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Supporting Information Text

Theorems and Proofs for Results in Main Text

Theorem 1. Suppose that α1[λ] and ν1[λ] are such that lim
λ→∞

α′1[λ] = 0 and lim
λ→∞

ν′1[λ] = 0. If α′1[0] >
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0],

then there either exists at least one positive ESS λ∗ > 0 or Ŝ[λ] is a strictly decreasing function of λ and the ESS is at

λ∗ →∞. Conversely, if α′1[0] <
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0], then there either exists at least one unstable evolutionarily singular strategy

or alternatively Ŝ[λ] is a strictly increasing function of λ and the ESS is at λ∗ = 0. If there exists such an unstable strategy,
there is bistability with zero latency and (possibly maximal) positive latency.

Proof. Note that minimizing Ŝ[λ] is equivalent to maximizing R0[λ]. Differentiating R0[λ] gives

dR0[λ]
dλ

= − 1
(ν1[λ] + δ)2 ν

′
1[λ]

(
α1[λ] + ν1[λ]α2

ν2 + δ

)
+ 1
ν1[λ] + δ

(
α′1[λ] + ν′1[λ]α2

ν2 + δ

)
.

At λ∗ = 0, it follows that dR0[λ]
dλ

∣∣∣∣
λ=0

> 0 if and only if α′1[0] >
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0]. Since lim

λ→∞

dR0[λ]
dλ

= 0, if dR0[λ]
dλ

∣∣∣∣
λ=0

> 0 then

there either exists at least one positive local maximum of R0[λ] that is a positive ESS of latency, or R0[λ] is a strictly increasing

function of λ and the ESS is at λ∗ →∞. Conversely, the reversed inequalities establish that if α′1[0] <
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0], then

R0[λ] as a function of λ either has a local minimum or is strictly decreasing. If it is strictly decreasing, then the ESS is at
λ∗ = 0.

Theorem 2. Suppose that lim
λ→∞

α′1[λ] = 0 and lim
λ→∞

ν′1[λ] = 0.

1. If R(0)
0 > R(∞)

0 and α′1[0] >
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0], there exists at least one positive (and finite) ESS λ∗ > 0.

2. If R(0)
0 < R(∞)

0 and α′1[0] <
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0], there exists at least one unstable evolutionarily singular strategy, resulting

in bistability of zero and non-zero latency.

Proof. The proof of this theorem follows almost immediately from the proof of Theorem 1. Noting that the condition
R(0)

0 > R(∞)
0 rules out strictly increasing R0[λ] as a function of λ, this guarantees the existence of a finite positive ESS if

α′1[0] >
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0]. Conversely, R(0)

0 < R(∞)
0 rules out the case of strictly decreasing R0[λ], establishing the existence of

at least one unstable evolutionarily singular strategy if α′1[0] <
α1[0]− α2δ

ν2+δ
ν1[0]+δ ν′1[0].

Theorem 3. Let α1,0 = α1[0] and ν1,0 = ν1[0]. First, consider the following key condition

b1b2
c1c2

<
α1,0 − α2δ

ν2+δ

ν1,0 + δ
, [1]

The evolutionary dynamics of latency in our model can be partitioned into multiple cases that are outlined below.

1. α2
ν2+δ ≥

α1,∞
δ

. If [1] holds, then there exists a unique positive ESS λ∗ > 0. Otherwise, if condition [1] is not met, R0[λ] is
a strictly decreasing function of λ, so Ŝ is a strictly increasing function of λ on (0,∞), and the ESS is at λ∗ = 0.

2. α2
ν2+δ <

α1,∞
δ

.

(a) c2 > b2. If [1] is satisfied, then there exists a unique positive ESS λ∗ > 0. Otherwise, if [1] does not hold, R0[λ] is a
strictly decreasing function, so Ŝ[λ] is a strictly increasing function and the ESS is at λ∗ = 0.

