Supplementary Data

Early Postnatal Manganese Exposure Causes Arousal Dysregulation and Lasting Hypofunctioning of the Prefrontal Cortex Catecholaminergic Systems

Travis E. Conley¹, Stephane A. Beaudin¹, Stephen M. Lasley², Casimir A. Fornal², Jasenia Hartman¹, Walter Uribe¹, Tooba Khan¹, Barbara J. Strupp³, and Donald R. Smith¹

- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61605, USA
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA

Corresponding author: Donald R. Smith, University of California, Santa Cruz, Department of Microbiology and Environmental Toxicology, 1156 High Street, CA, 95064, USA. E-mail: drsmith@ucsc.edu. Tel: (831) 459-5041.

Neurotransmitter/ Metabolite	Control	25 mg Mn/kg/day	50 mg Mn/kg/day
NE	3.40 ± 0.37	2.60 ± 0.31	2.15 ± 0.41
	(10)	(12)	(8)
DA	0.86 ± 0.20	0.65 ± 0.14	0.46 ± 0.06
	(11)	(12)	(8)
DOPAC	39.81 ± 8.47	35.52 ± 3.96	39.93 ± 10.66
	(11)	(11)	(8)
HVA	75.36 ± 7.48	83.13 ± 7.06	83.87 ± 7.10
	(10)	(12)	(8)

Supplementary Table 1. Basal concentrations of NE, DA, and their metabolites in the mPFC.

Values are mean baseline nM concentrations (prior to introduction of a high K⁺ stimulus) \pm SEM with group sizes in parentheses. The NE reuptake blocker desipramine (100 μ M) was present in the perfusion fluid throughout. There was no significant effect of Mn exposure based on one-way ANOVA (p > 0.05).

Supplementary Figure S1. Mn exposure did not alter the K⁺-stimulated release of DOPAC or HVA in the mPFC of young adolescent animals. Concentrations of (a) DOPAC and (b) HVA in nM as a function of time after administration of a high K⁺ stimulus. There was no effect of Mn exposure on either DOPAC or HVA concentrations at 40 min after initiation of high K⁺ perfusion, based on one-way ANOVA (p > 0.05). Data are means \pm SEM (n = 8-12 animals/group).

Supplementary Figure S2a – S2m. Imaris-rendered object number and object volume for proteins quantified by immunohistochemistry. Bar charts show total object number/image (left panels) and total object volume/image (right panels) of Imaris-quantified objects. Data (least squares means \pm SEM) reflect 12-18 images/animal and n = 6 animals/treatment group, shown as percent of control values generated from the statistical model that included all five treatment groups. (**a**, **b**) tyrosine hydroxylase (TH), (**c**, **d**) dopamine transporter (DAT), (**e**, **f**) norepinephrine transporter (NET), (**g**, **h**) dopamine D1 receptor (D1), (**i**, **j**) dopamine D2

receptor (D2), (**k**) α_{2A} adrenergic receptor (α_{2A}), (**l**, **m**) glial fibrillary acidic protein (GFAP). Bars with different superscripts are statistically different (p < 0.05) based on Tukey's multiple comparisons test.