Supplementary Material*

Khan SU, Khan MU, Riaz H, et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes. An umbrella review and evidence map. Ann Intern Med. 2019. doi:10.7326/M19-0341

Table of contents	Page
I. Tables	2-58
II. Figures	59-71
III. References	72-89

* This supplementary material was provided by the authors to give readers further details on their article. The material was reviewed but not copyedited.

Supplement Table 1: Search Strategy (PubMed):

Literature search till March, 2019 for	meta-analyses				
Literature search till March, 2019 for Search string for meta-analyses (Results = 498)	(("minerals"[MeSH Terms] OR "minerals"[All Fields]) OR Action] OR "vitamins"[MeSH Terms] OR "vitamins"[All Field OR "diet"[All Fields]) AND (("cardiovascular sy ("cardiovascular"[All Fields]) AND (("cardiovascular sy ("cardiovascular"[All Fields]) AND outcomes[All Fi Fields] OR meta analyse[All Fields]) OR meta analysed[All Fields] OR meta analyse[All Fields] OR meta analysed[All Fields] OR meta analyse[All Fields] OR meta analyses[All Fields] OR meta analyses[All Fields] OR meta analyses[All Fields] OR meta analyses[All Fields] OR meta analyses[All Fields] OR meta analyses[All Fields] OR meta analyses[All Fields] OR meta analysia[All Fields] OR meta analyses[All Fields] OR meta analysis[All Fields] OR meta analysis[All Fields] OR meta analysis[All Fields] OR meta analysis[All Fields] OR meta analysis[All Fields] OR meta analysis analysisas[All Fields] OR meta analysis/s[All Fields] OR meta analysis[All Fields] OR meta analysis analysisevaluating[All Fields] OR meta analysis analysisevaluating[All Fields] OR meta analysis analysisevaluating[All Fields] OR meta analysis analysisevaluating[All Fields] OR meta analysismethods[All Fields] OR meta analysismethods] OR meta analysismethods[All Fields] OR meta analysismethods[All Fields] OR meta analysismethods] OR meta analysismethods[All Fields] OR meta analysismethods[All Fields] OR meta analysismethods] OR meta analysis[All Fields] OR meta analysismethods] OR meta analysis[All Fields] OR meta analysismethods] OR meta analysis[All Fields] OR meta analysis[All Fields] OR meta analyse[All Fields] OR meta analysis[All Fields] OR metaanalyse[All Fields] OR metaanalyse[All Fields] OR metaanalyse[All Fields] OR metaanalyse[All Fields] OR metaanalyse[All Fields] OR metaanalyst[All Fields] OR metaanalysis[All Fields] OR metaanalyst[All Fields] OR metaanalysis	ds]) OR ("diet"[MeSH Terms] (stem"[MeSH Terms] OR a "cardiovascular system"[All elds])) AND ((meta analyse[All Fields] OR meta analyses[All Fields] OR meta analysers[All scohort[All Fields] OR meta Fields] OR meta analysing[All Fields] OR meta analysindicated[All analysis/[All Fields] OR meta OR meta analysisindicated[All analysisv[All Fields] OR meta fields] OR meta analysisof[All halysisv[All Fields] OR meta neta analytica[All Fields] OR meta analytica[All Fields] OR R meta analytica[All Fields] OR R meta analytica[All Fields] OR meta analytica[All Fields] OR meta analytica[All Fields] OR meta analytica[All Fields] OR meta analytica[All Fields] OR metaanalysen[All Fields] OR metaanalyses'[All Fields] OR metaanalyses/[All Fields] OR metaanalytic[All Fields] OR Metaanalyt			
	"2019/03/01"[PDAT]) AND "humans"[MeSH Terms])				
Literature search timelines of selecte	•				
Author (Year), Journal	Selected intervention(s)	Search timeline			
Jenkins D et al., (2018) (1), Journal of	Antioxidants; β-carotene; vitamin B-complex;	01/2012- 10/2017			
American College of Cardiology	multivitamins; selenium; vitamin A; vitamin B3/Niacin;				

	vitamin B6; vitamin C; vitamin E; vitamin D; calcium +	
	vitamin D; calcium; folic acid; iron	
Riaz H et al., (2018) (2), European Journal of Preventive Cardiology	Vitamin B3/Niacin	Inception- 01/2018
Abdelhamid AS et al., (2018) (3), Cochrane Database of Systematic	n-3 LC PUFA and n- 3 (ALA) PUFA	Inception – 04/2017
Reviews		
Hooper L et al., (2018) (4), Cochrane Database of Systematic Reviews	n-6 PUFA	Inception – 05/2017
Liyanage T et al. (2016) (5), Plos One	Mediterranean diet	Inception – 02/2014
Adler AJ et al., (2014) (6), Cochrane Database of Systematic Reviews	Reduced salt (normotensives or hypertensives)	Inception – 05/2013
Mente A et al., (2016) (7), Lancet	Reduced salt (normotensives or hypertensives)	01/1960-04/2016
Hooper L et al., (2011) (8), Cochrane Database of Systematic Reviews	Modified or reduced dietary fat intake	Inception – 06/2010
Hooper L et al. (2015) (9), Cochrane Database of Systematic Reviews	Reduced saturated fat intake	Inception- 03/2014
Updated search		
Search string for supplemental vitamins and minerals (Results = 446)	mineralsalzdichte[All Fields] OR mineralsalze[All Fields] OF mineralsalzfrage[All Fields] OR mineralsalzge mineralsalzgehaltsbestimmung[All Fields] OR mineralsalz mineralsalzlosung[All Fields] OR mineralsalzmangeler mineralsalzmasse[All Fields] OR mineralsalzmangeler mineralsalzquelle[All Fields] OR mineralsalzmise mineralsalzquelle[All Fields] OR mineralsalzmise mineralsalzversorgung[All Fields] OR mineralsalzmen[All Fields] OR mineralschalen[All Fields] OR mineralsdhahran Fields] OR mineralschalen[All Fields] OR mineralsk[All Fields] OR mineralsfortified[All Fields] OR mineralsk[All Fields] OR mineralstoff[All Fields] OR mineralstaub[All Fields] mineralstoffangebot[All Fields] OR mineralstoffaus mineralstoffbedarf[All Fields] OR mineralstoffbes mineralstoffbedarf[All Fields] OR mineralstoffbes mineralstoffbilanz[All Fields] OR mineralstoffdungung[All Fields] OR mineralstoffen[All Fields] OR mineralstoffbes	Rvitaminsfor[AllFields]ORvitaminskih[AllFields]ORIds]ORvitaminsparenden[AllAllFields]OR vitaminstatus[Allnsubstitution[AllFields]ORupplemente[AllFields]ORAllFields]OR vitaminsyre[AllFields]OR minerals'[All Fields]ORAllFields]OR minerals'[All Fields]Gmineralsalzausscheidung[AllZbestimmung[AllFields]ORalzdefizits[AllFields]ORalzdefizits[AllFields]ORalzgemischen[AllFields]ORchungen[AllFields]ORchungen[AllFields]ORfields]ORmineralsaurer[Allfields]ORmineralsaurer[Allfields]ORmineralsaurer[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORmineralspiegel[Allfields]ORminerals

mineralsteffachalt[All	Fields]		mineralsteffgehalte[All	Fields]	
mineralstoffgehalt[All mineralstoffgehalten[All	Fields] Fields]	OR OR	mineralstoffgehalte[All mineralstoffgehaltes[All	Fields] Fields]	OR OR
mineralstoffgemisches[All	-	OR	mineralstoffhaushalt[All	Fields]	OR
mineralstoffkonzentration	-		OR mineralstoffmangel[Al	-	OR
	-	-	mineralstoffmangelerscheinu	-	
	-	-	-		-
	-	-	_	-	OR
mineralstoffstoffwechsel[-		-	OR
mineralstoffsupplementie		-	_	-	OR
mineralstoffumsatzes[All	Fields]	OR	mineralstoffutterung[All	Fields]	OR
mineralstoffverarmung[Al	-	OR	mineralstoffversorgung[All	-	OR
_	-		eralstoffwechselparameter[/	-	
_	-		neralstoffwechselstoerung[A	-	
	-	-	R mineralstoffwechselstudie	-	-
_	-		R mineralstoffwechselwirkun	-	
mineralstoffwirkung[All	Fields]	OR	mineralstoffzufuhr[All	Fields]	OR
mineralstoffzusammenset		Fields]	- -	-	OR
_	-		bstanz[All Fields] OR minera		-
_	-	-	mineralsyrors[All Fields])) A		
			ion,[All Fields] OR myocardi		-
	-	-) OR (stroke[All Fields] OR st	-	-
	-	-	OR stroke,[All Fields] OR strol	-	-
_	-	-	ll Fields] OR stroke2000[-	
stroke2010[All Fields] OR	stroke34[A	ll Fields] OR stroke4carers[All Fields] OR stroke	`s[All
Fields] OR strokea[All Fiel	ds] OR stro	okeaeti	ology[All Fields] OR strokeah	na[All Fields	5] OR
strokeaha118020087[All	Fields]	OR	strokeaha118020840[All	Fields]	OR
strokeaha118021381[All	Fields]	OR	strokeaha118021407[All	Fields]	OR
strokeaha118021453[All	Fields]	OR	strokeaha118021598[All	Fields]	OR
strokeaha118021798[All	Fields]	OR	strokeaha118022088[All	Fields]	OR
strokeaha118022239[All	Fields]	OR	strokeaha118022249[All	Fields]	OR
strokeaha118022315[All	Fields]	OR	strokeaha118022332[All	Fields]	OR
strokeaha118022404[All	Fields]	OR	strokeaha118022406[All	Fields]	OR
strokeaha118022423[All	Fields]	OR	strokeaha118022454[All	Fields]	OR
strokeaha118022516[All	Fields]	OR	strokeaha118022563[All	Fields]	OR
strokeaha118022644[All	Fields]	OR	strokeaha118022687[All	Fields]	OR
strokeaha118022691[All	Fields]	OR	strokeaha118022745[All	Fields]	OR
strokeaha118022913[All	Fields]	OR	strokeaha118022923[All	Fields]	OR
strokeaha118023006[All	Fields]	OR	strokeaha118023058[All	Fields]	OR
strokeaha118023060[All	Fields]	OR	strokeaha118023079[All	Fields]	OR
strokeaha118023084[All	Fields]	OR	strokeaha118023088[All	Fields]	OR
strokeaha118023093[All	Fields]	OR	strokeaha118023385[All	Fields]	OR
strokeaha118023456[All	Fields]	OR	strokeaha118023457[All	Fields]	OR
strokeaha118023456[All	Fields]	OR	strokeaha118023482[All	Fields]	OR
strokeaha118023506[All	Fields]	OR	strokeaha118023527[All	Fields]	OR
strokeaha118023573[All	Fields]	OR	strokeaha118023640[All	Fields]	OR
strokeaha118023696[All	Fields]	OR	strokeaha118023701[All	Fields]	OR
strokeaha118023696[All	-		strokeaha118023701[All	-	
-	Fields]	OR	•	Fields]	OR
strokeaha118023724[All	Fields]	OR	strokeaha118023744[All	Fields]	OR
strokeaha118023749[All	Fields]	OR	strokeaha118023789[All	Fields]	OR

strokeaha118023790[All Fields] OR strokeaha118023830[All Fields] OR
strokeaha118023850[All Fields] OR strokeaha118023866[All Fields] OR
strokeaha118023953[All Fields] OR strokeaha118023955[All Fields] OR
strokeaha118023990[All Fields] OR strokeaha118024028[All Fields] OR
strokeaha118024134[All Fields] OR strokeaha118024028[All Fields] OR
strokeaha118024442[All Fields] OR strokeand[All Fields] OR strokecarecontents[All
Fields] OR strokecenter[All Fields] OR strokecentre[All Fields] OR strokechecklist[All
Fields] OR strokeclose[All Fields] OR strokect[All Fields] OR strokectacomputed[All Fields]
OR strokectcomputed[All Fields] OR strokectomy[All Fields] OR stroked[All Fields] OR
strokedepartment[All Fields] OR strokedepressive[All Fields] OR strokedge[All Fields] OR
strokediagnostik[All Fields] OR strokedoc[All Fields] OR strokedrabbade[All Fields] OR
strokeearly[All Fields] OR strokeed[All Fields] OR strokeelicited[All Fields] OR
strokeenh[All Fields] OR strokeenheten[All Fields] OR strokefall[All Fields] OR
strokefobrebyggande[All Fields] OR strokefoundation[All Fields] OR strokefree[All Fields]
OR strokefrom[All Fields] OR strokehip[All Fields] OR strokein[All Fields] OR
strokeinduced[All Fields] OR strokeintracerebral[All Fields] OR strokelets[All Fields] OR
strokelike[All Fields] OR strokelink[All Fields] OR strokelocated[All Fields] OR
strokemerci[All Fields] OR strokemethods[All Fields] OR strokemobile[All Fields] OR
stroken[All Fields] OR strokenational[All Fields] OR strokenet[All Fields] OR
strokengine[All Fields] OR strokengine's[All Fields] OR strokenomics[All Fields] OR
strokenomics'[All Fields] OR strokepatienter[All Fields] OR strokepatients[All Fields] OR
strokepharmacogenomics[All Fields] OR strokeplane[All Fields] OR strokeprevention[All
Fields] OR strokeprofylax[All Fields] OR strokeprofylaxen[All Fields] OR strokeproject[All
Fields] OR strokeprone[All Fields] OR stroker[All Fields] OR strokerehab[All Fields] OR
strokerehabilitering[All Fields] OR strokerisk[All Fields] OR strokers[All Fields] OR
strokerwin[All Fields] OR strokes[All Fields] OR strokes'[All Fields] OR strokes1[All Fields]
OR strokesafe[All Fields] OR strokesand[All Fields] OR strokesektionen[All Fields] OR
strokesfuture[All Fields] OR strokesich[All Fields] OR strokeskydd[All Fields] OR
strokesmin[All Fields] OR strokestop[All Fields] OR strokestra[All Fields] OR
strokestudygz[All Fields] OR strokethree[All Fields] OR stroketool[All Fields] OR
stroketrials[All Fields] OR strokeun[All Fields] OR strokeunit[All Fields] OR strokevan[All
Fields] OR strokevard[All Fields] OR strokevarden[All Fields] OR strokevia[All Fields] OR
strokevision[All Fields] OR strokevolume[All Fields] OR strokevolumedon[All Fields] OR
strokevolumes[All Fields] OR strokewidth[All Fields] OR strokework[All Fields] OR
strokezero[All Fields]) OR (mortality[All Fields] OR mortality'[All Fields] OR mortality'[All
Fields] OR mortality's[All Fields] OR mortality,[All Fields] OR mortality1[All Fields] OR
mortality12[All Fields] OR mortality19[All Fields] OR mortality1965[All Fields] OR
mortality2[All Fields] OR mortalityabc[All Fields] OR mortalityagainst[All Fields] OR
mortalityall[All Fields] OR mortalityabc[All Fields] OR mortalityat[All Fields] OR
mortalitydagger[All Fields] OR mortalityfor[All Fields] OR mortalityhf[All Fields] OR mortalityin[All Fields] OR mortalityinthe[All Fields] OR
mortalitynrmand[All Fields] OR mortalityof[All Fields] OR mortalityon[All Fields] OR
mortalitypredictors[All Fields] OR mortalityrate[All Fields] OR mortalityrates[All Fields]
OR mortalityrelated[All Fields] OR mortalityresearch[All Fields] OR
mortalitysahsubarachnoid[All Fields] OR mortalitystudy[All Fields] OR
mortalitysuggests[All Fields] OR mortalitythat[All Fields] OR mortalitythree[All Fields] OR
mortalitytrm[All Fields] OR mortalitytrmin[All Fields] OR mortalitywas[All Fields] OR
mortalitywith[All Fields] OR mortalityworldwide[All Fields] OR mortalityyy[All Fields]) OR

	(cardiovascular disease[All Fields] OR cardiovascular disease's[All Fields]	OR
		OR
	cardiovascular diseases[All Fields])) AND (Clinical Trial[ptyp] AND ("2017/01/01"[PDA	
	"2019/03/01"[PDAT]) AND "humans"[MeSH Terms])	.1.
Search string for n-3 LC PUFA and n-	omega 3 fatty acids[All Fields] AND ((myocardial infarction[All Fields] OR myocard	lait
3 [ALA] PUFA	infarction,[All Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions	[All
(Results = 82)	Fields]) OR (stroke[All Fields] OR stroke'[All Fields] OR stroke''[All Fields] OR stroke's	[All
	Fields] OR stroke, [All Fields] OR stroke119[All Fields] OR stroke123[All Fields]	OR
	stroke2[All Fields] OR stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34	[All
	Fields] OR stroke4carers[All Fields] OR stroke`s[All Fields] OR strokea[All Fields]	OR
	strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fiel	ds]
		OR
	strokeaha118024232[All Fields] OR strokeaha118024442[All Fields] OR strokeand	-
	Fields] OR strokecarecontents[All Fields] OR strokecenter[All Fields] OR strokecentre	
	Fields] OR strokechecklist[All Fields] OR strokeclose[All Fields] OR strokect[All Fields]	
	strokectacomputed[All Fields] OR strokectcomputed[All Fields] OR strokectomy	-
	Fields] OR stroked[All Fields] OR strokedepartment[All Fields] OR strokedepressive	
	Fields] OR strokedge[All Fields] OR strokediagnostik[All Fields] OR strokedoc[All Fields]	-
	OR strokedrabbade[All Fields] OR strokeearly[All Fields] OR strokeed[All Fields]	
	strokeelicited[All Fields] OR strokeenh[All Fields] OR strokeenheten[All Fields]	
	strokefall[All Fields] OR strokefobrebyggande[All Fields] OR strokefoundation[All Fiel	dsj

