centered at fr with 2 Hz width to exclude the effects of the orbital motion and then inverse-
FFTed the filtered signal. The band-stop filter collaterally removed the natural motion of the 
particles within the fr ± 1 Hz (e.g. [5 7] Hz in Fig. S4a) frequency range. However, as the 
components within the filtered spectrum had much lower amplitudes compared to the low-
frequency components of the signal, the resulting motion of the particles was not significantly 
disturbed. We chose the width and amplitude of the filter within the range that did not influence the 
dynamics of the system based on our previous work on the kinetics of orbital shaking and the 
application of band-stop filtering (4).  

The results of the FFT filtering can be seen in the mean squared displacement (MSD) data 
shown in Fig. S4b and 4d. Here we compare the average and the maximum MSD values of 25 
particles during three experiments with and without the band-stop filter on x- and y-coordinates. 
The filtering excluded the cyclic motion of the particles without disturbing the interactions taking 
place in the overall particle system. The insets reveal that the particle motion was influenced by the 
global fr. The maximum distance the particles can cover in longer periods was strictly constrained 
by the hard boundaries of our mechanism and is represented with the horizontal dashed line 

(Dmax = (2RMAX - ρ)
2
). The particles were obviously constrained by this physical limit regardless of 

the applied filter; however, we noticed that the filtered particle trajectories tended to overcome this 
limit, as the FFT did not impose the hard boundaries. This excess amount did not impact the overall 
particle behavior and motion analysis.  

S5. Particle Count 

We chose N = 25 particles for our reprogrammable self-assembly experiments to guarantee 
stable states under full compression (R = RMIN) while still maintaining the generalizability of our 
results. We defined structural stability as the topological permanence of the self-assembled 
patterns during shaking which can only be guaranteed when particles lose their mobility and cannot 
relocate within the compressed arena (see section S6 for the topological definition of self-
assembled patterns). The underlying factors behind achieving stability with 25 particles were the 
geometrical limits of our confinement mechanism, the particle diameter (ρ), magnetic repulsion 
force and the range of the shaking frequency. The theoretical upper limit for the number of particles 
with ρ = 5 mm that can fit inside our assembly arena with R = RMIN = 20.5 mm was 53. This number 
was calculated with a geometric optimization algorithm (5), so it did not consider magnetic repulsion 
between particles or any other mechanical forcing that might occur during confinement. Therefore, 
we expect the maximum number of magnetic particles fitting in our system to be lower than 53. 
Naturally, the maximum number of particles would increase with a larger confinement mechanism 
and/or smaller particle radius. 

We investigated the minimum number of particles that guarantees the structural stability of the 
patterns in our system. We systematically increased the number of particles from 1 to 25 and 
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measured their kinetic and magnetic potential energies. For every experiment, we placed the 
chosen number of particles within the arena, agitated the system with shaking frequency fr = 6 Hz 

and compressed the particles with the lowest rate (Ṙ = 0.079 mm/s) until we reached the minimum 

radius RMIN. After the particles were compressed, we tracked their positions for 5 s and reported 
their energies. Figure S5a shows the calculated sum of kinetic and magnetic potential energy 
averages for the different number of particle experiments. It can be seen that the sum of the 
magnetic potential energy increased regularly and kinetic energy decreased with increasing N. We 

see a drastic drop in the kinetic energy after N = 21. Figure S5b shows the average kinetic energy 

for the sum of the particles and for each particle for different N. We see a slight increase in the 
energy sum until N = 3 as the number of particles increased, but after that point, the magnetic 
potential energy dominated the system and kinetic energy dropped. We also noticed a consistent 
drop in the average kinetic energy and velocity of single particles with increasing N (Fig S5b and 
Fig S5c). These results show that only after N ≥ 25 the particles lost their mobility and allowed of 
meta-stable patterns during the maximum compression.  