(b) c2 < b2. If [1] is satisfied, then R0[λ] is a strictly increasing function, so Ŝ[λ] is a strictly decreasing function

and the evolutionarily stable strategy is at λ∗ → ∞. Conversely, if b1b2
c1c2

>
α1,0−

α2δ
ν2+δ

ν1,0+δ , then there exists a unique
evolutionarily singular strategy λ∗ > 0 that is the global minimum of R0[λ] and therefore is the global maximum of
Ŝ[λ]. This singular strategy λ∗ then implies that the local minima of Ŝ[λ] (and so the local maxima of R0[λ]) are at
the boundaries, i.e. at λ∗ = 0 and λ∗ →∞. Thus, there is bistability of zero latency (λ∗ = 0) and maximal latency
(λ∗ →∞).
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Proof. First, let k = α2
ν2+δ and P = (1 + λ)−c2 . Note also that dR0[λ]

dλ
= 0 if and only if dR0[P ]

dP
= 0. Furthermore,

dR0
dλ

= dR0
dP

dP
dλ

= − dR0
dP

c2(1 +λ)−c2−1, and so the signs of dR0
dP

and dR0
dλ

are opposite. Thus, taking the first derivative of R0[P ]
with respect to P gives

dR0[P ]
dP

=
b2
c2
b1P

b2
c2
−1 + kc1

δ + c1P + ν1,∞
− c1

b1P
b2
c2 + α1,∞ + kc1P + kν1,∞

(δ + c1P + ν1,∞)2 .

Setting dR0[P ]
dP

= 0 gives

0 = −c1b1P
b2
c2 − α1,∞c1 + δ

b1b2
c2

P
b2
c2
−1 + δkc1 + c1b1b2

c2
P
b2
c2 + ν1,∞

b1b2
c2

P
b2
c2
−1

Multiplying both sides by c2
b1b2

P
− b2
c2 , replacing P = (1 + λ)−c2 , gives

0 = A0 +A1(λ+ 1)c2 +A2(λ+ 1)b2=f [λ],

where

A0 = c1 − c1c2
b2
,

A1 = (ν1,∞ + δ),
A2 = c1c2

b1b2
(kδ − α1,∞) = c1c2δ

b1b2

(
k − α1,∞

δ

)
.

Case 1: k ≥ α1,∞
δ

. We first consider the case that A2 ≥ 0. Then, f [λ] is a strictly increasing function from
A0 +A1 +A2 to ∞. Therefore, if f [0] < 0, then f [λ] crosses the λ–axis exactly once and there exists a unique positive root λ∗
to f [λ] = 0, otherwise if f [0] > 0 then f [λ] = 0 has no positive real roots. If the unique positive root exists, f [λ] < 0 for λ < λ∗

and f [λ] > 0 for λ > λ∗.

Furthermore, noting that dR0[λ]
dλ

= −K[λ]f [λ], where K[λ] > 0 for all λ, it follows that if f [0] < 0 then dR0[λ]
dλ

∣∣∣∣
λ=0

> 0 and

λ∗ is the unique maximum of R0[λ] (f [0] < 0 < f [∞]), and so the unique minimum of Ŝ[λ], and the evolutionarily stable

strategy (ESS) is λ∗. Otherwise , if f [0] > 0, then dR0[λ]
dλ

∣∣∣∣
λ=0

< 0 and R0[λ] is a strictly decreasing function of λ. In this

case, the maximum of R0[λ] is at λ∗ = 0 and thus the ESS is λ∗ = 0. If f [0] = 0, then dR0[λ]
dλ

∣∣∣∣
λ=0

= 0, and f [λ] strictly

increasing implies that λ∗ = 0 is the only ESS. Therefore, there is a unique ESS λ∗ > 0 if and only if f [0] = A1 +A2 +A3 < 0.
Rearranging A1 +A2 +A3 < 0 gives [1].

Case 2: k < α1,∞
δ

. Suppose A2 < 0, so that k < α1,∞
δ

. We now consider the following subcases.

Subcase 2a: c2 > b2. Suppose first that c2 > b2. Then, rearranging f [λ] gives

A1(λ+ 1)c2 = −A0 −A2(λ+ 1)b2 ,

where −A0 > 0, A1 > 0, and −A2 > 0. Multiplying both sides by (λ+ 1)−b2 gives

A1(λ+ 1)c2−b2 = −A0(λ+ 1)−b2 −A2.