	OR strokefree[All Fields] OR strokefrom[All Fields] OR strokehip[All Fields] OR strokein[All
	Fields] OR strokeinduced[All Fields] OR strokeintracerebral[All Fields] OR strokelets[All
	Fields] OR strokelike[All Fields] OR strokelink[All Fields] OR strokelocated[All Fields] OR
	strokemerci[All Fields] OR strokemethods[All Fields] OR strokemobile[All Fields] OR
	stroken[All Fields] OR strokenational[All Fields] OR strokenet[All Fields] OR
	strokengine[All Fields] OR strokengine's[All Fields] OR strokenomics[All Fields] OR
	strokenomics'[All Fields] OR strokepatienter[All Fields] OR strokepatients[All Fields] OR
	strokepharmacogenomics[All Fields] OR strokeplane[All Fields] OR strokeprevention[All
	Fields] OR strokeprofylax[All Fields] OR strokeprofylaxen[All Fields] OR strokeproject[All
	Fields] OR strokeprone[All Fields] OR stroker[All Fields] OR strokerehab[All Fields] OR
	strokerehabilitering[All Fields] OR strokerisk[All Fields] OR strokers[All Fields] OR
	strokerwin[All Fields] OR strokes[All Fields] OR strokes'[All Fields] OR strokes1[All Fields]
	OR strokesafe[All Fields] OR strokesand[All Fields] OR strokesektionen[All Fields] OR
	strokesfuture[All Fields] OR strokesich[All Fields] OR strokeskydd[All Fields] OR
	strokesmin[All Fields] OR strokestop[All Fields] OR strokestra[All Fields] OR
	strokestudygz[All Fields] OR strokethree[All Fields] OR stroketool[All Fields] OR
	stroketrials[All Fields] OR strokeun[All Fields] OR strokeunit[All Fields] OR strokevan[All
	Fields] OR strokevard[All Fields] OR strokevarden[All Fields] OR strokevia[All Fields] OR
	strokevision[All Fields] OR strokevolume[All Fields] OR strokevolumedon[All Fields] OR
	strokevolumes[All Fields] OR strokewidth[All Fields] OR strokework[All Fields] OR
	strokezero[All Fields]) OR (mortality[All Fields] OR mortality'[All Fields] OR mortality''[All
	Fields] OR mortality's[All Fields] OR mortality,[All Fields] OR mortality1[All Fields] OR
	mortality12[All Fields] OR mortality19[All Fields] OR mortality1965[All Fields] OR
	mortality2[All Fields] OR mortalityabc[All Fields] OR mortalityagainst[All Fields] OR
	mortalityall[All Fields] OR mortalityand[All Fields] OR mortalityat[All Fields] OR
	mortalitydagger[All Fields] OR mortalityfor[All Fields] OR mortalityhf[All Fields] OR
	mortalityin[All Fields] OR mortalityinterval[All Fields] OR mortalityinthe[All Fields] OR
	mortalitynrmand[All Fields] OR mortalityof[All Fields] OR mortalityon[All Fields] OR
	mortalitypredictors[All Fields] OR mortalityrate[All Fields] OR mortalityrates[All Fields]
	OR mortalityrelated[All Fields] OR mortalityresearch[All Fields] OR
	mortalitysahsubarachnoid[All Fields] OR mortalitystudy[All Fields] OR
	mortalitysuggests[All Fields] OR mortalitythat[All Fields] OR mortalitythree[All Fields] OR
	mortalitytrm[All Fields] OR mortalitytrmin[All Fields] OR mortalitywas[All Fields] OR
	mortalitywith[All Fields] OR mortalityworldwide[All Fields] OR mortalityyy[All Fields]) OR
	(cardiovascular disease[All Fields] OR cardiovascular disease's[All Fields] OR
	cardiovascular disease,[All Fields] OR cardiovascular diseased[All Fields] OR
	cardiovascular diseases[All Fields])) AND (Clinical Trial[ptyp] AND ("2017/01/01"[PDAT] :
	"2019/03/01"[PDAT]) AND "humans"[MeSH Terms])
Search string for n- 6 PUFA	omega 6 fatty acids[All Fields] AND ((myocardial infarction[All Fields] OR myocardial
(Results = 9)	infarction,[All Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions[All
	Fields]) OR (stroke[All Fields] OR stroke'[All Fields] OR stroke''[All Fields] OR stroke's[All
	Fields] OR stroke, [All Fields] OR stroke119 [All Fields] OR stroke123 [All Fields] OR
	stroke2[All Fields] OR stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All
	Fields] OR stroke4carers[All Fields] OR stroke's[All Fields] OR strokea[All Fields] OR
	Fields] OR stroke4carers[All Fields] OR stroke's[All Fields] OR strokea[All Fields] OR
	Fields] OR stroke4carers[All Fields] OR stroke`s[All Fields] OR strokea[All Fields] OR strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields]

strokeaha118022088[All	Fields]	OR	strokeaha118022239[All	Fields]	OR
strokeaha118022249[All	Fields]	OR	strokeaha118022315[All	Fields]	OR
strokeaha118022332[All	Fields]	OR	strokeaha118022404[All	Fields]	OR
strokeaha118022406[All	Fields]	OR	strokeaha118022423[All	Fields]	OR
strokeaha118022454[All	Fields]	OR	strokeaha118022516[All	Fields]	OR
strokeaha118022563[All	Fields]	OR	strokeaha118022644[All	Fields]	OR
strokeaha118022687[All	Fields]	OR	strokeaha118022691[All	Fields]	OR
strokeaha118022745[All	Fields]	OR	strokeaha118022913[All	Fields]	OR
strokeaha118022923[All	Fields]	OR	strokeaha118023006[All	Fields]	OR
strokeaha118023058[All	Fields]	OR	strokeaha118023060[All	Fields]	OR
strokeaha118023079[All	Fields]	OR	strokeaha118023084[All	Fields]	OR
strokeaha118023088[All	Fields]	OR	strokeaha118023093[All	Fields]	OR
strokeaha118023385[All	Fields]	OR	strokeaha118023456[All	Fields]	OR
strokeaha118023457[All	Fields]	OR	strokeaha118023465[All	Fields]	OR
strokeaha118023482[All	Fields]	OR	strokeaha118023506[All	Fields]	OR
strokeaha118023527[All	Fields]	OR	strokeaha118023573[All	Fields]	OR
strokeaha118023640[All	Fields]	OR	strokeaha118023696[All	Fields]	OR
strokeaha118023701[All	Fields]	OR	strokeaha118023702[All	Fields]	OR
strokeaha118023701[All	Fields]	OR	strokeaha118023702[All	Fields]	OR
strokeaha118023744[All	Fields]	OR	strokeaha118023724[All	Fields]	OR
strokeaha118023789[All	Fields]	OR	strokeaha118023749[All	Fields]	OR
_	_			-	
strokeaha118023830[All	Fields]	OR	strokeaha118023850[All	Fields]	OR
strokeaha118023866[All	Fields]	OR	strokeaha118023953[All	Fields]	OR
strokeaha118023955[All	Fields]	OR	strokeaha118023990[All	Fields]	OR
strokeaha118024028[All	Fields]	OR	strokeaha118024134[All	Fields]	OR
_	-		aha118024442[All Fields] OI		-
_	-	-	strokecenter[All Fields] OR s		-
_			keclose[All Fields] OR stroked	-	-
	-		tcomputed[All Fields] OR s		• -
	-	•	artment[All Fields] OR strok	•	-
	-		agnostik[All Fields] OR strok	-	-
-	-		arly[All Fields] OR strokeed	-	-
strokeelicited[All Fields]	OR stroke	enh[All	Fields] OR strokeenheten	[All Fields] OR
strokefall[All Fields] OR st	trokefobreb	yggand	le[All Fields] OR strokefound	ation[All F	ields]
OR strokefree[All Fields] C)R strokefro	m[All F	ields] OR strokehip[All Fields]	OR stroke	in[All
Fields] OR strokeinduced	[All Fields]	OR stro	okeintracerebral[All Fields] O	R strokele	ts[All
Fields] OR strokelike[All F	ields] OR st	rokelin	k[All Fields] OR strokelocate	d[All Field	s] OR
strokemerci[All Fields] O	R strokeme	ethods[All Fields] OR strokemobile	[All Fields	;] OR
stroken[All Fields] OR	strokenati	onal[Al	ll Fields] OR strokenet[A	ll Fields]	OR
strokengine[All Fields] C)R strokeng	gine's[A	II Fields] OR strokenomics	[All Fields] OR
strokenomics'[All Fields] (OR strokepa	atienter	r[All Fields] OR strokepatient	s[All Field	s] OR
strokepharmacogenomics	[All Fields]	OR stro	okeplane[All Fields] OR strok	epreventio	on[All
			keprofylaxen[All Fields] OR st	•	-
			er[All Fields] OR strokerehal		-
	-		isk[All Fields] OR strokers	-	-
	-		OR strokes'[All Fields] OR stro		-
	-	-	I Fields] OR strokesektioner	-	-
		-	II Fields] OR strokeskydd[-	-
					<u> </u>

	strokesmin[All Fields] OR strokestop[All Fields] OR strokestra[All Fields] OF
	strokestudygz[All Fields] OR strokethree[All Fields] OR stroketool[All Fields] OF
	stroketrials[All Fields] OR strokeun[All Fields] OR strokeunit[All Fields] OR strokevan[Al
	Fields] OR strokevard[All Fields] OR strokevarden[All Fields] OR strokevia[All Fields] OF
	strokevision[All Fields] OR strokevolume[All Fields] OR strokevolumedon[All Fields] OF
	strokevolumes[All Fields] OR strokewidth[All Fields] OR strokework[All Fields] OF
	strokezero[All Fields]) OR (mortality[All Fields] OR mortality'[All Fields] OR mortality''[Al
	Fields] OR mortality's[All Fields] OR mortality,[All Fields] OR mortality1[All Fields] OF
	mortality12[All Fields] OR mortality19[All Fields] OR mortality1965[All Fields] OF
	mortality2[All Fields] OR mortalityabc[All Fields] OR mortalityagainst[All Fields] OF
	mortalityall[All Fields] OR mortalityand[All Fields] OR mortalityat[All Fields] OF
	mortalitydagger[All Fields] OR mortalityfor[All Fields] OR mortalityhf[All Fields] OF
	mortalityin[All Fields] OR mortalityinterval[All Fields] OR mortalityinthe[All Fields] OF
	mortalitynrmand[All Fields] OR mortalityof[All Fields] OR mortalityon[All Fields] OF
	mortalitypredictors[All Fields] OR mortalityrate[All Fields] OR mortalityrates[All Fields]
	OR mortalityrelated[All Fields] OR mortalityresearch[All Fields] OF
	mortalitysahsubarachnoid[All Fields] OR mortalitystudy[All Fields] OF
	mortalitysuggests[All Fields] OR mortalitythat[All Fields] OR mortalitythree[All Fields] OF
	mortalitytrm[All Fields] OR mortalitytrmin[All Fields] OR mortalitywas[All Fields] OF
	mortalitywith[All Fields] OR mortalityworldwide[All Fields] OR mortalityyy[All Fields]) OF
	(cardiovascular disease[All Fields] OR cardiovascular disease's[All Fields] OF
	cardiovascular disease, [All Fields] OR cardiovascular diseased [All Fields] OF
	cardiovascular diseases[All Fields])) AND (Clinical Trial[ptyp] AND ("2017/01/01"[PDAT]
	"2019/03/01"[PDAT]) AND "humans"[MeSH Terms])
Coords atring for Madite manager 11	/maditarrangan diat[All Fields] OD maditarrangan diataru[All Fields] OD maditarrangar
Search string for Mediterranean diet	(mediterranean diet[All Fields] OR mediterranean dietary[All Fields] OR mediterranear
(Results = 153)	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions[All Fields]) OF
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields]
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2[All Fields] OR stroke2[All Fields] OF stroke2[All Fields] OR stroke2[All Fields] OF stroke34[All Field
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke"[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OR stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke`s[All Fields] OR stroke34[All Fields] OF
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke`s[All Fields] OF stroke4carers[All Fields] OR stroke`atroke`atroke34[All Fields] OF stroke4carers[All Fields] OR strokeatroke34[All Fields] OF stroke34[All Fiel
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke/[All Fields] OR stroke2[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke`s[All Fields] OR stroke4carers[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118020840[All Fields] OF strokeaha118021381[All Fields] OF strokeaha118020840[All Fields] OF strokeaha118021381[All Fields] OF strokeaha118020840[All Fields] OF strokeaha118021381[All Fields] OF str
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke`s[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha11802087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118021453[A
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke's[All Fields] OR stroke4carers[All Fields] OR strokeaha[All Fields] OR strokeaha[All Fields] OF strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021407[All Fields] OR strokeaha118021798[All Fields] OF strokeaha118021598[All Fields] OR strokeaha118021798[All Fields] OF strokeaha118021598[All Fields] OF strokeaha118021798[All Fields] OF strokeaha118021798[All Fields] OF strokeaha118021598[All Fields] OF strokeaha118021598[All Fields] OF strokeaha118021598[All Fields] OF strokeaha118021798[All Fields] OF strokeaha118021598[All Fields] OF strokeaha118021598[All Fields] OF strokeaha118021798[All Fields] OF strokeaha118021598[All F
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke2[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke4carers[All Fields] OR stroke2000[All Fields] OR stroke2000[All Fields] OR stroke2000[All Fields] OR stroke2000[All Fields] OR stroke4carers[All Fields] OR stroke2000[All Fields] OR stroke2000[All Fields] OR stroke4carers[All Fields] OF stroke4carers[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021798[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022339[All Fields] OF strokeaha11802
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke4carers[All Fields] OR strokeaha[All Fields] OR strokea[All Fields] OF strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118021598[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha118022315[All Fields] OF strokeaha118022449[All Fields] OF strokeaha118022315[All Fields] OF strokeaha118022449[All Fields] OF strokeaha118022315[All Fi
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokea[All Fields] OF strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021798[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha118022315[All Fields] OF strokeaha118022332[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022332[All Fields] OF s
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke3008 to K stroke
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OR stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF strokeatcarers[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeateatiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha11802249[All Fields] OR strokeaha118022332[All Fields] OF strokeaha118022404[All Fields] OF
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction][All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke34[All Fields] OF strokeate100gy[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha11802198[All Fields] OR strokeaha11802198[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802233[All Fields] OF strokeaha118022249[All Fields] OR strokeaha118022332[All Fields] OF strokeaha118022332[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022454[All Fields] OF strokeaha118022454[All Fields] OF strokeaha118022454[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fiel
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction][All Fields] OR stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke2[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke2[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke2000[All Fields] OR stroke2000[All Fields] OR stroke2000[All Fields] OR stroke2000[All Fields] OR stroke2010[All Fields] OR stroke2000[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118021407[All Fields] OR strokeaha11802233[All Fields] OF strokeaha118022088[All Fields] OR strokeaha118022332[All Fields] OF strokeaha118022332[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields]
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OR stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokea[All Fields] OF strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OR strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118021598[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha11802249[All Fields] OR strokeaha118022315[All Fields] OF strokeaha11802249[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OR stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokeaha[All Fields] OF strokeatology[All Fields] OR strokeaha[All Fields] OR strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha11802249[All Fields] OR strokeaha11802239[All Fields] OF strokeaha11802249[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha1180226687[All Fields] OF strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022454[All Fields] OF strokeaha118
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke'19[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokea4[All Fields] OF strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118022088[All Fields] OR strokeaha118021398[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022406[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022687[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022687[All Fields] OR strokeaha118022691[All Fields] OF strokeaha118022745[All Fields] OR strokeaha118022691[All Fields] OF strokeaha118022923[All Fields] OR strokeaha118022691[All Fields] OF
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarction[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OR stroke,[All Fields] OR stroke119[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OR stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokea[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021453[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022249[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022249[All Fields] OR strokeaha11802239[All Fields] OF strokeaha11802249[All Fields] OR strokeaha11802239[All Fields] OF strokeaha11802249[All Fields] OR strokeaha118022315[All Fields] OF strokeaha11802249[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022663[All Fields] OR strokeaha118022604[All Fields] OF strokeaha118022663[All Fields] OR strokeaha118022604[All Fields] OF strokeaha118022745[All Fields] OR strokeaha118022604[All Fields] OF strokeaha118022923[All Fields] OR strokeaha118022060[All Fields] OF strokeaha118022923[All Fields] OR strokeaha11802306[All Fields] OF strokeaha118022923[All Fields] OR strokeaha11802306[All Fields] OF strokeaha118023058[All Fields] OR strokeaha11802306[All Fields] OF
-	diets[All Fields]) AND ((myocardial infarction[All Fields] OR myocardial infarction,[Al Fields] OR myocardial infarctionl[All Fields] OR myocardial infarctions[All Fields]) OF (stroke[All Fields] OR stroke'[All Fields] OR stroke'[All Fields] OR stroke's[All Fields] OF stroke,[All Fields] OR stroke'19[All Fields] OR stroke123[All Fields] OR stroke2[All Fields] OF stroke2000[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR stroke2010[All Fields] OR stroke34[All Fields] OF stroke4carers[All Fields] OR strokeaha[All Fields] OR strokea4[All Fields] OF strokeaetiology[All Fields] OR strokeaha[All Fields] OR strokeaha118020087[All Fields] OF strokeaha118020840[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118021407[All Fields] OR strokeaha118021381[All Fields] OF strokeaha118022088[All Fields] OR strokeaha118021398[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022088[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022406[All Fields] OR strokeaha11802239[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022406[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022454[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022404[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022456[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022687[All Fields] OR strokeaha118022644[All Fields] OF strokeaha118022687[All Fields] OR strokeaha118022691[All Fields] OF strokeaha118022745[All Fields] OR strokeaha118022691[All Fields] OF strokeaha118022923[All Fields] OR strokeaha118022691[All Fields] OF