In our experiments, we had the option to choose 53 > N ≥ 25 to demonstrate the repeatable and 
reversible programming of self-assembled patterns. We performed 1200 experiments in total to 
show the statistical programmability of the 12 classes observed at R = RMIN – which do not 
necessarily cover all the possible configurations – for 25 particles. As the repeatability and 
reversibility of our system originated from the interactions between the particles and the dynamic 
hard boundaries, and not only from N, we chose N = 25 for the demonstration of our claims. We 

expect that more patterns with higher complexity can be observed with larger N (i.e., 53 > N ≥ 25). 
Many more realizations of the programmable self-assembly process will be required to show the 
statistical programming in that case, along with larger computational effort for the tracking and 
analysis of particles. We expect that these foreseeable results, however, will not change the claims 
of our work, but rather only fortify them. 

S6. Pattern Classification 

In our work, we defined pattern classes based on the self-assembled patterns that emerge when 
the motion of the particles stopped (i.e. the compression is complete) for an arena volume given 

by R = RMIN. In this state, the 25 magnetized particles are squeezed in a bounded area (η = 0.369), 
and their positions and orientations belong to a continuous space constrained by these boundaries. 
Within this space, each identical particle may assume a virtually infinite amount of position and 
orientation values, which makes a continuous pattern classification impossible. Therefore we 
preferred to identify the pattern classes based on the topological information which can be extracted 
from the relative position of the particles within the arena. For this purpose, we used the Delaunay 
triangulation method which takes the centroids of the particles on the 2D plane as the discrete 
vertices of triangles and generates a triangular network (i.e., the topology) by interconnecting these 
vertices. Delaunay triangulation ensures that no centroid point remains inside the circumcircle of 
any triangle. The resulting triangulation is dual to the Voronoi tessellation wherein the vertices of 
the Voronoi diagram are the circumcenters of the triangles (6). In this work, we did not use the 
orientation information for classification as the particles were symmetric along planes normal to the 
surface of the arena.  

We observed that the boundary of the arena played an important role in the formation of patterns 
during the confinement process. While its importance on the dynamics of self-assembly is the focus 
of our future work, its significance for pattern classification is explained here. We applied the 
Delaunay triangulation-based classification after the particles were fully compressed into a solid-
like self-assembled structure. We represented the boundaries of the arena as virtual particles 
surrounding the actual magnetic particles. We found the centroid points of these virtual particles by 
dividing the boundary circle (radius R = RMIN) into 500 equal points. We used MATLAB®’s built-in 
Delaunay triangulation method (1), which took as input the centroid position of 25 magnetized 
particles in addition to the 500 virtual boundary points and generated a triangular network (Fig. 
S6a).   
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Once the triangulation was generated, we identified the neighborhood connectivity between the 
particles starting from the boundary and sweeping towards the center of the arena. In the first step, 
we found the magnetic particles that had connecting edges to virtual boundary particles (the triangle 
edges are shown with blue lines connecting the particles in Fig. S6a). These particles made up the 
‘outer shell’ in the pattern. We proceeded with the identification process by selecting the particles 
which had connections to the outer shell and named them as the ‘middle shell’. The procedure 
ended by finding the remaining particles that had connections with the middle shell, which we 
named as the ‘inner shell’. We denoted a pattern class based on the number of particles in each 
shell as <#outer, #middle, #inner>. Adopting the connectivity between particles instead of their absolute 
centroid position within the arena allowed us to classify different configurations into single classes 
(see Fig. S6a for examples of different configurations classified into the same class). Using this 
classification, we observed 12 distinct classes of patterns in our experiments after collecting 1200 
pattern examples. The most frequently occurring class, i.e. Class 1 – <17, 7, 1> – was observed in 
506 out of 1200 experiments, while Class 12 – <20, 5, 0> – occurred only once. 

We observed at most three particle shells in our 25-particle experiments, hence we 
complemented the Delaunay triangulation method with a heuristic 3-shell template (circular shell 
structures have been previously identified and used in similar granular systems (7)). The template 
originated from Class 2 – <18, 6, 1>, which was the particle pattern with the lowest magnetic 
potential energy that we observed. The three shells had their origin at the center of the arena and 
had radii [0, 10.22, 18.09] mm. By applying this template to every pattern determined by the 
Delaunay triangulation, we could estimate the distance of the particles from their respective shells 
and detect jammed, metastable patterns. Figure S6b shows the heuristic template applied to a 
pattern detected with the Delaunay triangulation. The three red circles with straight lines represent 
the heuristic shells, and the circles with dashed lines are the middle points between each shell. As 
an example, the particle marked with ‘x’ in Fig S6b was originally depicted as an outer shell particle 
due to its connectivity with the boundary. However, by applying the heuristic template it appeared 
that this particle’s centroid was closer to the middle shell (note that the particle fell inside the large 
circle with dashed lines) and therefore it should be depicted as a middle shell particle instead. The 
same logic was applied to the particle at the center. Via the heuristic template, the class was finally 
labeled as <17,7,1>. Other examples for the same heuristic template application can be seen in 
Fig. S6c. 