Denoting g1[λ] = A1(λ+ 1)c2−b2 and g2[λ] = −A0(λ+ 1)−b2 −A2, it is clear that g1 is a strictly increasing function from
A1 to ∞, and that g2 is a strictly decreasing function from −A0 −A2 to −A2. Thus, if g1[0] < g2[0], then these curves will
intersect exactly once. Such an intersection is a root of f [λ] = 0, and thus an evolutionarily singular strategy. Otherwise,
if g1[0] > g2[0], then g1 and g2 do not intersect and f [λ] = 0 has no positive real root. If g1[0] = g2[0], then λ∗ = 0 is the
only intersection of g1[λ] and g2[λ], and the only root of f [λ]. Here, g1[0] < g2[0] means that A1 < −A0 − A2 and so that
A0 +A1 +A2 < 0. Therefore, in this subcase, dR0[λ]

dλ
= 0 has a unique positive root λ∗ if and only if A0 +A1 +A2 < 0. Since

f [λ] < 0 for λ < λ∗ and f [λ] > 0 for λ > λ∗ in this case as well, λ∗ maximizes R0[λ]. As in Case 1, this condition also implies
that λ∗ > 0 is the ESS if A0 +A1 +A2 < 0. Otherwise, also as in Case 1, λ∗ = 0 is the ESS.

Subcase 2b: b2 > c2. We now consider the other subcase, namely that b2 > c2. This condition implies that
A0 > 0 and A2 < 0, so rewriting f [λ] and multiplying both sides by (λ+ 1)−c2 gives

A0(λ+ 1)−c2 +A1 = −A2(λ+ 1)b2−c2 ,

with A0 > 0, A1 > 0, and −A2 > 0. Denoting h1[λ] = A0(λ + 1)−c2 + A1 and h2[λ] = −A2(λ + 1)b2−c2 , it is clear that
h1 is a strictly decreasing function of λ from A0 + A1 to A1 and that h2 is a strictly increasing function from −A2 to ∞.
Thus, if h2[0] < h1[0], then h1 and h2 intersect exactly once at λ∗ > 0; otherwise these curves do not cross for positive λ.
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Thus, if it exists, λ∗ > 0 is the unique positive root of f [λ] = 0 and thus the unique positive root of dR0[λ]
dλ

= 0. Therefore,
λ∗ > 0 is a critical point of R0[λ] if −A2 < A0 + A1, which is equivalent to the condition that A0 + A1 + A2 > 0. But, as
dR0[λ]
dλ

∣∣∣∣
λ=0

= −K[0](A0 + A1 + A2), it follows that if A0 + A1 + A2 > 0 then dR0[λ]
dλ

∣∣∣∣
λ=0

< 0 and λ∗ is a local minimum of

R0[λ], and thus an unstable evolutionarily singular strategy (note that f [λ] > 0 for λ < λ∗ and f [λ] < 0 for λ > λ∗). Therefore,
the two local maxima of R0[λ] are at the boundaries, i.e. λ∗ = 0 and at λ∗ →∞. Thus, in this subcase, i.e. A1 +A2 +A3 > 0,
strategies with zero latency (λ∗ = 0) and with maximal latency (λ∗ →∞) are bistable. Rearranging A1 +A2 +A3 > 0 results

in b1b2
c1c2

>
α1,0−

α2δ
ν2+δ

ν1,0+δ . If A0 + A1 + A2 < 0, then dR0[λ]
dλ

= 0 has no roots, and since dR0[λ]
dλ

∣∣∣∣
λ=0

> 0 in this case, R0[λ] is

strictly increasing. If h1[0] = h2[0], then λ = 0 is the only intersection of h1[λ] and h2[λ]. Since h2[λ] > h1[λ] for λ > 0, then
R0[λ] is also strictly increasing for λ > 0 and S[λ] is strictly decreasing for λ > 0. Thus, the evolutionarily stable strategy if
A0 +A1 +A2 ≤ 0 is at λ∗ →∞.