strokeaha118023457[All	Fields]	OR	strokeaha118023465[All	Fields]	OR
strokeaha118023482[All	Fields]	OR	strokeaha118023506[All	Fields]	OR
strokeaha118023527[All	Fields]	OR	strokeaha118023573[All	Fields]	OR
strokeaha118023640[All	Fields]	OR	strokeaha118023696[All	Fields]	OR
strokeaha118023701[All	- Fields]	OR	strokeaha118023702[All	Fields]	OR
strokeaha118023712[All	- Fields]	OR	strokeaha118023724[All	Fields]	OR
strokeaha118023744[All	Fields]	OR	strokeaha118023749[All	Fields]	OR
strokeaha118023789[All	Fields]	OR	strokeaha118023790[All	Fields]	OR
strokeaha118023830[All	Fields]	OR	strokeaha118023850[All	Fields]	OR
strokeaha118023866[All	Fields]	OR	strokeaha118023953[All	Fields]	OR
	-		-	-	
strokeaha118023955[All	Fields]	OR	strokeaha118023990[All	Fields]	OR
strokeaha118024028[All	Fields]	OR	strokeaha118024134[All	Fields]	OR
_	-		ha118024442[All Fields] O		-
-	-	-	strokecenter[All Fields] OR		-
-			<pre>keclose[All Fields] OR stroke</pre>	-	-
• •	-		computed[All Fields] OR		
	-	•	artment[All Fields] OR strol	•	-
	-		agnostik[All Fields] OR strok	-	-
OR strokedrabbade[All F	ields] OR s	strokeea	arly[All Fields] OR strokeed	J[All Fields	5] OR
strokeelicited[All Fields]	OR stroke	enh[All	Fields] OR strokeenheten	[All Fields] OR
strokefall[All Fields] OR st	rokefobreb	yggande	e[All Fields] OR strokefound	ation[All F	ields]
OR strokefree[All Fields] C	R strokefro	m[All Fi	elds] OR strokehip[All Fields]] OR stroke	in[All
Fields] OR strokeinduced	[All Fields]	OR stro	keintracerebral[All Fields] C	R strokele	ts[All
Fields] OR strokelike[All F	ields] OR st	trokelinl	k[All Fields] OR strokelocate	d[All Field	s] OR
strokemerci[All Fields] O	R strokem	ethods[/	All Fields] OR strokemobile	e[All Fields] OR
stroken[All Fields] OR	strokenat	ional[All	Fields] OR strokenet[A	All Fields]	OR
		-	I Fields] OR strokenomics	-	
			[All Fields] OR strokepatien	-	-
	•		keplane[All Fields] OR strok	-	-
			eprofylaxen[All Fields] OR s	•	-
			er[All Fields] OR strokereha		-
	-		sk[All Fields] OR strokers	-	-
	-		R strokes'[All Fields] OR strokers	-	-
	-	-	Fields] OR strokesektione	-	-
		-	Fields] OR strokeskydd	-	-
		-	Fields] OR strokestra[A		-
		• •	All Fields] OR strokestral	-	
		-			
	-] OR strokeunit[All Fields] C		-
	-		arden[All Fields] OR strokev	-	-
		-	Fields] OR strokevolumedo	-	-
		-	All Fields] OR strokework	-	-
	-		s] OR mortality'[All Fields] C		-
	-		ity,[All Fields] OR mortality	-	-
		• -	Fields] OR mortality1965	-	-
		-	Fields] OR mortalityagains	-	-
		• -	ll Fields] OR mortalityat		
		-	[All Fields] OR mortalityh		
mortalityin[All Fields] OR	mortalityir	nterval[/	All Fields] OR mortalityinth	e[All Fields	s] OR

	· · ·	-		of[All Fields] OR mortalityor	-	-
	mortalitypredictors[All Fields] OR mortalityrate[All Fields] OR mortalityrates[All Field					-
	OR mortalityrelated[A	-		, .	Fields]	OR
	mortalitysahsubarachnoi	-	-	OR mortalitystudy[All	Fields]	OR
	mortalitysuggests[All Fiel	ds] OR morta	alitytha	at[All Fields] OR mortalitythre	ee[All Field	s] OR
	mortalitytrm[All Fields]	OR mortalit	ytrmin	[All Fields] OR mortalitywas	s[All Fields	5] OR
	mortalitywith[All Fields]	OR mortality	worldv	wide[All Fields] OR mortalityy	y[All Fields	5]) OR
	(cardiovascular disease	[All Fields]	OR	cardiovascular disease's[A	All Fields]	OR
	cardiovascular disease,	[All Fields]	OR	cardiovascular diseased[A	ll Fields]	OR
	cardiovascular diseases[A	All Fields])) A	ND (Cl	inical Trial[ptyp] AND ("2014,	/01/01"[PC)AT] :
	"2019/03/01"[PDAT]) AN	D "humans"	[MeSH	Terms])		
Search string for reduced salt	(dietary salt[All Fields] Of	R dietary salt	s[All Fi	ields]) AND ((myocardial infar	rction[All F	ields]
(normotensives or hypertensives)	OR myocardial infarction	,[All Fields] (OR my	ocardial infarctionl[All Fields]] OR myoca	ardial
(Results = 88)	infarctions[All Fields]) OF	R (stroke[All	Fields]	OR stroke'[All Fields] OR str	roke''[All F	ields]
	OR stroke's[All Fields] O	R stroke,[All	Fields] OR stroke119[All Fields] O	R stroke12	23[All
	Fields] OR stroke2[All Fi	elds] OR str	oke20	00[All Fields] OR stroke2010	0[All Fields	s] OR
	stroke34[All Fields] OR s	stroke4carer	s[All F	ields] OR stroke`s[All Fields]	OR stroke	ea[All
	Fields] OR strokea	etiology[All	Fiel	ds] OR strokeaha[All	Fields]	OR
	strokeaha118020087[All	Fields]	OR	strokeaha118020840[All	Fields]	OR
	strokeaha118021381[All	Fields]	OR	strokeaha118021407[All	Fields]	OR
	strokeaha118021453[All	Fields]	OR	strokeaha118021598[All	Fields]	OR
	strokeaha118021798[All	Fields]	OR	strokeaha118022088[All	Fields]	OR
	strokeaha118022239[All	Fields]	OR	strokeaha118022249[All	- Fields]	OR
	strokeaha118022315[All	Fields]	OR	strokeaha118022332[All	- Fields]	OR
	strokeaha118022404[All	Fields]	OR	strokeaha118022406[All	Fields]	OR
	strokeaha118022423[All	Fields]	OR	strokeaha118022454[All	Fields]	OR
	strokeaha118022516[All	Fields]	OR	strokeaha118022563[All	- Fields]	OR
	strokeaha118022644[All	Fields]	OR	strokeaha118022687[All	- Fields]	OR
	strokeaha118022691[All	Fields]	OR	strokeaha118022745[All	Fields]	OR
	strokeaha118022913[All	Fields]	OR	strokeaha118022923[All	Fields]	OR
	strokeaha118023006[All	Fields]	OR	strokeaha118023058[All	- Fields]	OR
	strokeaha118023060[All	Fields]	OR	strokeaha118023079[All	- Fields]	OR
	strokeaha118023084[All	Fields]	OR	strokeaha118023088[All	Fields]	OR
	strokeaha118023093[All	Fields]	OR	strokeaha118023385[All	Fields]	OR
	strokeaha118023456[All	Fields]	OR	strokeaha118023457[All	- Fields]	OR
	strokeaha118023465[All	Fields]	OR	strokeaha118023482[All	Fields]	OR
	strokeaha118023506[All	Fields]	OR	strokeaha118023527[All	Fields]	OR
	strokeaha118023573[All	Fields]	OR	strokeaha118023640[All	Fields]	OR
	strokeaha118023696[All	Fields]	OR	strokeaha118023701[All	Fields]	OR
	strokeaha118023702[All	Fields]	OR	strokeaha118023712[All	Fields]	OR
	strokeaha118023724[All	Fields]	OR	strokeaha118023744[All	Fields]	OR
	strokeaha118023749[All	Fields]	OR	strokeaha118023789[All	Fields]	OR
	strokeaha118023790[All	Fields]	OR	strokeaha118023830[All	Fields]	OR
	strokeaha118023850[All	Fields]	OR	strokeaha118023866[All	Fields]	OR
	strokeaha118023953[All	Fields]	OR	strokeaha118023955[All	Fields]	OR
	strokeaha118023990[All	Fields]	OR	strokeaha118024028[All	Fields]	OR
	strokeaha118024134[All	Fields]	OR	strokeaha118024232[All	Fields]	OR
	-	-		eand[All Fields] OR stroked	-	
			30.000			

Fields] OR strokecenter[All Fields] OR strokecentre[All Fields] OR strokechecklist[All Fields] OR strokeclose[All Fields] OR strokect[All Fields] OR strokectacomputed[All Fields] OR strokectcomputed[All Fields] OR strokectomy[All Fields] OR stroked[All Fields] OR strokedepartment[All Fields] OR strokedepressive[All Fields] OR strokedge[All Fields] OR strokediagnostik[All Fields] OR strokedoc[All Fields] OR strokedrabbade[All Fields] OR strokeearly[All Fields] OR strokeed[All Fields] OR strokeelicited[All Fields] OR strokeenh[All Fields] OR strokeenheten[All Fields] OR strokefall[All Fields] OR strokefobrebyggande[All Fields] OR strokefoundation[All Fields] OR strokefree[All Fields] OR strokefrom[All Fields] OR strokehip[All Fields] OR strokein[All Fields] OR strokeinduced[All Fields] OR strokeintracerebral[All Fields] OR strokelets[All Fields] OR strokelike[All Fields] OR strokelink[All Fields] OR strokelocated[All Fields] OR strokemerci[All Fields] OR strokemethods[All Fields] OR strokemobile[All Fields] OR stroken[All Fields] OR strokenational[All Fields] OR strokenet[All Fields] OR strokengine[All Fields] OR strokengine's[All Fields] OR strokenomics[All Fields] OR strokenomics'[All Fields] OR strokepatienter[All Fields] OR strokepatients[All Fields] OR strokepharmacogenomics[All Fields] OR strokeplane[All Fields] OR strokeprevention[All Fields] OR strokeprofylax[All Fields] OR strokeprofylaxen[All Fields] OR strokeproject[All Fields] OR strokeprone[All Fields] OR stroker[All Fields] OR strokerehab[All Fields] OR strokerehabilitering[All Fields] OR strokerisk[All Fields] OR strokers[All Fields] OR strokerwin[All Fields] OR strokes[All Fields] OR strokes[All Fields] OR strokes1[All Fields] OR strokesafe[All Fields] OR strokesand[All Fields] OR strokesektionen[All Fields] OR strokesfuture[All Fields] OR strokesich[All Fields] OR strokeskydd[All Fields] OR strokesmin[All Fields] OR strokestop[All Fields] OR strokestra[All Fields] OR strokestudygz[All Fields] OR strokethree[All Fields] OR stroketool[All Fields] OR stroketrials[All Fields] OR strokeun[All Fields] OR strokeunit[All Fields] OR strokevan[All Fields] OR strokevard[All Fields] OR strokevarden[All Fields] OR strokevia[All Fields] OR strokevision[All Fields] OR strokevolume[All Fields] OR strokevolumedon[All Fields] OR strokevolumes[All Fields] OR strokewidth[All Fields] OR strokework[All Fields] OR strokezero[All Fields]) OR (mortality[All Fields] OR mortality'[All Fields] OR mortality''[All Fields] OR mortality's[All Fields] OR mortality,[All Fields] OR mortality1[All Fields] OR mortality12[All Fields] OR mortality19[All Fields] OR mortality1965[All Fields] OR mortality2[All Fields] OR mortalityabc[All Fields] OR mortalityagainst[All Fields] OR mortalityall[All Fields] OR mortalityand[All Fields] OR mortalityat[All Fields] OR mortalitydagger[All Fields] OR mortalityfor[All Fields] OR mortalityhf[All Fields] OR mortalityin[All Fields] OR mortalityinterval[All Fields] OR mortalityinthe[All Fields] OR mortalitynrmand[All Fields] OR mortalityof[All Fields] OR mortalityon[All Fields] OR mortalitypredictors[All Fields] OR mortalityrate[All Fields] OR mortalityrates[All Fields] OR mortalityrelated[All Fields] OR mortalityresearch[All Fields] OR mortalitysahsubarachnoid[All Fields] OR mortalitystudy[All Fields] OR mortalitysuggests[All Fields] OR mortalitythat[All Fields] OR mortalitythree[All Fields] OR mortalitytrm[All Fields] OR mortalitytrmin[All Fields] OR mortalitywas[All Fields] OR mortalitywith[All Fields] OR mortalityworldwide[All Fields] OR mortalityyy[All Fields]) OR (cardiovascular disease[All Fields] OR cardiovascular disease's[All Fields] OR cardiovascular disease,[All Fields] OR cardiovascular diseased[All Fields] OR cardiovascular diseases[All Fields])) AND (Clinical Trial[ptyp] AND ("2014/01/01"[PDAT] : "2019/03/01"[PDAT]) AND "humans"[MeSH Terms])

		d and for all the set		
Search string for reduced dietary fat,	((reduced fat[All Fields] OR red			
modified dietary fat or reduced	reduced fatigability[All Fields]			
saturated fat	Fields] OR reduced fatness[A			-
(Results = 10)	Fields])) AND ((myocardial inf	-		
	myocardial infarctionl[All Fie		• •	• •
	Fields] OR stroke'[All Fields] (OR stroke''[All F	Fields] OR stroke's[All Fields]	OR stroke,[All
	Fields] OR stroke119[All Fie	lds] OR stroke	123[All Fields] OR stroke2[All Fields] OR
	stroke2000[All Fields] OR	stroke2010[Al	ll Fields] OR stroke34[Al	l Fields] OR
	stroke4carers[All Fields] C	DR stroke`s[Al	l Fields] OR strokea[All	Fields] OR
	strokeaetiology[All Fields] OR	R strokeaha[All	Fields] OR strokeaha118020	087[All Fields]
	OR strokeaha118020840[Al	ll Fields] OF	R strokeaha118021381[All	Fields] OR
	_	ields] OR	strokeaha118021453[All	Fields] OR
	_	ields] OR	strokeaha118021798[All	Fields] OR
	-	ields] OR	strokeaha118022239[All	Fields] OR
	-	ields] OR	strokeaha118022315[All	Fields] OR
	-	ields] OR	strokeaha118022404[All	Fields] OR
	-	ields] OR	strokeaha118022404[All	Fields] OR
	-	ields] OR	strokeaha118022516[All	Fields] OR
		ields] OR	strokeaha118022644[All	Fields] OR
		-	•	-
		ields] OR	strokeaha118022691[All	Fields] OR
	-	ields] OR	strokeaha118022913[All	Fields] OR
	-	ields] OR	strokeaha118023006[All	Fields] OR
	-	ields] OR	strokeaha118023060[All	Fields] OR
		ields] OR	strokeaha118023084[All	Fields] OR
	-	ields] OR	strokeaha118023093[All	Fields] OR
	_	ields] OR	strokeaha118023456[All	Fields] OR
	-	ields] OR	strokeaha118023465[All	Fields] OR
	strokeaha118023482[All F	ields] OR	strokeaha118023506[All	Fields] OR
	strokeaha118023527[All F	ields] OR	strokeaha118023573[All	Fields] OR
	strokeaha118023640[All F	ields] OR	strokeaha118023696[All	Fields] OR
	strokeaha118023701[All F	ields] OR	strokeaha118023702[All	Fields] OR
	strokeaha118023712[All F	ields] OR	strokeaha118023724[All	Fields] OR
	strokeaha118023744[All F	ields] OR	strokeaha118023749[All	Fields] OR
	strokeaha118023789[All F	ields] OR	strokeaha118023790[All	Fields] OR
	-	ields] OR	strokeaha118023850[All	Fields] OR
	•	ields] OR	strokeaha118023953[All	Fields] OR
	-	ields] OR	strokeaha118023990[All	Fields] OR
	_	ields] OR	strokeaha118024134[All	Fields] OR
	strokeaha118024232[All Field	-		-
	Fields] OR strokecarecontents	-		-
	Fields] OR strokechecklist[All			-
	strokectacomputed[All Fields	-		
	Fields] OR stroked[All Fields]	-	•	• -
		•	· ·	• •
	Fields] OR strokedge[All Field		-	
	OR strokedrabbade[All Fields	-		-
	strokeelicited[All Fields] OR	-		-
	strokefall[All Fields] OR stroke			
	OR strokefree[All Fields] OR st	roketrom[All Fie	eidsj OR strokehip[All Fields]	UR strokein[All

