Supplementary Figure Legends

Figure S1. A close-up of fine wing pigmentation differences between *S. leonensis* and *S. ocellaris.* The pupal expression of Engrailed exactly prefigures the sites of future white spots in the adult wings. This correlation between the expression of Engrailed and the absence of black pigmentation reinforces the putative role of En in making the white spots on *Samoaia* species' wings.

Figure S2. *In situ* hybridization of *yellow* and *engrailed* in *S. leonensis.* (A) Spotted pharate wing and expression of the transcript *y* in late pupal wing. (B) Time course of *en* expression over pupal wing development.

Figure S3. Molecular interactions between proteins of the hedgehog loop in case of depletion and overexpression of engrailed in *D. melanogaster*. We followed the expression of the different players by immunostaining in the third instar larvae wing disc and the late pupal wing. Our results confirm the existence of an active hedgehog loop in the wing disc, and show for the first time that this loop becomes at least partially inactive during late pupal wing development.

Figure S4. Immunostainings of Dll in the Hawaiian drosophilids and the species *Chymomyza amoena*. The expression pattern of Dll (right panel) prefigures the black domains in the adult wing (left panel).

Figure S5. Time course experiments for additional genes. (A) Critical time points were identified for loss-of-function and gain-of-function contexts. The phenotypes range from severe A-P polarity defects to weak vein malformation for gain-of-function (B) and loss-of-function (C) contexts.

Figure S6. Overview of time course experiments. Loss-of-function experiments for the whole set of genes investigated define a time window (black domain) during which genes cannot be recruited for a novel function. Gain-of-function experiments define a time window (dark grey domain) during which co-option is possible, but unlikely in regard to morphological alteration of the wing such recruitment might create. Gene co-option is more likely to occur beyond the dark grey domain (see pale grey domain).

Table S1. List of primers used in this study.

Table S2. Gene accession numbers.

Α

S. leonensis S. leonensis S. leonensis S. ocellaris

> UAS-en

В

1h	1h	1h
UAS-vvl ^{RNAi}	UAS-N ^{RNAi}	UAS-N ^{RNAI}
32h	1h	51h
UAS-DI ^{RNAi}	UAS-DI ^{RNAi}	UAS-DI ^{RNAI}
Th	46h	58h

Gene	Primer name	Sequence 5'-3'	References	
	zone2bis	GTAAATNGGNNCCACGCGAAG		
Amvrel	relrev+	GTTCCCCAGCTCTGCAGCC	Da Lage et al	
Amyrei	reludir	TGGATGCNGCCAAGCACATGGC	(2007)	
	relavbis	GCATTTGTACCGTTTGTGTCGTTATCG		
cubitus interruptus	deg- <i>ci</i> -Fwd	GAGAGGATCCNTTYAARGCNCARTAYATG	Holland et al	
	deg-c <i>i</i> -Rev	GAGAAGCTTRTGNACNGTYTTNACRTGYTT	(1991)	
decapentaplegic	deg- <i>dpp</i> -Fwd	CTGAAHAGCACIGAIACGGTSAG	this study	
	deg- <i>dpp</i> -Rev	GTMCTTTGGTCRTTGAGRTASAGCAT		
Delta	deg- <i>DI</i> -Fwd	SCKBGCCTCSGCRTCGTCCTT	this study	
Della	deg- <i>DI</i> -Rev	TGYCAYAAYGGMGGMACCTGCATGAA	this study	
Distal loss	deg- <i>Dll</i> -Fwd	TGATACCAATACTGSGGCACATA	this study	
Distal-less	deg- <i>Dll</i> -Rev	ATGATGAARGCMGCTCAGGG	this study	
Jona dacarbawylaca	deg- <i>Ddc</i> -Fwd	TTCCASGAGTACTCCATGTCCTCG	this study	
Jopa decarboxylase	deg- <i>Ddc</i> -Rev	GGCAGGATGTKATGAAGGACATTGAG	uns study	
abany	deg- <i>e</i> -Fwd	CCCATSACCTCKGTGGAGCCGTA	this study	
ebony	deg- <i>e</i> -Rev	CTGCATCGCATCTTYGAGGAGCA	this study	
., , d	deg- <i>en</i> -Fwd	GRTCGCTGTASCGSGTGCAGTA	this study	
engralleu	deg- <i>en</i> -Rev	AATCAGCGCCCAGTCCACCAG	this study	
oven skinned	deg- <i>eve</i> -Fwd	TGCCTVTCCAGTCCRGAYAACTC	this study	
evenskipped	deg- <i>eve</i> -Rev	TACGCCTCAGTCTTGTAGGG		
	deg- <i>hh</i> -Fwd	ACCTTGTABARGGCATTGGCATACCA		
	deg- <i>hh</i> -Rev	ATCGGWGATCGDGTGCTRAGCATG	this study	
hodgobog	Dme- <i>hh</i> -Fwd	TGCTTCACGCCGGAAAGCACA		
nedgenog	Dme- <i>hh</i> -Rev-T7	TAATACGACTCACTATAGGACCACAATGGTGCCCTCGCGGGTCA	this study	
	Sle- <i>hh</i> -Fwd	TCATGCCGGAGAGCACCGCGC		
	Sle-hh -Rev-T7	TAATACGACTCACTATAGGAGTTGACTACAATGGTCCCCTCT		
Nuchala	deg-N-Fwd	CATCCVTGCCAGAAYGAGGG	46.5 4 6	
NOTCH	deg-N-Rev	GIGGRCAYTCGCAYTTGTAGCC	this study	
Notum	deg- <i>Notum</i> -Fwd	TGGAACTAYATHCAYGADATGGGCGG	this study	
Notuin	deg- <i>Notum</i> -Rev	GAGCAGYTCVAGRAADCGCATCTC		
	deg- <i>ptc</i> -Fwd1	ACCCAGCTGCGCATSAGRAAGG		
	deg- <i>ptc</i> -Rev1	GCTGACGGCSGCSTATGCGG		
	deg- <i>ptc</i> -Fwd2	ACCCAGCTGCGCATSAGRAACG		
patched	Dme- <i>ptc</i> -Fwd	AGCACCCAGGTGGTTCCGTTTTTG	this study	
	Dme <i>-ptc</i> -Rev-T7	TAATACGACTCACTATAGGCTGTTGTTGTTGCAGCTCTTCGGAT		
	Sle- <i>ptc</i> -Fwd	GTATGCGGAGAGCAGTCGCAAGGA		
	Sle- <i>ptc</i> -Rev-T7	TAATACGACTCACTATAGGTCCAGCAGCGGATTCTGAGCGGGCT		
tantaluc	deg- <i>tant</i> -Fwd	TCRCAGCWAAGCCGMGGCGA	this study	
tantalus	deg- <i>tant</i> -Rev	TGAGGCCATCRTTRAAGGARATGGC	uns study	
wingless	deg- <i>wg</i> -Fwd	AGCACGTYCARGCRGAGATGCG	this study	
	deg- <i>wg</i> -Rev	TTACCTRTTRTGYTTGCGHCCC		
yellow	deg-y-Fwd	TATCCGGAYTGGCGMAGCAATACGG	this study	
	deg-v-Rev	στοσοστογολατογολατοσο	unis study	