Equivalent analyses hold when P is replaced with P = e−λc2 , i.e., in the case of exponential trade-offs, since eλx is
strictly increasing for λ ∈ [0,∞) if x > 0 and strictly decreasing for λ ∈ [0,∞) if x < 0. Thus, the same results hold for
trade-offs formulated as exponentials, and an equivalent argument holds for trade-offs as α1[λ] = b1(F [λ])−b2 + α1,∞ and
ν1[λ] = c1(F [λ])−b2 + ν1,∞ for any function F [λ] with F ′[λ] > 0, F [0] = 1 and F [∞] =∞.

Remark 1. This remark illustrates a different derivation for the condition that Ŝ′[0] > 0. Letting A[λ] = α1[λ] − kδ and
B[λ] = ν1[λ] + δ and noting that α′1[0] = −b1b2 and ν′1[0] = −c1c2, the condition b1b2

c1c2
>

α1,0−kδ
ν1,0+δ becomes A′[0]

B′[0] >
A[0]
B[0] .

Rearranging this gives B[0]A′[0]− A[0]B′[0] < 0 since B′[0] < 0. Since B > 0, it follows that B[0]A′[0]−A[0]B′[0]
B[0]2 < 0. By the

quotient rule and noting that A
B

= R0− k, b1b2c1c2
− α1,0−kδ

ν1,0+δ > 0 if and only if Ŝ[λ] is increasing at λ = 0 (i.e., R0[λ] is decreasing
at λ = 0).

Theorem 4. In our model, all evolutionarily stable strategies are locally stable.

Proof. First, suppose that the ESS is at λ∗ = 0. Then, by Theorem 3, dR0[λ]
dλ

∣∣∣∣
λ=0
≤ 0, and R0[λ] is strictly decreasing in

the neighborhood. Thus, if x < y then R0[x] > R0[y], i.e., mutants progressively closer to 0 are able to invade and the fully
symptomatic ESS is eventually reached, i.e., this ESS is a continuously stable strategy. When a positive ESS (or one at infinity)
exists as proved in Theorem 3, by a similar argument it can invade any strategy in its neighborhood and so is a continuously
stable strategy (CSS).

Additional Preliminaries

For simplicity, the model we present in the main text does not consider death due to disease. Here, we show why our analyses
also hold when we consider a model that does include death due to disease. As with the SIIRS model presented in the main
text, the model formulated below is equivalent to special cases of existing epidemiological models: see, for example, the models
presented by Melesse and Gumel (1) and Saad-Roy and colleagues (2). Since the total population can now vary, we denote by
S, I1, and I2 the number of individuals that are susceptible, infectious in the first stage, and infectious in the second stage,
respectively. We denote by δ the demographic death rate, and by α1 and α2 the transmission rates from stages 1 and 2,
respectively. We also denote by ν1 the progression rate from stage 1 to stage 2, and by ν2 the death rate due to disease. Lastly,
the number of new individuals per unit time is denoted by Λ. The model is thus

dS

dt
= Λ− α1I1S − α2I2S − δS,

dI1
dt

= α1I1S + α2I2S − ν1I1 − δI1,

dI2
dt

= ν1I1 − ν2I2 − δI2.

Using the next-generation matrix method (3, 4), the basic reproduction number for this model is

R0 =
α1

Λ
δ

ν1 + δ
+ ν1

ν1 + δ

α2
Λ
δ

ν2 + δ
.

Solving the S, I1, and I2 equations for equilibria yields a disease-free equilibrium, along with an endemic equilibrium with
Ŝ =

Λ
δ
R0

if R0 > 1. The equations governing this model are equivalent to the decoupled equations in Theorem 7 of Saad-Roy
and coauthors (2) with η →∞, τ1 = 0, and τ2 = 0. Thus, the global stability of the endemic equilibrium when R0 > 1 that
was established by Saad-Roy et al. (2) therefore applies here also. Furthermore, Theorems 1–4 presented in SI Appendix hold
under this model as well, since evolutionarily stable strategies are such that Ŝ is minimized.
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SI Results

Transitions with trade-offs as sums of logistic-like functions. As briefly mentioned in the main text, it is also possible that the
trade-offs take more complicated shapes, such as logistic-like functions, i.e.,

α1[λ] =
n∑
i=1

b1,i

1 + e−b2,i(b3,i−λ) + α1,∞,

ν1[λ] =
n∑
i=1

c1,i

1 + e−c2,i(c3,i−λ) + ν1,∞.