Fields] OR strokeinduced[All Fields] OR strokeintracerebral[All Fields] OR strokelets[All Fields] OR strokelike[All Fields] OR strokelink[All Fields] OR strokelocated[All Fields] OR strokemerci[All Fields] OR strokemethods[All Fields] OR strokemobile[All Fields] OR stroken[All Fields] OR strokenational[All Fields] OR strokenet[All Fields] OR strokengine[All Fields] OR strokengine's[All Fields] OR strokenomics[All Fields] OR strokenomics'[All Fields] OR strokepatienter[All Fields] OR strokepatients[All Fields] OR strokepharmacogenomics[All Fields] OR strokeplane[All Fields] OR strokeprevention[All Fields] OR strokeprofylax[All Fields] OR strokeprofylaxen[All Fields] OR strokeproject[All Fields] OR strokeprone[All Fields] OR stroker[All Fields] OR strokerehab[All Fields] OR strokerehabilitering[All Fields] OR strokerisk[All Fields] OR strokers[All Fields] OR strokerwin[All Fields] OR strokes[All Fields] OR strokes[All Fields] OR strokes1[All Fields] OR strokesafe[All Fields] OR strokesand[All Fields] OR strokesektionen[All Fields] OR strokesfuture[All Fields] OR strokesich[All Fields] OR strokeskydd[All Fields] OR strokesmin[All Fields] OR strokestop[All Fields] OR strokestra[All Fields] OR strokestudygz[All Fields] OR strokethree[All Fields] OR stroketool[All Fields] OR stroketrials[All Fields] OR strokeun[All Fields] OR strokeunit[All Fields] OR strokevan[All Fields] OR strokevard[All Fields] OR strokevarden[All Fields] OR strokevia[All Fields] OR strokevision[All Fields] OR strokevolume[All Fields] OR strokevolumedon[All Fields] OR strokevolumes[All Fields] OR strokewidth[All Fields] OR strokework[All Fields] OR strokezero[All Fields]) OR (mortality[All Fields] OR mortality'[All Fields] OR mortality''[All Fields] OR mortality's[All Fields] OR mortality,[All Fields] OR mortality1[All Fields] OR mortality12[All Fields] OR mortality19[All Fields] OR mortality1965[All Fields] OR mortality2[All Fields] OR mortalityabc[All Fields] OR mortalityagainst[All Fields] OR mortalityall[All Fields] OR mortalityand[All Fields] OR mortalityat[All Fields] OR mortalitydagger[All Fields] OR mortalityfor[All Fields] OR mortalityhf[All Fields] OR mortalityin[All Fields] OR mortalityinterval[All Fields] OR mortalityinthe[All Fields] OR mortalitynrmand[All Fields] OR mortalityof[All Fields] OR mortalityon[All Fields] OR mortalitypredictors[All Fields] OR mortalityrate[All Fields] OR mortalityrates[All Fields] OR mortalityrelated[All Fields] OR mortalityresearch[All Fields] OR mortalitysahsubarachnoid[All Fields] OR mortalitystudy[All Fields] OR mortalitysuggests[All Fields] OR mortalitythat[All Fields] OR mortalitythree[All Fields] OR mortalitytrm[All Fields] OR mortalitytrmin[All Fields] OR mortalitywas[All Fields] OR mortalitywith[All Fields] OR mortalityworldwide[All Fields] OR mortalityyy[All Fields]) OR (cardiovascular disease[All Fields] OR cardiovascular disease's[All Fields] OR cardiovascular disease,[All Fields] OR cardiovascular diseased[All Fields] OR cardiovascular diseases[All Fields])) AND (Clinical Trial[ptyp] AND ("2014/01/01"[PDAT] : "2019/03/01"[PDAT]) AND "humans"[MeSH Terms]

Supplement Table 2. Ongoing Relevant Randomized Controlled Trials Identified Using ClinicalTrials.gov

Nutritional suppleme	Title [NCT number]	Condition	Completion
		condition	date
Vitamin K	Effect of Vitamin K2 (MK7) on cardiovascular and Bone Disease in Dialysis Patients [NCT02976246]	Vitamin K Supplementation; EndStage Renal Disease; Cardiovascular Disease; Bone Disease	August 2020
Antioxidant	Combined Antioxidant Therapy on Oxidative Stress, Mitochondrial Dysfunction Markers in Diabetic Retinopathy [NCT03702374]	Diabetic Retinopathy	November 2020
Sodium Selenite	SodiUm SeleniTe Adminstration IN Cardiac Surgery (SUSTAIN CSX [®] -Trial) [NCT02002247]	Heart Disease	June 2020
Vitamin E	Vitamin E and N-acetylcysteine for Preventing Contrast-Induced Acute Kidney Injury After Coronary Artery Catheterization [NCT03755700]	Coronary Artery Disease; Coronary Artery Angiography; Coronary Catheterization	December 2019
Multivitamins	Cocoa supplement and outcome study [NCT02422745]	Cardiovascular Disease; Cancer	October 2020
	The Effect of Multivitamin Supplement in Adult Femlaes [NCT03828097]	Healthy	June 2019
	Trial to Assess Chelation Therapy 2 [NCT02733185]	Diabetes; Myocardial Infarction	December 2021
Selenium	Selenium Treatment and Chagasic Cardiopathy (STCC) [NCT00875173]	Chagas Disease	December 2020
Tocotrienol	Stroke and Tocotrienol : Unique Role in Neuroprotection [NCT02263924]	Ischemic Stroke	December 2018
Tocotrienols	Safety and Efficacy of Tocotrienols in Post- CABG Atrial Fibrillation [NCT03807037]	Atrial Fibrillation	January 30, 2020
Menaquinone-7 (Vitamin K2)	The effect of ViatminK2 supplemntation on the progression of coronary artery calcification [NCT01002157]	Coronary Artery Disease	October 2019
Menaquinone-7	A Randomized, Placebo-Controlled, Double Blind Trial to Investigate Whether Vitamin K2 can Influence Arterial Calcification in Patients with Type 2 Diabetes [NCT02839044]	Arterial Calcification Diabetes Mellitus Type 2	December 2018
Vitamin D	Vitamin D, Cardiovascular Disease, and African Americans [NCT01655810]	Vitamin D Deficiency; Type 2 Diabetes Mellitus; Cardiovascular Disease	December 2018
	Effect of Vitamin D3 Supplementation on Cardiometabolic Risk [NCT02359214]	Cardiovascular Disease; Diabetes ; Bone Disease	December 2017

	Vitamin D and Omega-3 Trial (VITAL) [NCT01169259]	Cancer ; Cardiovascular Disease	November 2020
	Vitamin D, Insulin Resistance, and Cardiovascular Disease [NCT00736632]	Vitamin D Deficiency; Insulin Resistance; Type 2 Diabetes Mellitus	December 2018
Vitamin D + fish oil/fish oil placebo	Impact of Vitamin D Supplementation on Cardiac Structure and Function [NCT01630213]	Cardiovascular Disease	December 2020
Vitamin D and fish oil	Intervention With Vitamin D and Omega-3 Supplements and Incident Heart Failure [NCT02271230]	Heart Failure	June 2019
n-3 LC PUFA	Outcome Study of Assess STatin Resideual Risk Reduction With EpaNova in HiGh CV Risk PatienTs With Hypertriglyceridemia [NCT02104817]	Eligible Men or Women Considered High Risk for Atherosclerotic Cardiovascular Disease Diabetes Mellitus	October 2019 July 2037
	ASCEND : A Study of Cardiovascular events in Diabetes	Diabetes Menitus	July 2037
Dietary interventions			
Blueberry Powder	Blueberries for Improving Vascular Endothelial Function in Postmenopausal Women With Elevated Blood Pressure [NCT03370991]	Menopause; Hypertension; Endothelial dysfunction	December 2019
Mediterranean diet	CORonary Diet Intervention With Olive Oil and Cardiovascular PREVention (CORDIOPREV) [NCT00924937] The Mediterranean Full-Fat Dairy Study [NCT02781675]	Myocardial Infarction; Unstable Angina; Malignancy; Cognitive impairment Cardiovascular disease; Dyslipidemia; Inflammation	September 2019 December 2018
Modified Citrus Pectin	Galactein-3 Blockade in Patients With High Blood Pressure [NCT01960946]	Hypertension	October 2020
Salt	SODIUM HF : Study of Dietary Intervention Under 100 MMOL in Heart Failure [NCT02012179]	Heart Failure	December 2023
Plant-Based Diet	Plant-Based, American Heart Assoc. Or Mediterranean Diets n 9-18 yo With BMI >95%, Cholesterol >169 and Their Parents [NCT02857543]	Obesity; Hypercholesterolemia; Cardiovascular disease	December 2019
Almonds	The Impact of Almond Nut Consumption on Markers of CVD & Metabolic Health [NCT02907684]	Cardiovascular disease	April 30, 2019
Vegetarian Diet followed by meat Diet or vice versa	Vegetarian Diet in Patients With Ischemic Heart Disease [NCT02942628]	Ischemic Heart Disease	March 2019

Dietary Supplement : grape seed extract	The Effect of Grape Seed Extract on Blood Pressure in People With Pre-Hypertension [NCT00979732]	Hypertension	October 15, 2019
R-Alpha Lipoic Acid	The Role of R-Alpha Lipoic Acid in the Treatment of Atherosclerotic Vascular Disease [NCT00764270]	Atherosclerosis	December 2018
	Lipoic Acid and Prevention of Heart Disease [NCT00765310]	Atherosclerosis	December 2018
L-carnitine capsules	Carnitine for the Treatment of Atherosclerosis [NCT02117661]	Metabolic Syndrome	May 2019
Salmon-Polar Lipids	In Vitro And Ex Vivi Anti-Inflammatory Acitivities of Salmon Polar Lipids [NCT03603769]	Cardiovascular Disease	November 2018
Whole Eggs	Cardioprotective Activities of Whole Egges on Vascular Endothelial Function in Prediabetic Adults [NCT02364570]	Prediabetes; Cardiovascular Disease	December 2017
vitamin A; vitamin B3/N	l Itivitamins; minerals; Diet; Antioxidants; β-carote iacin; vitamin B6; vitamin C; vitamin E; vitamin D nega 6 Fatty Acid; Salt; Fat. Eligibility Criteria : [Ac	; calcium + vitamin D; calcium; f	olic acid; iron;

Supplement Table 3. Randomized Controlled Trials Included in Analyses

Study (reference)	Supplement exposure	Participants
Brohult et al., 1973 (10)	Vitamin D	50
CDPRG 1975(11)	Vitamin B3	3908
Gillilan et al., 1977 (12)	Vitamin E	52
Inkovaara et al., 1983(13)	Vitamin D	87
	Calcium + Vitamin D	88
Corless et al., 1985 (14)	Vitamin D ₂	82
Aloia et al., 1988(15)	Vitamin D	27
Korpela et al., 1989(16)	Selenium	81
McKeown-Eyssen et al., 1988 (17)	vitamins C and E	185
Ott et al., 1989(18)	Vitamin D	86
Gallagher et al., 1990 (19)	Vitamin D	50
Grady et al., 1991 (20)	Vitamin D₃	98
Chapuy et al., 1992 (21)	Calcium + Vitamin D ₃	3270
Li et al., 1993 – NIT2(22)	Multivitamins	3318
Bogden et al., 1994 (23)	Multivitamins	65
de la Maza et al., 1995 (24)	Vitamin E	74
Hamdy et al., 1995 (25)	Vitamin D	176
Ooms et al., 1995 (26)	Vitamin D₃	348
Pike et al., 1995 (27)	Multivitamins	47
Steiner et al., 1995 (28)	α- tocopherol	100
Greenberg et al., 1996 – SCPS (29)	β-carotene	1805
Hennekens et al., 1996-PHS (30)	β-carotene	22071
Lips et al., 1996 (31)	Vitamin D₃	2578
Omenn et al., 1996 – CARET (32)	β-carotene	18314
Stephens et al., 1996 – CHAOS (33)	Vitamin E	2002
Dawson-Hughes et al., 1997 (34)	Calcium + Vitamin D ₃	389
Girodon et al., 1997 (35)	Antioxidants: zinc sulfate, selenite, Vitamin C, β -carotene α -	41
	tocopherol	
Moon et al., 1997 – SKICAP AK (36)	Retinol	2297
Sano et al., 1997 – ADCS 1 (37)	Vitamin E	169

Sato et al., 1997 (38)	Vitamin D	84
Baeksgaard et al., 1998 (39)	Calcium + Vitamin D	160
Shoulson et al., 1998 – DATATOP (40)	Vitamin E	800
Virtamo et al., 1998 – ATBC (41)	Vitamin E	13669
Baron et al., 1999 – CPPS (42)	Calcium	930
Hoffman et al., 1999 (43)	Vitamin E	39
Girodon et al., 1999 – MIN.VIT.AOX (44)	Antioxidants: Zinc, Selenium, Vitamin C, β -carotene, α -tocopherol)	363
GISSI – Prevenzione Investigators 1999 (45)	Vitamin E and n-3 LC PUFA	11324
Green et al., 1999 – NSCPT (46)	β-carotene	1621
Komulainen et al., 1999 – OSTPRE (47)	Vitamin D	227
	Calcium + Vitamin D	231
Krieg et al., 1999 (48)	Calcium + Vitamin D	248
Sato et al., 1999 (49)	Vitamin D	86
Boaz et al., 2000 – SPACE (50)	Vitamin E	196
Correa et al., 2000 (51)	Vitamin C	247
	β-carotene	234
	Antioxidants: Vitamin C and β-carotene	238
Frazao et al., 2000 (52)	Vitamin D	138
Lee et al., 1999 – WHS (53)	β-carotene	39876
Leppälä et al., 2000 – ATBC (54)	Antioxidants: Vitamin E, β-carotene	14271
	β-carotene	28519
Jacobson et al., 2000 (55)	Antioxidants: vitamin C, a-tocopherol, β-carotene	112
Salonen et al., 2000 – ASAP (56)	Vitamin E	260
	Vitamin C	260
AREDS Research Group 2001 (57)	Antioxidants: Vitamin C, Vitamin E, β-carotene, zinc	4629
Brown et al., 2001 – HATS (58)	Antioxidants: Vitamin E + Vitamin C + β -carotene + selenium	80
de Gaetano et al., 2001 – PPP (59)	α-tocopherol	4495
Desnuelle et al., 2001 – ALSRT (60)	α-tocopherol	288
de Waart et al., 2001 (61)	Vitamin E	218
Gallagher et al., 2001 – STOP IT (62)	Vitamin D	246
You et al., 2001 – SIT (63)	Antioxidants: Vitamin C + Vitamin E + β-carotene + selenium	3411
Baker et al., 2002 (64)	Folic acid	1882
Chapuy et al., 2002 – Decalyos II (65)	Calcium + Vitamin D ₃	583

Chylack et al., 2002 – REACT (66)	Antioxidants: β-carotene, vitamin C, vitamin E	297
Graat et al., 2002 (67)	Vitamin E	317
	Multivitamin	316
Hodis et al., 2002 – VEAPS (68)	Vitamin E	353
HPS Collaborative Group 2002 (69)	Antioxidants: Vitamin E + Vitamin C + β-carotene	20536
Meyer et al., 2002 (70)	Vitamin D	1144
Schnyder et al., 2002 – The Swiss Heart Study (71)	Vitamin B-complex (folic acid, vitamin B_{12} , vitamin B_6)	553
Waters et al., 2002 – WAVE (72)	Antioxidants: vitamin E + Vitamin C	213
Wluka et al., 2002 (73)	Vitamin E	136
Collins et al., 2003 (74)	Vitamin E	52
Cooper et al., 2003 (75)	Vitamin D	187
Liem et al., 2003 (76)	Folic acid	593
Righetti et al., 2003 (77)	Folic acid	81
Trivedi et al., 2003 (78)	Vitamin D	2686
Virtamo et al., 2003 – ATBC (79)	β-carotene	14569
	Vitamin E	14573
Dukas et al., 2004 (80)	Vitamin D	378
Harwood et al., 2004 – NoNOF (81)	Vitamin D	75
	Calcium + Vitamin D ₃	76
Coburn et al., 2004 (82)	Vitamin D	55
Lange et al., 2004 (83)	Vitamin B-complex (folic acid, vitamin B_{12} , vitamin B_6)	636
Larsen et al., 2004 (84)	Calcium + Vitamin D ₃	9605
Liem et al., 2004 (85)	Folic acid	283
Taylor et al., 2004 – ARBITER 2 (86)	Vitamin B3 (niacin)	167
Tornwall et al., 2004 – ATBC (87)	Antioxidants: α-tocopherol, β-carotene	13630
	β-carotene	13670
Manuel-Y-Keenoy et al., 2004 – DATOR (88)	α-tocopherol	24
McNeil et al., 2004 – VECAT (89)	Vitamin E	1193
Meier et al., 2004 (90)	Calcium + Vitamin D ₃	55
Meydani et al., 2004 (91)	Vitamin	617
Aloia et al., 2005 (92)	Vitamin D₃	208