gene	species	accession
Amyrel	Drosophila deflecta	LS992514
Amyrei	Drosophila guttifera	LS992515
	Drosophila deflecta	LS992508
	Drosophila funebris	LS992505
	Drosophila guttifera	LS992504
Distal loss	Drosophila quadrilineata	LS992507
Distal-less	Samoaia attenuata	LS992664
	Samoaia hirta	LS992666
	Samoaia leonensis	LS992506
	Samoaia ocellaris	LS992665
	Drosophila deflecta	LS992509
	Drosophila guttifera	LS992513
	Drosophila quadrilineata	LS992512
Dona docarboxulação	Samoaia attenuata	LS992668
Dopa decarboxylase	Samoaia hirta	LS992669
	Samoaia leonensis	LS992510
	Samoaia ocellaris	LS992667
	Zaprionus ghesquierei	LS992511
	Drosophila deflecta	LS992462
	Drosophila funebris	LS992463
	Drosophila guttifera	LS992464
	Drosophila quadrilineata	LS992465
ebony	Samoaia attenuata	LS992671
	Samoaia hirta	LS992672
	Samoaia leonensis	LS992466
	Samoaia ocellaris	LS992670
	Zaprionus ghesquierei	LS992467
	Drosophila deflecta	LS992516
	Drosophila funebris	LS992519
	Drosophila guttifera	LS992517
engrailed	Drosophila quadrilineata	LS992520
ChBranea	Samoaia attenuata	LS992674
	Samoaia hirta	LS992675
	Samoaia leonensis	LS992518
	Samoaia ocellaris	LS992673
	Drosophila deflecta	LS992280
	Drosophila funebris	LS992281
	Drosophila guttifera	LS992282
	Drosophila quadrilineata	LS992283
even skipped	Samoaia attenuata	LS992677
	Samoaia hirta	LS992678
	Samoaia leonensis	LS992284
	Samoaia ocellaris	LS992676
	Zaprionus ghesquierei	LS992285
	Drosophila deflecta	LS992521

	Drosophila funebris	LS992522
	Drosophila guttifera	LS992526
	Drosophila quadrilineata	LS992523
hedgehog	Samoaia attenuata	LS997505
	Samoaia hirta	LS997506
	Samoaia leonensis	LS992525
	Samoaia ocellaris	LS997504
	Zaprionus ghesquierei	LS992524
	Drosophila deflecta	LS992527
	Drosophila guttifera	LS992528
Notum	Samoaia attenuata	LS997502
	Samoaia hirta	LS997503
	Samoaia leonensis	LS992529
	Samoaia ocellaris	LS997501
	Drosophila deflecta	LS992530
	Drosophila funebris	LS992534
	Drosophila guttifera	LS992531
	Drosophila quadrilineata	LS992535
patched	Samoaia attenuata	LS997499
	Samoaia hirta	LS997500
	Samoaia leonensis	LS992532
	Samoaia ocellaris	LS997498
	Zaprionus ghesquierei	LS992533
	Drosophila deflecta	LS992536
	Drosophila funebris	LS992540
	Drosophila guttifera	LS992537
tantalus	Drosophila quadrilineata	LS992541
	Samoaia attenuata	LS997493
	Samoaia hirta	LS997494
	Samoaia leonensis	LS992538
	Samoaia ocellaris	LS997492
	Zaprionus ghesquierei	LS992539
	Drosophila deflecta	LS992558
	Drosophila funebris	LS992560
	Drosophila guttifera	LS992562
yellow	Drosophila quadrilineata	LS992561
	Samoaia attenuata	LS997496
	Samoaia hirta	LS997497
	Samoaia leonensis	LS992559
	Samoaia ocellaris	LS997495