With these logistic-like trade-off formulations for n = 1, we also numerically characterized certain transitions in evolutionary
dynamics as functions of key parameters (Figs. S7, S8). Note that these are only possible evolutionary dynamics and we have
not proven any behavior analytically with these logistic-like trade-offs. We find that changes in b2,1, the parameter governing
the speed of decay (as a function of latency) of the stage 1 transmission rate, can lead to transitions in behavior (Fig. S7). For
example, if this parameter is small enough (and smaller than the equivalent parameter c2,1 for the stage 1 progression rate),
then there can exist bistable strategies at zero latency and at an interior strategy. As b2,1 increases, Ŝ[λ] becomes strictly
decreasing (and so the ESS is at maximal latency). Eventually, two interior singular strategies emerge again: however the
boundary local minimum is now at infinite latency. Thus, in this regime, the system exhibits bistability with maximal latency
and an interior strategy at some finite latency (Fig. S7). We also numerically investigated the effect of the ‘threshold’ parameter
b3,1, i.e., the latency value where the logistic-like function changes concavity (Fig. S8). If b2,1 = c2,1, then we find at most a
single evolutionarily singular strategy. This strategy is unstable for small enough b3,1 and then becomes stable as b3,1 increases
through c3,1 (Fig. S8A). If b2,1 > c2,1, then there is a single unstable evolutionarily singular strategy initially for small enough
values of b3,1, followed by two interior strategies as b3,1 becomes larger, one stable and one unstable (Fig. S8B). A reciprocal
effect is seen if b2,1 > c2,1, with a single interior ESS present for large enough b3,1 (Fig. S8C). As b3,1 decreases, an unstable
evolutionarily singular strategy emerges in addition to the interior ESS (Fig. S8C).
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Fig. S1. Schematics of threshold-like trade-offs. Here, we model the transmission and progression rates in the first stage as (A) α1[λ] = b1,1

1+e−b2,1(b3,1−λ) + α1,∞ and

(B) ν1[λ] = c1,1

1+e−c2,1(c3,1−λ) + ν1,∞, respectively.
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Fig. S2. Logistic-like trade-offs as in Fig. S1, but with two thresholds instead of one. (A) For the disease parameters of the first stage, the transmission rate is modelled

as α1[λ] = b1,1

1+e−b2,1(b3,1−λ) + b1,2

1+e−b2,2(b3,2−λ) + α1,∞ and (B) the first to second stage progression rate takes the form of ν1[λ] = c1,1

1+e−c2,1(c3,1−λ) +
c1,2

1+e−c2,2(c3,2−λ) + ν1,∞.
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Fig. S3. Trade-off formulations as the sums of three logistic-like functions, as compared to one (Fig. S1) and two (Fig. S2). (A) The transmission rate in the first stage takes the

form α1[λ] = b1,1

1+e−b2,1(b3,1−λ) + b1,2

1+e−b2,2(b2,3−λ) + b1,3

1+e−b2,3(b3,3−λ) + α1,∞ and (B) the rate of progression from the first to the second stage is modelled as

ν1[λ] = c1,1

1+e−c2,1(c3,1−λ) + c1,2

1+e−c2,2(c3,2−λ) + c1,3

1+e−c2,3(c3,3−λ) + ν1,∞.
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Fig. S4. Illustrative schematics for trade-offs with four thresholds, instead of 1 to 3 (Figs. S1 to S3, respectively). (A) The transmission rate during the first stage is modelled as