Avenell et al., 2005 – MAVIS (93)	Multivitamin	910
Brazier et al., 2005 (94)	Calcium + Vitamin D ₃	192
Flicker et al., 2005 (95)	Vitamin D	625
Graf et al., 2005 (96)	Vitamin E	160
Grant et al., 2005 – RECORD (97)	Calcium + Vitamin D ₃	2638
	Calcium only	2241
	Vitamin D only	5292
Lee et al., 2005 –WHS (98)	Vitamin E	39876
Limburg et al., 2005 (99)	Selenomethionine	180
Lonn et al., 2005 – HOPE and HOPE-TOO (100)	Vitamin E	9541
Mooney et al., 2005 (101)	Vitamin C and E	284
Petersen et al, 2005 – ADCS 2 (102)	Vitamin E	516
Porthouse et al., 2005 (103)	Calcium+Vitamin D	3314
Potena et al., 2005 (104)	Folic acid	51
Sato et al., 2005 (105)	Vitamin D	96
Bairati et al., 2006 (106)	α-tocopherol	384
Bonaa et al., 2006 – NORVIT (107)	Vitamin B6	1877
	B-complex	1880
Coyne et al., 2006 (108)	Vitamin D	220
Daly et al., 2006 (109)	Calcium+Vitamin D	167
Law et al., 2006 (110)	Vitamin D	3717
Lonn et al., 2006 – HOPE-TOO (111)	Vitamin B-complex (folic acid, vitamin B_{6} , vitamin B_{12})	5522
Magliano et al., 2006 – MAVET (112)	Vitamin E	409
Schleithoff et al., 2006 (113)	Calcium + Vitamin D₃	123
Stranges et al., 2006 – NPC (114)	Selenium	1004
Zoungas et al., 2006 – ASFAST (115)	Folic acid	315
Bolton-Smith et al., 2007 (116)	Calcium/Vitamin D	123
CLIPS Group 2007 (117)	vitams: vitamin E + vitamin C + β-carotene	366
Cole et al., 2007 – AFPPS (118)	Folic acid	1021
Cook et al., 2007 – WACS (119)	β-carotene	8171
	Vitamin C	8171
	Vitamin E	8171

	Antioxidants: Vitamin C, Vitamin E and β -carotene	2042
Durga et al., 2007 – FACIT (120)	Folic acid	818
Jamison et al., 2007 – HOST (121)	Vitamin B complex	2056
Lappe et al., 2007 (122)	Calcium+Vitamin D	734
Liu et al., 2007 (123)	Multivitamin	748
Lyons et al., 2007 (124)	Vitamin D	3440
Plummer et al., 2007 (125)	Antioxidants: vitamin C + vitamin E + β -carotene	1980
Smith et al., 2007 (126)	Vitamin D	9440
Vianna et al., 2007 (118)	Folic acid	186
Albert et al., 2008 – WAFACS (119)	Vitamin B-complex (folic acid, vitamin B ₆ , and vitamin B ₁₂)	5442
Bjorkman et al., 2008 (127)	Vitamin D	141
Bolland et al., 2008 (128)	Calcium	1471
CTNS 2008 (129)	Multivitamins	1020
Ebbing et al., 2008-WENBIT (130)	B-complex	1552
	Vitamin B6	1552
Guyton et al., 2008 (131)	Vitamin B3/ niacin	942
Logan et al., 2008 – UK CAP (132)	Foliac acid	939
Milman et al., 2008 (133)	Vitamin E	1434
Prince et al., 2008 (134)	Vitamin D with or without calcium	302
Reid et al., 2008 (135)	Calcium	215
Sesso et al., 2008 – PHS II (136)	Vitamin E with or without Vitamin C	7312
	Antioxidants (vitamin E and vitamin C)	7309
	Vitamin C	7326
Zhu et al., 2008 – CAIFOS (137)	Calcium + Vitamin D	80
Anker et al., 2009 – FAIR-HF (138)	Iron	459
Hodis et al., 2009 – BVAIT (139)	Vitamin B-complex (folic acid + vitamin B12 + vitamin B6)	506
Imasa et al., 2009 (140)	Vitamin B-complex (folic acid, vitamin B12, and vitamin B6)	243
LaCroix et al., 2009 – WHI (141)	Calcium+Vitamin D	36282
Lippman et al., 2009 – SELECT (142)	Selenium	17766
	Vitamin E	17773
	Selenium and Vitamin E	17814
Saposnik et al., 2009 – HOPE 2 (143)	Vitamin B-complex (folic acid, vitamin B12, and vitamin B6)	5522

Sang et al., 2009 (144)	Vitamin B13/Niacin	108
Wu et al., 2009 – NHS/HPFS(145)	Folic acid	672
Armitage et al., 2010 – SEARCH (146)	Vitamin B-complex (folic acid, vitamin B12)	12064
Chailurkit et al., 2010 (147)	Calcium	397
de Zeeuw et al., 2010 – VITAL (148)	Vitamin D	188
Galan et al., 2010 – SU.FOL.OM3 (149)	Vitamin B-complex (folic acid, vitamin B12, and vitamin B6)	2501
Heinz et al., 2010 (150)	Vitamin B-complex (folic acid, vitamin B12, and vitamin B6)	650
Hercberg et al., 2010 – SU.VI.MAX (151)	Antioxidants: (Vitamin C + vitamin E + β -carotene + selenium + zinc	12741
House et al., 2010 – DIVINe (152)	Vitamin B-complex (folic acid, vitamin B12, and vitamin B6)	238
Janssen et al., 2010 (153)	Vitamin D	70
Salovaara et al., 2010 – OSTRE-FPS (154)	Vitamin D + Calcium	3195
Sanders et al., 2010 – Vital D (155)	Vitamin D	2258
Sanyal et al., 2010 – PIVENS (156)	Vitamin E	167
VITATOPS Trial Study Group 2010 (157)	Vitamin B-complex (folic acid, vitamin B12, and vitamin B6)	8164
Boden et al., 2011 – AIM HIGH (158)	Vitamin B3/Niacin	3414
Cherniack et al., 2011 (159)	Vitamin D	46
Grimnes et al., 2011 (160)	Vitamin D	104
Lewis et al., 2011 – CAIFOS (161)	Calcium	1460
Gallagher et al., 2012 – VIDOS (162)	Vitamin D ₃	41
Marshall et al., 2011 (163)	Selenium	423
Alvarez et al., 2012 (164)	Vitamin D ₃	48
Glendenning et al., 2012 (165)	Vitamin D	686
Lehouck et al., 2012 (166)	Vitamin D	182
Ma et al., 2012 – SIT (167)	Antioxidants (Vitamin C + Vitamin E + β-carotene + selenium)	3411
Punthakee et al., 2012 – TIDE (168)	Vitamin D	1221
Sesso et al., 2012 – PHS II (169)	Multivitamin	14641
Delanaye et al., 2013 (170)	Vitamin D	43
Hewitt et al., 2013 (171)	Vitamin D	60
Lamas et al., 2013 – TACT (172)	Multivitamins (28-component mixture)	1708
Manning et al., 2013 (173)	Vitamin E	76
Prentice et al., 2013 –WHI CaD (174)	Calcium + Vitamin D ₃	15302
Witham et al., 2013 – VitDISH (175)	Vitamin D	159
Witham et al., 2013 (176)	Vitamin D3	75

HPS2-THRIVE Collaborative Group 2014 (177)	Vitamin B3/Niacin	25673
Wang et al., 2014 – OPERA (178)	Vitamin D	60
Van Wijngaarden et al., 2014 – B-PROOF (179)	Vitamin B-complex (vitamin B_{12} + folic acid)	3027
Wang et al., 2014 – PHS II (180)	Vitamin E	7312
	Vitamin C	7326
	Antioxidants (Vitamin E and C)	7309
Huo et al., 2015 – CSPPT (181)	Folic acid	20702
Ponikowski et al., 2015 – CONFIRM-HF (182)	Iron	301
Wang et al., 2015 (183)	Folic acid, vitamin B6, 10 µg vitamin B12	390
Van Dijk et al., 2015 – B-PROOF (184)	Vitamin B-complex (folic acid, vitamin B12, and vitamin B6)	3027
Gupta et al., 2016 (185)	Calcium + Vitamin D	53
Lappe et al., 2017 (186)	Calcium + Vitamin D	2303
Brox et al., 2001(187)	n-3 LC PUFA	80
EPIC-1,2008(188)	n-3 LC PUFA	374
EPIC-2, 2008 (188)	n-3 LC PUFA	379
Nye et al., 1990 (189)	n-3 LC PUFA	73
FOSTAR, 2016(190)	n-3 LC PUFA and n-3 ALA PUFA	202
HARP, 1995(191)	n-3 LC PUFA	59
AFFORD, 2013(192)	n-3 LC PUFA vs n-6 PUFA	337
Berson et al., 2004 (193)	n-3 LC PUFA vs n-6 PUFA	208
Nutristroke et al., 2009 (194)	n-3 LC PUFA	72
Zhang et al., 2017 (195)	n-3 LC PUFA vs n-6 PUFA	240
Bates et al., 1989(196)	n-3 LC PUFA	312
Derosa et al., 2016(197)	n-3 LC PUFA	258
Kumar et al., 2013(198)	n-3 LC PUFA	78
Baldassarre et al., 2006 (199)	n-3 LC PUFA	64
THIS DIET, 2008 (200)	n-3 LC PUFA	101
SCIMO, 1999(201)	n-3 LC PUFA	223

Shinto et al., 2014(202)	n-3 LC PUFA	26
DIPP, 2015(203)	n-3 LC PUFA and n-3 ALA PUFA	205
Doi et al., 2014(204)	n-3 LC PUFA	238
NAT2, 2013(205)	n-3 LC PUFA	263
FORWARD, 2013 (206)	n-3 LC PUFA	586
Nodari et al., 2011(207)	n-3 LC PUFA	188
Raitt et al., 2005(208)	n-3 LC PUFA	200
Ozaydin et al., 2011 (209)	n-3 LC PUFA	47
DISAF, 2003(210)	n-3 LC PUFA	407
Shot et al, 1996(211)	n-3 LC PUFA	610
SOFA, 2006(212)	n-3 LC PUFA and n-6 PUFA	546
OPAL, 2010 (213)	n-3 LC PUFA	748
OFAMI, 2001(214)	n-3 LC PUFA	300
ADCS., 2010(215)	n-3 LC PUFA	402
FAAT, 2005(216)	n-3 LC PUFA	402
DO IT, 2010(217)	n-3 LC PUFA	563
MAPT, 2017 (218)	n-3 LC PUFA	1652
SU.FOL.OM3, 2010 (219)	n-3 LC PUFA	2501
OMEGA, 2009(220)	n-3 LC PUFA	54
DART, 1989(221)	n-3 LC PUFA/ Reduced saturated fat/n-6 PUFA	2033
AlphaOmega - EPA+DHA 2010, (222)	n-3 LC PUFA	4837
ORL, 2013 (223)	n-3 LC PUFA	336
AREDS2, 2014(224)	n-3 LC PUFA	4203
EPOCH, 2014 (225, 226)	n-3 LC PUFA	391
Proudman et al. 2015 (227, 228)	n-3 LC PUFA vs n-6 PUFA	122
MAPT-PLUS, 2017 (229)	n-3 LC PUFA	1680

EPE-A, 2014 (230)	n-3 LC PUFA	174
DART-2,2003 (231)	n-3 LC PUFA/Mediterranean diet	3114
JELIS, 2007 (232)	n-3 LC PUFA	18645
Risk % Prevention, 2013 (233)	n-3 LC PUFA	12505
ORIGIN, 2012 (234)	n-3 LC PUFA	12506
GISSI-HF, 2008 (235)	n-3 LC PUFA	6975
Bates et al., 1978 (236)	n-6 PUFA	58
AlphaOmega-ALA 2010 (222, 237-239)	n-3 ALA	2433
FLAX-PAD 2013 (240)	n-3 ALA	110
MARGARIN, 2002 (241)	n-3 ALA	282
Norwegian study, 1968 (242)	n-3 ALA	13406
WAHA, 2016(243)	n-3 ALA	708
Black et al., 1994 (244)	Reduced dietary fat (lower n-6 PUFA + total PUFA)/ Reduced saturated fat	133
MCIIIMURRAY et al., 1987(245)	n-6 PUFA	49
MRC, 1968(246)	n-6 PUFA/ Modiefied fat/ Reduced saturated fat	393
NDHS FERIBAULT, 1968(247)	n-6 PUFA/ Modified dietary fat	224
ROSE CORN OIL , 1965(248)	n-6 PUFA/ Reduced saturated fat	54
SYDNEY DIET HEART, 1978(249)	n-6 PUFA/ Reduced saturated fat/ Modified dietary fat	458
VETERANS ADMIN, 1969(250)	n-6 PUFA/ Reduced saturated fat/ Modified dietary fat	846
Vijay Kumar et al., 2014 (251)	n-6 PUFA	200
GLAMT, 1993 (252)	n-6 PUFA	111
Houtsmuller et al. 1979 (253)	n-6 PUFA	102
Moy et al. 2001 (254)	Reduced dietary fat intake	235
Ley et al., 2004 (255)	Reduced dietary fat/Reduced dietary fat	176
OSLO DIET HEART, 1966 (256)	Reduced saturated fat/Modified dietary fat	412

STARS, 1992(257)	Reduced saturated fat	45
WHI WITHOUT CVD, 2006(258)	Reduced saturated fat/ Reduced dietary fat	48835
WINS, 2006 (259)	Reduced dietary fat	2437
Ball et al., 1965 (260)	Reduced dietary fat	252
POLYP PREVENTION., 1996(261)	Reduced dietary fat	2079
Bridges et al., 2001(262)	Reduced dietary fat	106
PREMIER,2003 (263)	Reduced dietary fat	537
DO IT 2006 (264)	Reduced dietary fat	487
WHEL., 2007 (265)	Reduced dietary fat	3088
Rose et al., 1965 (266)	Modified dietary fat	52
MINNESOTA CORON WOMEN/MEN., 1989(267)	Modified dietary fat	Women (4664), Men (4664)
Chang et al., 2006 (268)	Salt reduction	1981
CSSS., 2007(269)	Salt reduction	608
Kwok et al., 2012 (270)	Salt reduction	429
Morgan et al., 1978(271)	Salt reduction	67
TONE., 1998 (272)	Salt reduction	681
HPT., 1990(273)	Salt reduction	392
TOHP1., 1992 (274)	Salt reduction	744
TOHP2, 1997 (275)	Salt reduction	2382
PREDIMED, 2013 (276)	Mediterranean diet	7447
Ng et al., 2011(277)	Mediterranean diet	48
Singh et al.,(278)	Mediterranean diet	1000
de Lorgeril et al., 1994 (279)	Mediaterranean diet	605
CLAS, 1987 (280)	Vitamin B3/Niacin	188
Whitney et al., 2005 (281)	Vitamin B3/Niacin	143
VITAL, 2018 (282)	Vitamin D	25,871

VIDA, 2017 (283)	Vitamin D	5,108
*ONTARGET, 2008 (284)	Reduced salt	28757
* TRANSCEND, 2008 (285)	Reduced salt	
VITAL, 2018 (286)	n-3 LC PUFA	25,871
ASCEND, 2018 (287)	n-3 LC PUFA	15,480

* ONTARGET was a randomised, double-blind, parallel trial comparing the eff ects of ramipril (10 mg/day), telmisartan (80 mg/day), and combination therapy of ramipril (10 mg/day) and telmisartan (80 mg/day) in 25 620 patients, with vascular disease or high-risk patients with diabetes. TRANSCEND was a randomised controlled trial comparing telmisartan (80 mg/day) with placebo in 5926 participants who were intolerant to angiotensin converting enzyme inhibitors. For this analysis, we included 28 757 participants from individual patient meta-analysis ONTARGET and TRANSCEND by Mente et al.