The number of particles corrected with the heuristic in each Delaunay triangulation increased 

with Ṙ (the increased amount of corrections can be seen as the larger error bars in Fig 3a in the 

main text). In other words, for lower Ṙ the triangulation network and the heuristic pattern detected 

the same shell structures. This indicates that for lower Ṙ particles had a longer time to explore the 
space and relaxed into solid-like patterns that have higher circular symmetry and lower magnetic 
potential energy. Particles were instead trapped into more asymmetric, higher energy 

configurations for higher Ṙ, which we could detect via the heuristic template. Fig. 3b shows the 
energetic signature of these detected patterns. While the overall energy of a single pattern class 

tended to increase with Ṙ, the patterns detected and corrected via the heuristic had a higher 
average of magnetic potential energy compared to the patterns in the same class that didn’t need 
correction (energy of the corrected patterns are shown with the shaded regions in Fig. 3b).  

In addition to the detection of higher energy states, the heuristic also hinted towards the dynamic 
origin of the patterns. Figure S6c shows two other cases where classes have been corrected by 
the heuristic. On the top row, we see that Class 2 (<16,8,1>) was corrected into Class 4 (<16,7,2>) 
and on the bottom row, Class 9 (<19,6,0>) was corrected into Class 3 (<18,6,1>). Even though we 
were classifying the patterns in their fully compressed solid-like structure, the Delaunay 
triangulation gave important information about the history of the corrected particle. From the 
examples in the figure, we can guess from which shell and position the particle was traveling from 
before jamming due to the fast confinement rate. Our current work did not focus on the dynamic 
origins of self-assembled patterns; however, the combined use of Delaunay triangulation and 
heuristic template demonstrated potential for future improvements of reprogrammability and 
reversibility as shown in Fig.3c and d. 
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We additionally investigated the role of the number of virtual particles in the detection of pattern 
classes. Throughout our experiments, we used 500 virtual particles to represent the physical 
boundary. Figure S6d shows the number of misclassifications, ε, with the different number of 
boundary particles N, compared to N  = 500 (represented with a star in the figure). The figure shows 

that when the least number of virtual particles were used (N = 30 was the maximum number of 

physical particles with ρ = 5 mm that can fit tightly around the boundary with R = RMIN), there were 

only 12 patterns out of 1200 that were misclassified compared to when N = 500 (considering the 
Delaunay triangulation only). The difference dropped by increasing N and it reached zero when N 

= 200. As the heuristic was independent of N, the patterns were always classified in the same way. 

S7. Reprogrammable Self-Assembled Classes 

In our 1200 compression experiments, we observed 12 distinct classes classified with the 
combination of the Delaunay triangulation and the heuristic template methods at R = RMIN. We 

established the correlation between the confinement rate Ṙ and the programmability P(c) of each 
class. The majority of the patterns (95% of all the examples; i.e. 1130 out of 1200) were classified 
into Class 1 to 4 as shown in Fig. S7a. The remaining 70 patterns were classified into 8 distinct 
classes as shown in Fig. S7b. It can be seen that these classes occurred rarely and almost 

exclusively at faster Ṙ. A closer inspection in Fig. 2c in the main text also reveals that these patterns 
generally emerged out of jammed particle configurations. These configurations were more likely to 
occur when compression took place in a short time and particles were not given the necessary time 
to relocate within the arena. Due to the same reason, the average magnetic potential energy of 
these remaining classes tended to be higher than the four most occurring classes, as seen in Fig. 
S7c. These classes also had low structural stability, meaning that their topology would change with 
the smallest perturbations in the arena radius (e.g., ΔR).  