α1[λ] = b1,1

1+e−b2,1(b3,1−λ) + b1,2

1+e−b2,2(b2,3−λ) + b1,3

1+e−b2,3(b3,3−λ) + b1,4

1+e−b2,4(b3,4−λ) + α1,∞. (B) The progression rate from the first to the second stage is

formulated as ν1[λ] = c1,1

1+e−c2,1(c3,1−λ) + c1,2

1+e−c2,2(c3,2−λ) + c1,3

1+e−c2,3(c3,3−λ) + c1,4

1+e−c2,4(c3,4−λ) + ν1,∞.
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Fig. S5. Schematics of possible evolutionary dynamics of latency with logistic-like trade-offs. (A) Two interior evolutionarily singular strategies, one which is stable and thus an
ESS and one which is unstable. The boundary at infinite latency is also stable, giving rise to bistability. The bistable strategies are infinite latency and some positive latency.
This cannot occur under power-law or exponential thresholds. (B) Another case of bistability between an extremum and an interior strategy, with the extremum strategy at zero
latency, i.e., fully symptomatic. (C) The susceptible fraction is a strictly decreasing function, and so the ESS is at maximal latency. (D) The susceptible fraction is a strictly
increasing function, and so the ESS is at zero latency. (E) A single interior unstable evolutionarily singular strategy, which leads to bistability. (F ) A single interior ESS that
minimizes the susceptible fraction at equilibrium.
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Fig. S6. Schematics of possible complex evolutionary dynamics obtained with more complicated functional forms for the trade-offs. (A) Using a logistic-like function with two
threshold can give two interior ESSs and one ESS at infinite latency, in addition to two unstable evolutionarily singular strategies. (B) With three thresholds, it is possible that
two additional interior singular strategies emerge, one stable and one unstable. (C) With four thresholds, a further two strategies can again emerge, for a total eight interior
evolutionarily singular strategies, four unstable and four stable, in addition to one stable strategy at infinite latency.
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Fig. S7. Schematic of possible evolutionary transitions (sign of dSdλ ) mediated by changes in b2,1 with logistic functional forms. Here, α1 and ν1 take the form of

α1[λ] = b1,1

1+e−b2,1(b3,1−λ) + α1,∞ and ν1[λ] = c1,1

1+e−c2,1(c3,1−λ) + ν1,∞, and all other parameters apart from b2,1 are fixed, with b3,1 = c3,1. The blue and red

regions are where Ŝ[λ] is increasing and decreasing, respectively. Since dS
dλ is continuous, if a point is at the intersection of a blue and red region, then it is an evolutionarily

singular strategy, and classification (stable or unstable) follows by examining the sign change of dSdλ . As b2,1 increases, the stable states transition from bistability to a unique
minimum at zero latency, and then to bistability again. For b2,1 values that are slightly less than c2,1 and smaller, the bistable states consist of one interior equilibrium and zero
latency. For larger b2,1 values, the bistable states also consists of one interior equilibrium and one extremum equilibrium, but the extremum equilibrium is at infinite latency.
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Fig. S8. Schematics of possible changes in evolutionary dynamics due to shifts in the threshold position of the logistic transmission trade-off. The trade-offs are formulated as

α1[λ] = b1,1

1+e−b2,1(b3,1−λ) + α1,∞ and ν1[λ] = c1,1

1+e−c2,1(c3,1−λ) + ν1,∞, and only b3,1 varies within the depicted regime for the relation between b2,1 and c2,1 in

each panel. The blue and red regions are as in Figure S7. (A) b2,1 and c2,1 are equal, and there is either at most one interior evolutionarily singular strategy, or Ŝ[λ] is strictly
decreasing. For small enough b3,1 values, the interior evolutionarily singular strategy is unstable, and leads to bistability of extrema phenotypes, i.e., zero and infinite latency.
For larger b3,1 values, the evolutionarily singular strategy is a stable strategy, and thus a unique ESS. (B) b2,1 and c2,1 are chosen so that b2,1 > c2,1. For small enough
b3,1 values, there is a single interior evolutionarily singular strategy that is unstable, leading to bistability with zero and infinite latency. For large values of b3,1, two interior
singular strategies emerge, with one interior stable equilibrium and a stable extremum strategy at maximal latency. (C) b2,1 and c2,1 are now such that c2,1 > b2,1, and
opposing behaviour to (B) is observed. Namely, for large enough b3,1 values, there is a single interior ESS which is globally stable. For smaller b3,1 values, there exist bistable
states: one interior equilibria and one extremum strategy, at zero latency.
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