Supplement Table 4. Methological Quality Assessment of Included Systematic Reviews and Meta-analyses

Author (Year)	Appropriate search criteria	Appropriate selection criteria	Method of pooling estimates	Assessment of risk of bias	Assessment of Publication bias	Assessment of heterogeinity
Jenkins D et al. (2018) (1)	Yes	Yes	Random effects	Yes	Yes	Yes
Riaz H et al. (2018) (2)	Yes	Yes	Random effects	Yes	Yes	Yes
Abdelhamid AS et al. (2018) (3)	Yes	Yes	Random effects/Fixed effects	Yes	Yes	Yes
Hooper L et al. (2018) (4)	Yes	Yes	Random effects/Fixed effects	Yes	Yes	Yes
Liyanage T et al. (2016) (5)	Yes	Yes	Fixed effects	Yes	No	No
Adler AJ et al. (2014) (6)	Yes	Yes	Fixed effects/Random effects	Yes	No	Yes
*Mente A et al. (2016) (7)	Yes	No	No	No	No	No
Hooper L et al. (2012) (8)	Yes	Yes	Random effects/Fixed effects	Yes	Yes	Yes
Hooper L et al. (2015) (9)	Yes	Yes	Random effects/Fixed effects	Yes	Yes	Yes

* Mente A et al. was individual level analysis of 4 studies.

Supplement Table 5 (a-x). GRADE Scale for Quality Assessment of Evidence

a. Vitamin E Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty	assessment			Effect	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty
All-cause	mortality							
32	randomised trials	not serious	not serious	very serious ^{a,b}	not serious c	none ^d	RR 1.00 (0.97 to 1.03)	⊕⊕⊖⊖ LOW
Cardiovas	scular mortalit	ty						
11	randomised trials	not serious	not serious ^e	very serious ^a	serious ^c	none	RR 0.95 (0.88 to 1.03)	⊕○○○ VERY LOW
MI								
10	randomised trials	not serious	very serious ^e	very serious ^a	serious ^c	publication bias strongly suspected ^d	RR 0.83 (0.65 to 1.05)	⊕⊖⊖⊖ VERY LOW
Stroke								
11	randomised trials	not serious	not serious ^e	very serious ^b	very serious	publication bias strongly suspected ^d	RR 0.98 (0.87 to 1.10)	⊕○○○ VERY LOW
CHD								
2	randomised trials	not serious	not serious ^e	very serious ^a	serious ^c	none	RR 0.97 (0.90 to 1.05)	⊕⊖⊖⊖ VERY LOW

b. Vitamin C Compared to Control for Mortality and Cardiovascular Outcomes

			Certaint	y assessment			Effect	Certainty
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	
All-cause	mortality						<u> </u>	
4	randomised trials	not serious	not serious	not serious ^{a,b}	very serious c	none ^d	RR 1.02 (0.94 to 1.11)	⊕⊕⊖⊖ Low
Cardiova	scular mortali	ty						
2	randomised trials	not serious	not serious ^e	not serious ^a	very serious	none	RR 1.07 (0.87 to 1.33)	⊕⊕⊖⊖ Low
МІ							<u> </u>	
2	randomised trials	not serious	not serious ^e	not serious ^a	very serious c	none	RR 0.96 (0.32 to 2.89)	⊕⊕⊖⊖ Low
Stroke	1				1			
2	randomised trials	not serious	not serious ^e	not serious ^b	very serious c	none	RR 0.92 (0.35 to 2.40)	⊕⊕⊖⊖ Low
CHD					,			
1	randomised trials	not serious	not serious ^e	not serious ^a	very serious c	none	RR 1.04 (0.93 to 1.17)	⊕⊕⊖⊖ Low

c. Vitamin B-Complex Compared to Control for Mortality and Cardiovascular Outcomes

			Certain	ty assessment			Effect	Certainty
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	
All-caus	e mortality							
16	randomised trials	not serious	not serious	not serious ^{a,b}	serious ^c	none ^d	RR 1.02 (0.97 to 1.07)	⊕⊕⊕⊖ MODERATE
Cardiov	ascular morta	lity			· · · · ·			
5	randomised trials	not serious	very serious ^e	not serious ^a	very serious ^c	none	RR 1.00 (0.79 to 1.26)	⊕○○○ VERY LOW
МІ								
13	randomised trials	not serious	not serious ^e	not serious ^a	very serious ^c	none	RR 1.00 (0.94 to 1.07)	⊕⊕⊖⊖ Low
Stroke					1 1			
12	randomised trials	not serious	not serious ^e	not serious ^b	serious ^c	none	RR 0.90 (0.80 to 1.01)	⊕⊕⊕⊖ MODERATE
CHD		1			· · ·		• · · · · ·	
5	randomised trials	not serious	not serious ^e	not serious ^a	very serious ^c	none	RR 1.05 (0.90 to 1.23)	⊕⊕⊖⊖ Low

			Effect	Containtu					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty	
All-caus	e mortality								
2	randomised trials	not serious	not serious	not serious ^{a,b}	very serious ^c	none ^d	RR 1.02 (0.59 to 1.76)	⊕⊕⊖⊖ Low	
мі									
2	randomised trials	not serious	not serious ^e	not serious ^a	very serious ^c	none	RR 1.04 (0.59 to 1.82)		
Stroke	troke								
2	randomised trials	not serious	not serious ^e	serious ^b	very serious ^c	none	RR 0.92 (0.18 to 4.67)	⊕⊖⊖⊖ VERY LOW	

e. Vitamin B3/Niacin Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty	assessment			Effect	Certainty
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	
All-caus	e mortality	1 1		•				
5	randomised trials	not serious	not serious	serious ^{a,b}	very serious ^c	none ^d	RR 1.04 (0.94 to 1.16)	
Cardiov	ascular morta	lity					·	
4	randomised trials	not serious	not serious ^e	serious ^a	very serious ^c	none	RR 0.95 (0.82 to 1.11)	
МІ							·	
6	randomised trials	not serious	serious ^e	serious ^a	very serious ^c	none	RR 0.89 (0.72 to 1.10)	
Stroke		1 1						
5	randomised trials	not serious	very serious ^e	serious ^b	very serious ^c	none	RR 0.96 (0.56 to 1.66)	
CHD		ı			1			
2	randomised trials	not serious	not serious ^e	serious ^a	very serious ^c	none	RR 0.96 (0.87 to 1.06)	⊕○○○ VERY LOW

f. Vitamin A Compared to Control for Mortality and Cardiovascular Outcomes

				Effect				
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty
All-caus	e mortality							
1	randomised trials	not serious	not serious	not serious _{a,b}	very serious ^c	none ^d	RR 0.99 (0.56 to 1.72)	⊕⊕⊖⊖ Low

g. Selenium Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty	assessment			Effect	Certainty
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	
All-caus	e mortality							•
4	randomised trials	not serious	not serious	very serious _{a,b}	very serious ^c	none ^d	RR 0.99 (0.89 to 1.10)	⊕⊖⊖⊖ VERY LOW
Cardiova	ascular morta	lity						
3	randomised trials	not serious	serious ^e	very serious ^a	very serious ^c	none	RR 0.92 (0.15 to 5.63)	⊕⊖⊖⊖ VERY LOW
МІ								
2	randomised trials	not serious	not serious ^e	very serious ^a	very serious ^c	none	RR 0.93 (0.25 to 3.45)	⊕⊖⊖⊖ VERY LOW
Stroke								•
2	randomised trials	not serious	not serious ^e	very serious ^b	very serious ^c	none	RR 0.89 (0.19 to 4.27)	⊕⊖⊖⊖ VERY LOW
CHD								
1	randomised trials	not serious	not serious	not serious	very serious ^c	none	RR 1.06 (0.76 to 1.48)	

h. Multivitamins Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty a	assessment			Effect	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty
All-cause	e mortality							
10	randomised trials	not serious	not serious	not serious ^{a,b}	serious ^c	none ^d	RR 0.95 (0.90 to 1.01)	⊕⊕⊕⊖ MODERATE
Cardiova	ascular morta	ality						
3	randomised trials	not serious	not serious ^e	not serious ^a	very serious ^c	none	RR 0.94 (0.74 to 1.19)	⊕⊕⊖⊖ LOW
МІ	·							
3	randomised trials	not serious	not serious ^e	not serious ^a	very serious ^c	none	RR 0.95 (0.82 to 1.09)	⊕⊕⊖⊖ Low
Stroke								
2	randomised trials	not serious	very serious ^e	not serious	very serious ^c	none	RR 0.86 (0.01 to 50.30)	⊕○○○ VERY LOW

i. Iron Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty a	assessment			Effect	
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty
All-caus	e mortality						·	
2	randomised trials	not serious	not serious	not serious ^{a,b}	very serious ^c	none ^d	RR 0.79 (0.16 to 3.85)	⊕⊕⊖⊖ Low
Cardiova	ascular morta	lity						
2	randomised trials	not serious	not serious ^e	not serious ^a	very serious ^c	none	RR 0.80 (0.03 to 20.50)	⊕⊕⊖⊖ Low
МІ								
1	randomised trials	not serious	not serious ^e	not serious ^a	very serious ^c	none	RR 0.34 (0.06 to 2.01)	⊕⊕⊖⊖ Low

j. Folic Acid Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty a	ssessment			Effect	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty
All-caus	e mortality							
10	randomised trials	not serious	not serious	serious ^{a,b}	very serious ^c	none	RR 0.85 (0.65 to 1.10)	⊕○○○ VERY LOW
Cardiova	ascular morta	lity						
5	randomised trials	not serious	not serious ^d	serious ^a	very serious ^c	none	RR 0.89 (0.68 to 1.17)	⊕○○○ VERY LOW
МІ							·	
6	randomised trials	not serious	not serious ^d	serious ^a	very serious ^c	none	RR 1.22 (0.66 to 2.24)	⊕○○○ VERY LOW
Stroke							·	
7	randomised trials	not serious	not serious	serious ^a	serious ^c	none	RR 0.80 (0.67 to 0.96)	⊕⊕⊖⊖ LOW
CHD								
2	randomised trials	not serious	not serious	serious ^a	very serious ^c	none	RR 1.47 (0.10 to 22.50)	⊕○○○ VERY LOW

k. Calcium Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty a	ssessment			Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty	
All-caus	e mortality								
6	randomised trials	not serious	not serious	not serious ^{a,b}	serious ^c	none	RR 1.08 (0.97 to 1.20)	⊕⊕⊕⊖ MODERATE	
Cardiova	ascular morta	lity							
2	randomised trials	not serious	serious ^d	not serious ^a	very serious ^c	none	RR 1.24 (0.00 to 21640.00)	⊕○○○ VERY LOW	
МІ									
4	randomised trials	not serious	very serious ^d	not serious ^a	very serious ^c	none	RR 1.64 (0.75 to 3.62)	⊕○○○ VERY LOW	
Stroke									
3	randomised trials	not serious	not serious	not serious ^a	very serious ^c	none	RR 1.29 (0.76 to 2.18)	⊕⊕⊖⊖ Low	
CHD									
2	randomised trials	not serious	not serious	not serious	very serious ^c	none	RR 1.16 (0.44 to 3.05)	⊕⊕⊖⊖ Low	

	Certainty assessment Effect									
Nº of studi es	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty		
All-cau	se mortality	11								
20	randomised trials	not serious	not serious	not serious ^{a,b}	serious ^c	none	RR 0.95 (0.90 to 1.00)	⊕⊕⊕⊖ MODERATE		
Cardio	ascular mortal	ity								
1	randomised trials	not serious	not serious	not serious ^a	serious ^c	none	RR 0.99 (0.95 to 1.03)	⊕⊕⊕⊖ MODERATE		
МІ										
5	randomised trials	not serious	not serious	not serious ^a	serious ^c	none	RR 1.14 (0.97 to 1.34)	⊕⊕⊕⊖ MODERATE		
Stroke										
7	randomised trials	not serious	not serious	not serious ^a	serious ^c	none	RR 1.17 (1.05 to 1.30)	⊕⊕⊕⊖ MODERATE		
CHD						·				
2	randomised trials	not serious	not serious	not serious	very serious ^c	none	RR 0.73 (0.00 to 3449.00)	⊕⊕⊖⊖ LOW		

I. Calcium + Vitamin D Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty asse	essment			Effect	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty
All-cause	e mortality						· · · · · · · · ·	
6	randomised trials	not serious	not serious	not serious ^{a,b}	very serious ^c	none	RR 1.03 (0.94 to 1.13)	⊕⊕⊖⊖ LOW
Cardiova	ascular mortality			·				
4	randomised trials	not serious	not serious	not serious ^a	very serious ^c	none	RR 1.10 (0.93 to 1.30)	⊕⊕⊖⊖ LOW
MI								
3	randomised trials	not serious	not serious	not serious ^a	very serious ^c	none	RR 0.99 (0.86 to 1.15)	⊕⊕⊖⊖ LOW
Stroke							· · · · · ·	
3	randomised trials	not serious	not serious	not serious ^a	Stroke	none	RR 1.06 (0.83 to 1.35)	⊕⊕⊖⊖ LOW
CHD							· · · · · · · · · · · · · · · · · · ·	
2	randomised trials	not serious	not serious	not serious	very serious ^c	none	RR 1.02 (0.86 to 1.21)	⊕⊕⊖⊖ LOW
		•						

n. Antioxidant Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty ass	essment			Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty	
All-cause	e mortality								
21	randomised trials	not serious	not serious	very serious _{a,b}	very serious ^c	none	RR 1.06 (0.99 to 1.12)	⊕⊖⊖⊖ VERY LOW	
Cardiova	ascular mortality								
7	randomised trials	not serious	not serious	serious ^a	very serious ^c	none	RR 1.02 (0.92 to 1.12)	⊕⊖⊖⊖ VERY LOW	
МІ		•							
6	randomised trials	not serious	not serious	serious ^a	very serious ^c	none	RR 0.98 (0.87 to 1.11)	⊕○○○ VERY LOW	
Stroke			·			·			
7	randomised trials	not serious	not serious	serious ^a	very serious ^c	none	RR 1.00 (0.94 to 1.07)	⊕○○○ VERY LOW	

o. Vitamin D Compared to Control for Mortality and Cardiovascular Outcomes

		Effect						
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty
All-cause	emortality							
45	randomised trials	not serious	not serious	very serious ^{a,b}	not serious ^c	none ^d	RR 0.99 (0.96 to 1.02)	⊕⊕⊖⊖ LOW
Cardiova	scular mortali	ty					· ·	
4	randomised trials	not serious	not serious ^e	very serious ^a	very serious	none	RR 1.00 (0.79 to 1.28)	⊕○○○ VERY LOW
MI	1				1 1			
14	randomised trials	not serious	not serious ^e	very serious ^a	serious ^c	none	RR 0.95 (0.88 to 1.03)	⊕○○○ VERY LOW
Stroke					J			
13	randomised trials	not serious	not serious ^e	very serious ^b	serious ^c	none	RR 1.06 (0.95 to 1.19)	
CHD			1					
5	randomised trials	not serious	not serious ^e	very serious ^a	very serious	none	RR 0.98 (0.87 to 1.10)	⊕○○○ VERY LOW

p. n-3 LC PUFA Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty a	assessment			Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	Certainty	
All-caus	e mortality					· · · · · · · · · · · · · · · · · · ·			
41	randomised trials	not serious	not serious	serious ^{a,b}	serious ^c	publication bias strongly suspected ^d	RR 0.98 (0.93 to 1.02)	⊕○○○ VERY LOW	
Cardiova	ascular morta	lity				· · · · · · ·			
27	randomised trials	not serious	not serious ^e	serious ^a	serious ^c	none	RR 0.93 (0.86 to 1.01)	⊕⊕⊖⊖ Low	
MI						· · · · · ·			
25	randomised trials	not serious	not serious ^e	serious ^a	serious ^c	none	RR 0.92 (0.85 to 0.99)	⊕⊕⊖⊖ Low	
Stroke									
30	randomised trials	not serious	not serious	serious ^a	serious ^c	none	RR 1.05 (0.97 to 1.13)	⊕⊕⊖⊖ Low	
CHD									
30	randomised trials	not serious	not serious	serious ^a	serious ^c	none	RR 0.93 (0.89 to 0.98)	⊕⊕⊖⊖ Low	

q. Modified Dietary Fat Compared to Control for Mortality and Cardiovascular Outcomes

				Effect					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty	
All-caus	e mortality								
8	randomised trials	not serious	very serious ^a	serious ^{b,c}	serious ^d	none ^e	RR 1.02 (0.83 to 1.25)		
Cardiova	ascular mortalit	у							
6	randomised trials	not serious	serious ^a	serious ^b	very serious	none	RR 0.92 (0.68 to 1.25)	⊕○○○ VERY LOW	
МІ									
9	randomised trials	not serious	serious ^a	serious ^b	very serious	none ^e	RR 0.92 (0.66 to 1.28)	⊕○○○ VERY LOW	
Stroke		1							
4	randomised trials	not serious	not serious ^a	serious ^c	very serious	none ^e	RR 0.70 (0.24 to 2.07)		
CHD									
9	randomised trials	not serious	very serious ^a	serious ^b	very serious d	none	RR 0.81 (0.58 to 1.14)	⊕○○○ VERY LOW	

r. Reduced Salt Intake in Normotensive Patients Compared to Control for Mortality and Cardiovascular Outcomes