Future work will investigate methods to increase the programmability of these jammed meta-
stable patterns. We believe that reprogrammability of these patterns with higher selection 
probabilities may have interesting applications for materials science as their configurations may 
yield unique mechanical, optical or magnetic properties. In our current work, we have only 
investigated a feed-forward linear confinement method by changing the radius of the arena in a 
constant fashion. Changing the confinement profile into more complex, time and space asymmetric 
nonlinear methods may reveal different classes and increase the programmability of the currently 

observed patterns. 

S8. Programmable Granular Stiffness 

The magnetic repulsion among the particles in combination with our confinement mechanism 
allowed us to investigate the granular stiffness of the patterns (8). We initially investigated this 
stiffness by looking into the change of the total magnetic potential of a pattern while being 
compressed (Fig. S8a). Figure S8b (reproduced from Fig. 4b) shows ΔEU versus ΔR for the top 

four classes. To get these data, we selected a pattern for each class with the Ṙ that yielded the 

highest P(c) for that class (i.e., Ṙ = 5.685 mm/s for Class 1, Ṙ = 0.079 mm/s for Class 2, Ṙ = 27.811 

mm/s for Class 3 and Ṙ = 0.175 mm/s for Class 4). We compressed the shaking system with fr = 6 

Hz from R = RMAX until R = RMIN + ∆d. Within ∆d, we allocated 2.6 mm for the total ∆R and 
maintained R > RMIN + 0.5 mm to avoid reading high motor torques close to maximum compression. 

After selecting a pattern at the given R, we stopped the shaking and advanced the compression 

across ∆d with the lowest Ṙ = 0.079 mm/s. We recorded the particle positions for 33 s, which 
corresponded to 3 s for each of pre- and post-compression waiting times and 27 s for the 
confinement process. We used the particle positions and Equation (2) in Section S2 to find the 
progress of ΔEU versus ∆R as shown in Fig. S8b. The different slopes reveal that the class 
topologies possessed different granular stiffness (specifically, Class 3 > Class 4 > Class 1 > Class 
2). 
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When compressed into a solid-like state, the tensile particle structures exerted a force on the 
boundaries of the arena. We quantified this force using the current readings from the DC motor 
driving the confinement mechanism (i.e., the leaves). While recording the particle positions during 
the compression as explained above, we also recorded the current output Im and angular 

displacement θm of the motor using Maxon’s DC controller unit (EPOS4® 50/5 Module). We 

calculated the work done by the motor as W = (Imτm)θm where τm = 22.915 mNm/A (motor torque 

constant). Figure S8c shows the work done by the motor with respect to ∆R based on this 
calculation. We observed a non-monotonic increase in work as the elastic magnetic structures are 
compressed. Similar to ΔEU, different classes were associated with different slopes, confirming that 
our reprogrammable self-assembly method also selected for granular stiffness. The spring 
structures of the classes required motor work in the same descending class order with the ΔEU. 
The spikes in the data are caused by changing current outputs due to the velocity profile control 
which drove the motor in constant confinement rate. We noticed that if the arena was compressed 
further (i.e., from RMIN + 0.5 mm to RMIN), the leaves were enforced into higher mechanical locking, 
which caused higher magnitudes of motor torques. Therefore, we left a 0.5 mm space before the 
RMIN to have more reliable motor current readings during the stiffness experiments. 

S9. Programmable Magnetic Clutch 

The magnetic properties of the particles also allowed us to investigate the reprogrammability of 
the continuous magnetic field over the self-assembled patterns in a 3D space. Similar to the 
granular stiffness experiments, we designed a mechanical system and transduced this 
programmable magnetic field into a mechanical clutch (i.e., magnetic gear). As shown in Fig. S9a, 
we designed an auxiliary arm which housed the same type of permanent magnets that were 
embedded inside the particles. We designed three of these arms and placed the magnets at 
different distances d ∈ [5, 10, 15] mm from the axis of rotation. We used the particle positions 
reported in Fig. 2c and replicated the self-assembled patterns by embedding 25 magnets inside an 
acrylic sheet, which we called the pattern disk. We placed this disk on a rheometer setup and fixed 
the auxiliary arm above the pattern such that the rotation axis of the arm was aligned with the center 
of the disk. We measured the torque applied from the 25 magnets inside the self-assembled pattern 
on to the magnet placed inside the rotating arm during three complete rotations. We measured 
these torque values from three different vertical heights h ∈ [1, 3, 5] mm for each auxiliary arm with 
different magnet placements.  