			Effect					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty
All-caus	e mortality				I			
3	randomised trials	not serious	not serious ^a	not serious ^{b,c}	serious ^d	none ^e	RR 0.90 (0.85 to 0.95)	⊕⊕⊕⊖ MODERATE
CHD					I			
4	randomised trials	not serious	not serious ^a	not serious ^b	very serious	none	RR 0.97 (0.80 to 1.18)	⊕⊕⊖⊖ LOW

s. Reduced Salt Intake in Hypertensive Patients Compared to Control for Mortality and Cardiovascular Outcomes

				Effect					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty	
All-cause	All-cause mortality								
5	randomised trials	not serious	not serious ^a	not serious ^{b,c}	very serious d	none ^e	RR 0.99 (0.92 to 1.07)		
Cardiova	ascular mortalit	y							
3	randomised trials	not serious	not serious ^a	not serious ^b	serious ^d	none	RR 0.67 (0.46 to 0.99)	⊕⊕⊕⊖ MODERATE	
CHD									
5	randomised trials	not serious	not serious ^a	not serious ^b	very serious d	none	RR 0.95 (0.66 to 1.38)	⊕⊕⊖⊖ Low	

t. Reduced Saturated Fat Compared to Control for Mortality and Cardiovascular Outcomes

	Certainty assessment							
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Certainty
All-caus	e mortality				•			
10	randomised trials	not serious	not serious ^a	serious ^{b,c}	very serious	publication bias strongly suspected e	RR 0.97 (0.88 to 1.07)	⊕○○○ VERY LOW
Cardiova	ascular mortal	lity	<u> </u>		1	I I		
12	randomised trials	not serious	serious ^a	serious ^b	very serious d	none	RR 0.95 (0.78 to 1.15)	
МІ	<u> </u>							
10	randomised trials	not serious	not serious ^a	serious ^b	serious ^d	none ^e	RR 0.90 (0.80 to 1.01)	⊕⊕⊖⊖ LOW
Stroke								
7	randomised trials	not serious	not serious ^a	serious ^c	very serious d	none ^e	RR 1.00 (0.89 to 1.12)	
CHD	· · · · · · · · · · · · · · · · · · ·				•			
8	randomised trials	not serious	very serious ^a	serious ^b	serious ^d	none	RR 0.87 (0.74 to 1.03)	

u. Mediterranean Diet Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty	assessment			Effect	
Nº of studies	Study design	Risk of bias	Inconsistency Indirectness Imprecision		Other considerations	Relative (95% Cl)	Certainty	
All-cause	mortality				· · · · ·			
5	randomised trials	not serious	very serious ^a	not serious ^{b,c}	very serious d	none ^e	RR 0.81 (0.45 to 1.47)	⊕○○○ VERY LOW
Cardiovas	scular mortalit	y						
4	randomised trials	not serious	very serious ^a	not serious ^b	very serious	none	RR 0.68 (0.21 to 2.19)	⊕○○○ VERY LOW
МІ					·			
3	randomised trials	not serious	very serious ^a	not serious ^b	very serious	none ^e	RR 0.49 (0.12 to 1.95)	⊕○○○ VERY LOW
Stroke		I						
3	randomised trials	not serious	not serious ^a	not serious ^c	very serious d	none ^e	RR 0.65 (0.39 to 1.11)	⊕⊕⊖⊖ Low
CHD		1			· ·			
3	randomised trials	not serious	very serious ^a	not serious ^b	very serious d	none	RR 0.59 (0.18 to 1.98)	⊕○○○ VERY LOW

v. Reduced Dietary Fat Compared to Control for Mortality and Cardiovascular Outcomes

			Certainty	assessment			Effect	Certainty
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% Cl)	
All-cause	mortality				· · · ·		· · · · ·	
10	randomised trials	not serious	not serious ^a	serious ^{b,c}	serious ^d	none ^e	RR 0.97 (0.92 to 1.02)	⊕⊕⊖⊖ LOW
Cardiovas	scular mortalit	ÿ						
7	randomised trials	not serious	not serious ^a	serious ^b	very serious ^d	none	RR 0.96 (0.82 to 1.14)	⊕⊖⊖⊖ VERY LOW
МІ								
6	randomised trials	not serious	not serious ^a	serious ^b	very serious ^d	none ^e	RR 0.97 (0.87 to 1.07)	⊕○○○ VERY LOW
Stroke	1				1			
4	randomised trials	not serious	not serious ^a	serious ^c	very serious ^d	none ^e	RR 1.01 (0.86 to 1.19)	⊕⊖⊖⊖ VERY LOW
CHD	1		1		I		I	
8	randomised trials	not serious	not serious ^a	serious ^b	very serious ^d	none	RR 0.97 (0.85 to 1.11)	

w. n-6 PUFA Compared to Control for Mortality and Cardiovascular Outcomes

	Certainty assessment							
Nº of studies	Study design	Risk of biasInconsistencyIndirectnessImprecisionOther consideration		Other considerations	Relative (95% CI)	Certainty		
All-cause	mortality						· · ·	
10	randomised trials	not serious	not serious ^a	serious ^{b,c}	very serious	none ^e	RR 1.00 (0.88 to 1.13)	⊕○○○ VERY LOW
Cardiova	scular mortali	ty						
7	randomised trials	not serious	very serious ^a	serious ^b	very serious	none	RR 1.09 (0.68 to 1.75)	⊕○○○ VERY LOW
МІ							· · ·	
7	randomised trials	not serious	serious ^a	serious ^b	serious ^d	none ^e	RR 0.88 (0.75 to 1.03)	⊕○○○ VERY LOW
Stroke					<u>н</u>			
4	randomised trials	not serious	very serious ^a	serious ^c	very serious	none ^e	RR 1.27 (0.28 to 5.87)	⊕○○○ VERY LOW
CHD								
7	randomised trials	not serious	very serious ^a	serious ^b	very serious d	none	RR 0.86 (0.50 to 1.46)	⊕○○○ VERY LOW

x. n-3 (ALA) PUFA Compared to Control for Mortality and Cardiovascular Outcomes

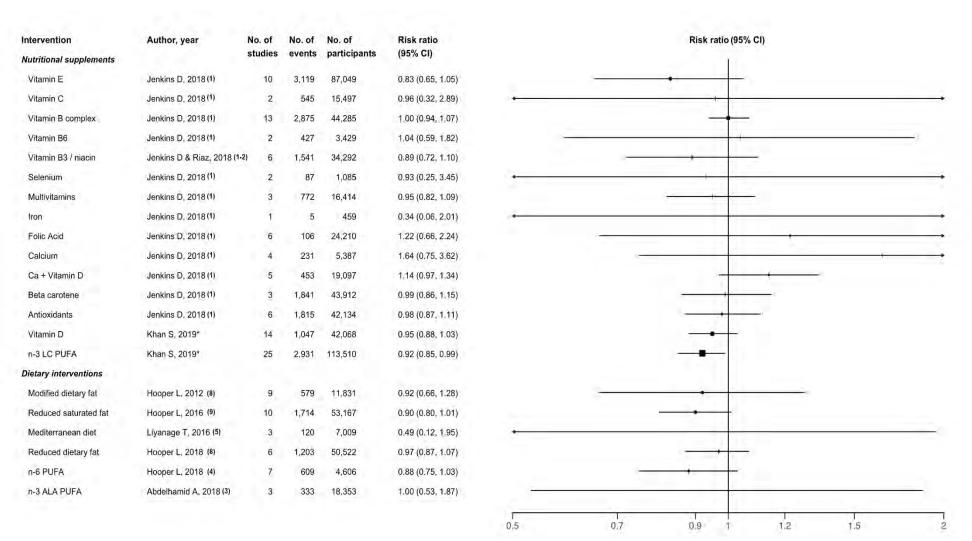
			Certainty	assessment			Effect	
Nº of studies	Study design	Risk of bias	Inconsistency	nconsistency Indirectness Imprecision		Relative (95% Cl)	Certainty	
All-cause	mortality							
5	randomised trials	not serious	not serious ^a	serious ^{b,c}	very serious d	none ^e	RR 1.01 (0.82 to 1.23)	⊕○○○ VERY LOW
Cardiovas	scular mortalit	:y						
4	randomised trials	not serious	not serious ^a	serious ^b	very serious	none	RR 0.96 (0.80 to 1.15)	⊕○○○ VERY LOW
МІ								
3	randomised trials	not serious	serious ^a	serious ^b	very serious	none ^e	RR 1.00 (0.53 to 1.87)	⊕○○○ VERY LOW
Stroke								
5	randomised trials	not serious	not serious ^a	serious ^c	very serious	none ^e	RR 1.15 (0.66 to 1.99)	⊕○○○ VERY LOW
CHD		•						
4	randomised trials	not serious	not serious ^a	serious ^b	very serious d	none	RR 1.00 (0.72 to 1.37)	
					1			

Intervention	Trials	No. Of	Age	Women	Hypertension	Diabetes (%)	CAD (%)	Follow-up
		Participants	(years)	(%)	(%)			(months)
Vitamin E	35	137,179	18-90	NR	NR	NR	NR	6-125
Vitamin C	4	16,004	18-69	NR	NR	NR	NR	15-125
Vitamin B Complex	16	45,424	18-89	NR	NR	NR	NR	6-88
Vitamin B6	2	3,429	NR	NR	NR	NR	NR	38.4-39.6
Vitamin B3/ Niacin	8	34,543	18-80	NR	NR	NR	NR	6-74
Vitamin A	1	2,297	45-74	NR	NR	NR	NR	36-48
Selenium	5	19,454	26-75	NR	NR	NR	NR	6-91
Multivitamins	10	22,869	40-85	NR	NR	NR	NR	12-134
Iron	2	762	NR	NR	NR	NR	NR	NR
Folic acid	12	28,483	18-79	NR	NR	NR	NR	12-120
Calcium	6	9,765	60-97	NR	NR	NR	NR	24-96
Calcium + Vitamin D	20	42,072	33-103	NR	NR	NR	NR	6-86
β-carotene	8	63,946	20-84	NR	NR	NR	NR	25-144
Antioxidants	24	73,262	18-80	NR	NR	NR	NR	6-125
Vitamin D	50	69,503	18-104	NR	NR	NR	NR	6-66
n 3 LC PUFA	51	135,663	61.4	63.2	47.0	35-100	17.7	28.6
Modified dietary fat	12	12,313	49.4	23	NR	0-100	0-100	20.3
*Reduced salt (hypertensives/ normotensives)	10	35,945	55.8	43.5	55.5	NR	NR	38.9
Reduced saturated fat	15	56,195	48.8	65.08	NR	0-100	0-100	26.1
Mediterranean diet	5	10,671	54	33.3	66.6	39.4	10.8	25.4
Reduced dietary fat	12	60,642	48.9	94.6	NR	0-100	0-100	25
n-6 PUFA	13	5,786	51.9	32.32	10.3	4.3	54.2	24.2
n- 3 (ALA) PUFA	5	19,483	62.6	46	3.0	NR	12.5	20.6

Supplement Table 6. Characteristics of the Included Interventions Extracted From Selected Systematic Reviews

Values are given as ranges, median or mean which ever was available. NR = Not Reported, * represents both (hypertensives and normotensive groups), LC (long chain), n-3 (omega 3), n-6 (omega 6), PUFA (Polyunsaturated fatty acid)

Supplement	Table 7. Egger	s' Regression	Test and Degree	of Heterogeneity


Outcome	Intervention	Egger's P-value	²
All-cause mortality	Vitamin E	0.31	0%
	Vitamin C	ND	0%
	Vitamin B-Complex	0.46	0%
	Vitamin B6	ND	0%
	Vitamin B3/Niacin	ND	0%
	Vitamin A	ND	NA
	Selenium	ND	0%
	Multivitamins	0.51	0%
	Iron	ND	0%
	Folic acid	0.31	17%
	Calcium	ND	0%
	Calcium +Vitamin D	0.33	0%
	Beta carotene	ND	10%
	Antioxidant	0.21	17%
	Vitamin D	0.72	0%
	n-3 (LC) PUFA	0.09	8.5%
	Modified fat intake	ND	34%
	Reduced salt (normotensive)	ND	0%
	Reduced salt (hypertensive)	ND	0%
	Reduced saturared fat intake	0.02	3%
	Mediterranean diet	ND	68%
	Reduced dietary fat intake	ND	0%
	n-6 PUFA	0.76	0%
	n-3 (ALA) PUFA	ND	0%
Cardiovascular mortality	Vitamin E	0.14	0%
	Vitamin C	ND	0%
	Vitamin B-Complex	ND	52%
	Vitamin B3/Niacin	ND	0%
	Selenium	ND	48%
	Multivitamins	ND	0%

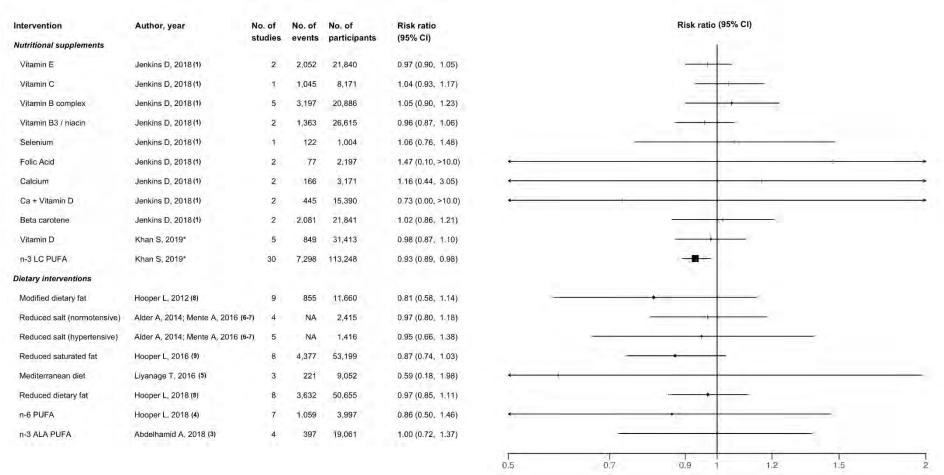
		ND	00/
	Iron	ND	0%
	Folic acid	ND	0%
	Calcium	ND	53%
	Calcium +Vitamin D	ND	NA
	Beta carotene	ND	0%
	Antioxidant	ND	0%
	Vitamin D	ND	0%
	N-3 (LC) PUFA	0.14	23%
	Modified dietary fat	ND	45%
	Reduced salt (hypertensive)	ND	0%
	Reduced saturared fat	ND	30%
	Mediterranean diet	ND	77%
	Reduced dietary fat	ND	0%
	n-6 PUFA	ND	61%
	n-3 (ALA) PUFA	ND	0%
MI	Vitamin E	0.01	64%
	Vitamin C	ND	6%
	Vitamin B-Complex	0.92	0%
	Vitamin B6	ND	0%
	Vitamin B3/Niacin	ND	38%
	Selenium	ND	0%
	Multivitamins	ND	0%
	Folic acid	ND	12%
	Calcium	ND	69%
	Calcium +Vitamin D	ND	0%
	Beta carotene	ND	0%
	Antioxidant	ND	0%
	Vitamin D	0.75	0%
	n-3 (LC) PUFA	0.11	1%
	Modified dietary fat	ND	45%
	Reduced saturared fat	ND	10%
	Mediterranean diet	ND	64%
	Reduced dietary fat	ND	0%
			0,0

	n-6 PUFA	ND	0%
	n-3 (ALA) PUFA	ND	26%
Stroke	Vitamin E	0.08	15%
	Vitamin C	ND	0%
	Vitamin B-Complex	0.48	16%
	Vitamin B6	ND	0%
	Vitamin B3/Niacin	ND	60%
	Selenium	ND	0%
	Multivitamins	ND	59%
	Folic acid	ND	0%
	Calcium	ND	0%
	Calcium +Vitamin D	ND	0%
	Beta carotene	ND	36%
	Antioxidant	ND	0%
	Vitamin D	0.24	0%
	n-3 (LC) PUFA	0.15	0%
	Modified dietary fat	ND	8%
	Reduced saturared fat	ND	0%
	Mediterranean diet	ND	0%
	Reduced dietary fat	ND	0%
	n-6 PUFA	ND	56%
	n-3 (ALA) PUFA	ND	0%
CHD	Vitamin E	ND	0%
	Vitamin C	ND	NA
	Vitamin B-Complex	ND	12%
	Vitamin B3/Niacin	ND	0%
	Selenium	ND	NA
	Folic acid	ND	0%
	Calcium	ND	53%
	Calcium +Vitamin D	ND	49%
	Beta carotene	ND	0%
	Vitamin D	ND	0%
	n-3 (LC) PUFA	0.49	0.6%

Modified dietary fat	ND	61%
Reduced salt (normotensive)	ND	0%
Reduced salt (hypertensive)	ND	0%
Reduced saturared fat	ND	66%
Mediterranean diet	ND	62%
Reduced dietary fat	ND	17%
n-6 PUFA	ND	71%
n-3 (ALA) PUFA	ND	2%

CHD (Coronary Heart Disease); MI (Myocardial infarction); ND (Not Determined); NA (Not Applicable)

Supplement Figure 1: Forest plot showing effects of nutritional supplements and dietary interventions on myocardial infarction