Figures S9 b-d show the average of these torque measurements for the patterns of Class 1, 2, 
3, 4, 11 and 12. The magnetic profile read from each class was unique. This shows that the 
reprogrammable self-assembly of the magnetic patterns also selected three-dimensional magnetic 
field profiles, which could be transduced into reprogrammable magnetic clutching. These 
mechanisms may prove convenient for robotic applications where reconfigurable actuation 
stiffness/clutching is necessary (9). 
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Fig. S1.  a. CAD exploded view of the layered components making up the confinement mechanism 
(see also Movie S1). b. The experimental setup. There is a camera mounted over the confinement 
mechanism that is out of the frame of this image. c. Sliced CAD image (top) and photo of a single 
particle (bottom). A concentric cylindrical permanent magnet with a 3 mm diameter fits in the particle 
with its magnetic pole oriented along the particle’s z-axis. d. Image of a single particle as captured 
by the top camera. Lines compare two centroid finding methods: center of mass (C.O.M.) vs. 
circular Hough transform. 
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Fig. S2. a. Planar configuration of the particles embedded with permanent magnets. The distance 

r measures the horizontal distance between the centers of two particles (diameter ρ = 5 mm). Each 
particle’s inner permanent magnet (of 3 mm diameter) has a magnetic moment mi normal to the 
arena surface. b. The repulsive force between two identical magnets measured experimentally vs. 
the magnetic dipole model. c. Arena coverage of demagnetized particles, i.e. the probability 

distribution of the position of 25 particles within the confined assembly area with R = RMAX (shown 

with the dashed circle), with demagnetized permanent magnets while fr = 6 Hz. The inner dotted 
circle represents the orbit of the shaker with radius L = 12.6 mm. d-h. Arena coverage of 

magnetized particles for different shaking frequencies: fr = 3.3 Hz (d), fr = 4 Hz (e), fr = 5 Hz (f), fr = 

6 Hz (g) and fr = 7 Hz (h).  
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Fig. S3. a. Radial distribution function g(r) for 25 particles inside the arena with R = RMAX for 

different shaking frequencies fr from 3 Hz to 7 Hz. b. Focus on the g(r) function within the range 7 
Hz ≥ fr ≥ 5.3 Hz where hard interactions are dominant. c. Maximum values of the mean-squared 
displacement analysis based on the unfiltered particle trajectories (average over 3 experiments per 
frequency value). The horizontal dashed line shows the hard boundary limit. Results are shown on 
a double logarithmic scale. d. Mean-squared displacement analysis within the 7 Hz ≥ fr ≥ 5.3 Hz 

range. Marked regions represent the ballistic (~t
2
) and diffusive (~t) regimes of motion, respectively. 

e. Average velocity distribution of the particles within the diffusive regime (~0.1 to ~0.5s). Dashed 
lines show the Rayleigh distributions fitted over the experimental data. f. The linear relation 
between velocity mode σf versus fr. g. The probability distribution of angular change of particle 

orientation from the previous step (ΔΘ) within the diffusive regime (~0.1 to ~0.5s) for fr = 6 Hz. 
Dashed lines show the normal distributions fitted over the experimental data. Note that this 
corresponds also to a Gaussian distribution of angular velocities since the angular orientation 
difference was sampled across adjacent image frames at a constant frame rate (360 fps). 
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Fig. S4. a. The spectrum of the x-coordinate of 25 particles during a 30s isochoric experiment with 

fr = 6 Hz shown on a semi-logarithmic plot. A band-stop filter with a 2 Hz width is applied to exclude 
the influence of the global mechanical forcing by the orbital shaker. b. Average and maximum MSD 
values before and after the filtering for the same experiment shown on a logarithmic scale. The 
inset figure shows the average MSDs within 1 s interval to emphasize the influence of fr. c. The 

spectrum of the x-coordinate of 25 particles during a 30s isochoric experiment with fr = 7 Hz shown 
on a y-semi-logarithmic plot. d. Average and maximum MSD values before and after the filtering 
for the same experiment shown on a logarithmic scale. The inset figure shows the average MSDs 
within 1 s interval to emphasize the influence of fr. 
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Fig. S5. a. Total average magnetic and kinetic energies of the different number of particles. b. The 
average of the sum of kinetic energies compared with the average kinetic energy of a single particle 
for the different number of particles. c. The average velocity for the different number of particles. 
All plots show the averages calculated from experiments when the system is fully compressed 
(R = RMIN) and shaken for 5 seconds with fr = 6 Hz. 
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Fig. S6. a. Delaunay triangulation-based classification for a class out of sample patterns. Full 
circles represent magnetic particles (vertices) and lines represent the connecting edges. Different 
colors represent the shells of the structure (i.e., blue-outer, green-middle, yellow-inner). Blue 
colored particles are connected to 500 virtual particles that represent the physical boundary. The 
first thee patterns belong to particle configurations from different experiments, yet they are 
classified into the same class (Class 2) with Delaunay triangulation. Third and fourth patterns are 
the same; the third pattern is shown with Delaunay triangulation, the fourth pattern is its Voronoi 
duality. b. Example case for a mismatch pattern. The particle marked with ‘x’ is counted as a part 
of the outer ring due to an edge connection with the boundary in the triangulation method and is 
classified as <18,7,0>. Correction of the previous topology with the heuristic template shown with 
red (straight and dotted) circles. The marked particle is now a part of the middle ring. The particle 
at the center is consequently identified and the pattern is corrected as <17,7,1>. c. Examples of 
heuristic correction of classes that hint at the dynamic origin and meta-stable nature of some 
patterns. Class 2 corrected to Class 4 (top) and Class 9 corrected to Class 3 (bottom). d. Error ratio 

ε vs. the number of virtual particles on the boundary (N) during the classification process. 

Corrections via the heuristic always eliminate the errors independent of N. 
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Fig. S7. a. Statistical programmability of the top four most occurring classes within 1200 
compression experiments (reproduced from Fig. 3a). b. Statistical programmability of the remaining 

8 classes, which occur for the fast range of Ṙ with low probability (i.e. P(c) < 0.1). c. The average 
magnetic potential energies of the classes calculated from all the patterns observed across the 

complete Ṙ range. The dashed lines represent the magnetic potential energies of the mismatch 
patterns belonging to the corresponding class. The classes are color and marker coded consistently 
across the figures. 
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Fig. S8. a. Sketch of the two-dimensional stiffness experiment. ∆R corresponds to the perturbation 
of the arena radius. b. Change in the magnetic potential energy vs perturbation of arena radius c. 
The work done by the DC motor during the stiffness experiments. 

  



 

 

18 

 

 

Fig. S9. a. Sketch of the reprogrammable magnetic clutch/gear experiments. h is the vertical 

distance of the rotating arm from the pattern disk, d is the distance of each magnet inside the arm 
to the rotation axis, and Θ is the rotation of the arm calculated positive in the clockwise direction 
from the x-axis of the pattern. The 6 pattern classes used in these experiments are shown for 
reference. b. Average torque profiles measured by the rheometer from the rotating arm at h = 1 
mm for Class 1 and 2. c. Torque profiles for Class 3 and 4. d. Torque profiles for Class 11 and 12. 
Torque measurements in b-d are the average of three complete rotations. 
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Movie S1. CAD animation of the confinement mechanism.  

Movie S2. Athermal (i.e. fr = 0 Hz) compression sequence. Three sample cases of pattern classes 
showing the dependence on initial particle configuration in the absence of orbital shaking. 

Confinement rate for both compression and decompression is |Ṙ| = 20.81 mm/s.  

Movie S3. Programming (selecting) pattern Class 1 <17,7,1>. Confinement rate for compression 

is Ṙ = 5.69 mm/s. Playback at 1x. 

Movie S4. Programming (selecting) pattern Class 2 <16,8,1>. Confinement rate for compression 

is Ṙ = 0.18 mm/s. Playback at 5x. 

Movie S5. Reprogramming pattern classes with different confinement rates. Programming pattern 

Class 2 with Ṙ = 0.18 mm/s (playback at 10x). Reversing the system by decompressing with Ṙ = -

20.81 mm/s (playback at 0.5x). Programming pattern Class 1 with Ṙ = 5.69 mm/s (playback at 2x). 
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