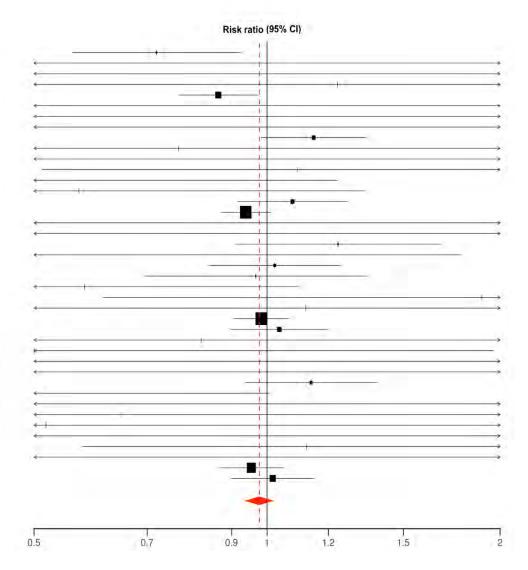

ALA (Alpha Linolenic Acid), Ca (Calcium), LC (Long Chain), n-3 (omega 3), n-6 (omega 6), PUFA (Polyunsaturated Fatty Acid). * Updated metaanalysis after inclusion of new clinical trials

Intervention Author, year No. of No. of No. of **Risk ratio** Risk ratio (95% CI) studies events participants (95% CI) Nutritional supplements Vitamin E Jenkins D, 2018 (1) 11 1,956 100,575 0.98 (0.87, 1.10) Vitamin C Jenkins D, 2018(1) 2 525 15,497 0.92 (0.35, 2.40) Vitamin B complex Jenkins D, 2018(1) 12 2.067 43,339 0.90 (0.80, 1.01) Vitamin B6 Jenkins D, 2018(1) 2 88 3,429 0.92 (0.18, 4.67) Vitamin B3 / niacin Jenkins D & Riaz, 2018 (1-2) 5 1,453 34,104 0.96 (0.56, 1.66) Selenium Jenkins D, 2018(1) 2 249 18,770 0.89 (0.19, 4.27) Multivitamins Jenkins D, 2018(1) 2 666 16,349 0.86 (0.01, >10.0) Folic Acid Jenkins D, 2018(1) 7 694 24,525 0.80 (0.67, 0.96) Calcium Jenkins D, 2018(1) 3 178 3,861 1.29 (0.76, 2.18) Ca + Vitamin D Jenkins D, 2018 (1) 7 484 19,227 1.17 (1.05, 1.30) Jenkins D, 2018(1) 3 58,761 1.06 (0.83, 1.35) Beta carotene 2,104 Antioxidants Jenkins D, 2018 (1) 7 1,986 60,589 1.00 (0.94, 1.07) Vitamin D Khan S, 2019* 42,060 1.06 (0.95, 1.19) 13 822 n-3 LC PUFA Khan S, 2019* 130,709 1.05 (0.97, 1.13) 30 2,543 **Dietary interventions** Modified dietary fat Hooper L, 2012 (8) 4 51 10,315 0.70 (0.24, 2.07) Reduced saturated fat Hooper L, 2016 (9) 7 1,125 50,952 1.00 (0.89, 1.12) Liyanage T, 2016 (5) 0.65 (0.39, 1.11) Mediterranean diet 3 167 9,052 Reduced dietary fat Hooper L, 2018 (8) 1.01 (0.86, 1.19) 1.084 49,246 4 n-6 PUFA Hooper L, 2018 (4) 4 54 3,730 1.27 (0.28, 5.87) n-3 ALA PUFA Abdelhamid A, 2018 (3) 5 51 19,327 1.15 (0.66, 1.99) 0.5 1.2 0.7 0.9 1.5

Supplement Figure 2: Forest plot showing effects of nutritional supplements and dietary interventions on stroke

ALA (Alpha Linolenic Acid), Ca (Calcium), LC (Long Chain), n-3 (omega 3), n-6 (omega 6), PUFA (Polyunsaturated Fatty Acid). * Updated metaanalysis after inclusion of new clinical trials

2



Supplement Figure 3: Forest plot showing effects of nutritional supplements and dietary interventions on coronary heart disease

ALA (Alpha Linolenic Acid), Ca (Calcium), LC (Long Chain), n-3 (omega 3), n-6 (omega 6), NA (Not Available); PUFA (Polyunsaturated Fatty Acid). *Updated meta-analysis after inclusion of new clinical trials

	Supplement Figure 4	: Forest plot show	ing effects	of n-3 long cha	in pol	yunsaturated fatty	y acids	(LC PUFA) on all-cause mortality	1
--	---------------------	--------------------	-------------	-----------------	--------	--------------------	---------	----------	--------------------------	---

	Experime		Control		Risk ratio
Study	Events	Total	Events	Total	(95% CI)
DART, 1989	94	1,015	131	1,018	0.72 (0.56, 0.
Bates, 1989	1	155	0	157	3.04 (0.12, >1
HARP, 1995	0	41	1	39	0.32 (0.01, 7.
SHOT, 1996	8	317	6	293	1.23 (0.43, 3.
GISSI-P, 1999	472	5,666	545	5,658	0.86 (0.77, 0.
SCIMO, 1999	1	112	2	111	0.50 (0.05, 5.
OFAMI, 2001	11	150	11	150	1.00 (0.45, 2
Brox, 2001	0	80	1	40	0.17 (0.01, 4
DART-2, 2003	283	1,571	242	1,543	1.15 (0.98, 1
DISAF, 2003	6	201	8	206	0.77 (0.27, 2
Berson, 2004	0	105	1	103	0.33 (0.01, 7
FAAT, 2005	13	200	12	202	1.09 (0.51, 2
Raitt, 2005	4	100	10	100	0.40 (0.13, 1
SOFA, 2006	8	273	14	273	0.57 (0.24, 1
JELIS, 2007	286	9,326	265	9,319	1.08 (0.91, 1
GISSI-HF, 2008	955	3,494	1.014	3,481	0.94 (0.87, 1
EPIC-1, 2008	1	183	0	180	2.95 (0.12, >1
EPIC-2, 2008	0	189	1	190	0.34 (0.01, B
OMEGA, 2009	88	1,919	70	1,885	1.23 (0.91, 1
Nutristroke, 2009	0	38	4	34	0.10 (0.01, 1
AlphaOmega EPA+DHA, 2010	186	2,404	184	2,433	1.02 (0.84, 1
SU.FOL.OM3, 2010	66	1,253	68	1,248	0.97 (0.70, 1
DO IT, 2010	14	282	24	281	0.58 (0.31, 1
ADCS, 2010	11	238	4	164	1.89 (0.61, 5
OPAL, 2010	9	434	8	433	1.12 (0.44, 2
ORIGIN, 2012	951	6,281	964	6,255	0.98 (0.90, 1
Risk % Prevention, 2013	348	6,239	337	6,266	1.04 (0.90, 1
FORWARD, 2013	4	289	5	297	0.82 (0.22, 3
NAT2, 2013	3	150	6	150	0.50 (0.13, 1
Kumar, 2013	1	39	1	39	1.00 (0.06, >1
AFFORD, 2013	0	153	1	163	0.36 (0.01, 8
AREDS2, 2014	200	2,147	168	2,056	1.14 (0.94, 1
Doi, 2014	2	119	9	119	0.22 (0.05, 1
Shinto, 2014	1	13	ĩ	13	1.00 (0.07, >1
DIPP, 2015	2	104	3	101	0.65 (0.11, 3
Derosa, 2016	ĩ	138	2	143	0.52 (0.05, 5
FOSTAR, 2016	o	101	1	101	0.33 (0.01, 8
MAPT, 2017	18	840	16	840	1.12 (0.58, 2
Zhang, 2017	0	120	1	120	0.33 (0.01, 8
ASCEND, 2018	752	7,740	788	7,740	0.95 (0.87, 1
VITAL, 2018	493	12,933	485	12,938	1.02 (0.90, 1
VII NE, 2010	435	12,000	400	12,900	1.02 (0.30, 1
Overall	5,293	67,152	5,414	66.882	0.98 (0.93, 1

	Experim	ental	Control		Risk ratio	Risk ratio (95% CI)
Study	Events	Total	Events	Total	(95% CI)	
DART, 1989	84	1,015	121	1,018	0.70 (0.53, 0.91)	
HARP, 1995	0	41	1	39	0.32 (0.01, 7.56)	· · · · · · · · · · · · · · · · · · ·
SHOT, 1996	7	317	5	293	1.29 (0.42, 4.03)	<
GISSI-P, 1999	291	5,665	348	5,658	0.84 (0.72, 0.97)	· · · · · · · · · · · · · · · · · · ·
SCIMO, 1999	0	112	1	111	0.33 (0.01, 8.02)	<
DFAMI, 2001	8	150	8	150	1.00 (0.39, 2.59)	¢
Brox, 2001	0	80	1	40	0.17 (0.01, 4.03)	«
DART-2, 2003	180	1,571	139	1,543	1.27 (1.03, 1.57)	
AAT, 2005	9	200	9	202	1.01 (0.41, 2.49)	<
Raitt, 2005	2	100	5	100	0.40 (0.08, 2.01)	<
SOFA, 2006	6	273	13	273	0.46 (0.18, 1.20)	5
GISSI-HF, 2008	712	3,494	765	3,481	0.93 (0.85, 1.02)	
DMEGA, 2009	67	1,919	51	1,885	1.29 (0.90, 1.85)	
Nutristroke, 2009	0	38	4	34	0.10 (0.01, 1.78)	¢
AlphaOmega EPA+DHA, 2010	80	2,404	82	2,433	0.99 (0.73, 1.34)	
SU.FOL.OM3, 2010	23	1,253	28	1,248	0.82 (0.47, 1.41)	· · · · · · · · · · · · · · · · · · ·
DO IT, 2010	7	282	11	281	0.63 (0.25, 1.61)	
DRIGIN, 2012	574	6,281	581	6,255	0.98 (0.88, 1.10)	
Risk % Prevention, 2013	142	6,239	137	6,266	1.04 (0.83, 1.31)	······································
Kumar, 2013	1	39	1	39	1.00 (0.06, >10.0)	<
AREDS2, 2014	14	2,147	13	2,056	1.03 (0.49, 2.19)	é
Doi, 2014	1	119	5	119	0.20 (0.02, 1.69)	
Shinto, 2014	1	13	0	13	3.00 (0.13, >10.0)	e
Derosa, 2016	2	138	3	143	0.69 (0.12, 4.07)	<
OSTAR, 2016	0	101	1	101	0.33 (0.01, 8.09)	1
SCEND, 2018	196	7,740	240	7,740	0.82 (0.68, 0.98)	······
/ITAL, 2018	142	12,933	148	12,938	0.96 (0.76, 1.21)	· · · · · · · · · · · · · · · · · · ·
Overall	2,549	54,664	2,721	54,459	0.93 (0.86, 1.01)	

Supplement Figure 5: Forest plot showing effects of n-3 long chain polyunsaturated fatty acids (LC PUFA) on cardiovascular mortality

0,5

1.5

2

1.2

0.9

1

0.7

	Experime	ental	Control		Risk ratio	Risk ratio (95% CI)
Study	Events	Total	Events	Total	(95% CI)	
DART, 1989	207	1,015	215	1,018	0.97 (0.81, 1.14)	
HARP, 1995	1	41	3	39	0.32 (0.03, 2.92)	<
SHOT, 1996	7	317	12	293	0.54 (0.22, 1.35)	← 1
SCIMO, 1999	1	112	4	111	0.25 (0.03, 2.18)	<
Brox, 2001	0	80	1	40	0.17 (0.01, 4.03)	<
Raitt, 2005	1	100	3	100	0.33 (0.04, 3.15)	
Baldassarre, 2006	1	32	0	32	3.00 (0.13, >10.0)	
SOFA, 2006	1	273	3	273	0.33 (0.03, 3.18)	<
JELIS, 2007	71	9,326	93	9,319	0.76 (0.56, 1.04)	
THIS DIET, 2008	1	51	3	50	0.33 (0.04, 3.04)	<
GISSI-HF, 2008	107	3,494	129	3,481	0.83 (0.64, 1.06)	· · · · · · · · · · · · · · · · · · ·
OMEGA, 2009	87	1,919	78	1,885	1.10 (0.81, 1.48)	
AlphaOmega EPA+DHA, 2010	89	2,404	102	2,433	0.88 (0.67, 1.17)	· · · · · · · · · · · · · · · · · · ·
SU.FOL.OM3, 2010	32	1,253	32	1,248	1.00 (0.61, 1.62)	
DO IT, 2010	11	282	9	281	1.22 (0.51, 2.89)	
ORIGIN, 2012	344	6,281	316	6,255	1.08 (0.93, 1.26)	· · · · · · · · · · · · · · · · · · ·
Risk % Prevention, 2013	80	6,239	90	6,266	0.89 (0.66, 1.20)	
FORWARD, 2013	1	289	1	297	1.03 (0.06, >10.0)	÷
EPOCH, 2014	1	195	0	196	3.02 (0.12, >10.0)	<
AREDS2, 2014	28	2,147	30	2,056	0.89 (0.54, 1.49)	
Doi, 2014	1	119	0	119	3.00 (0.12, >10.0)	<
Proudman, 2015	1	87	0	53	1.83 (0.08, >10.0)	· · · · · · · · · · · · · · · · · · ·
Derosa, 2016	0	128	3	130	0.15 (0.01, 2.78)	*
ASCEND, 2018	186	7,740	200	7,740	0.93 (0.76, 1.13)	
VITAL, 2018	145	12,933	200	12,938	0.73 (0.59, 0.90)	
Overall	1,404	56,857	1,527	56,653	0.92 (0.85, 0.99)	

Supplement Figure 6: Forest plot showing effects n-3 long chain polyunsaturated fatty acids (LC PUFA) on myocardial infarction

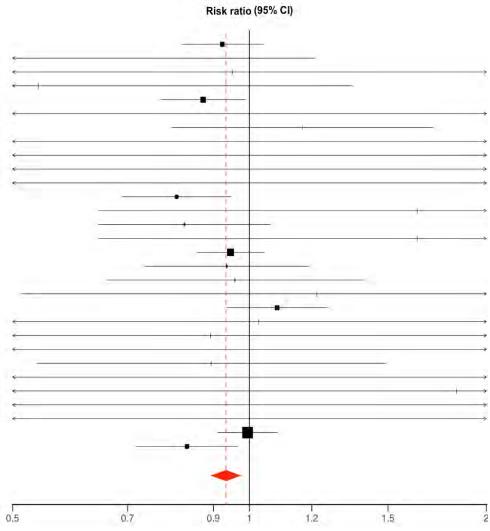
0.5

0.7

1 1.2

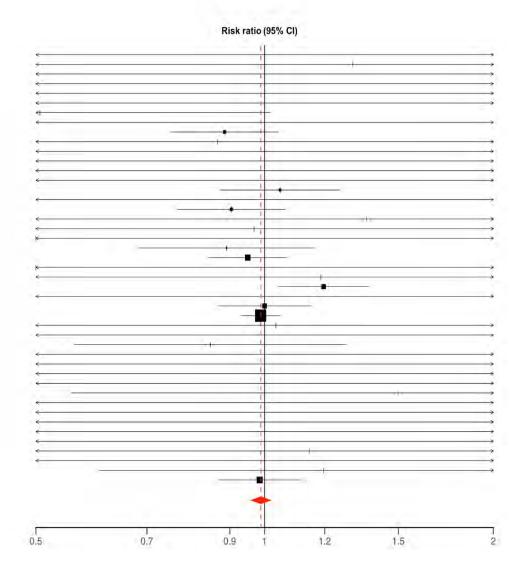
0,9

1.5

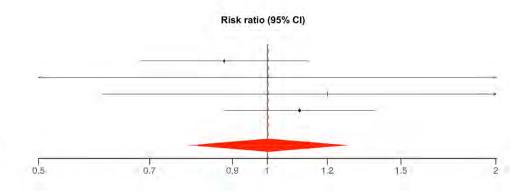

2

Supplement Figure 7: Forest plot showing effects of n-3 long chain polyunsaturated fatty acids (LC PUFA) on stroke

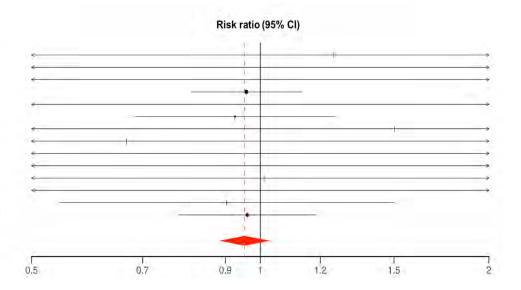
Study Events Total Events Total (95% C) DART, 1989 4 1015 9 1.018 0.45 (0.14, 1.44)		Experime	ental	Control		Risk ratio	Risk ratio (95% CI)
DART, 1989 4 1015 9 1018 0.48 (0.14, 1.4)	Study	Events	Total	Events	Total	(95% CI)	
SHOT, 1996 3 317 4 203 0.69 (0.16, 3.07)	DART, 1989	4	1,015	9	1,018	0.45 (0.14, 1.44)	<
SHOT, 1996 3 317 4 293 0.69 (0.16, 307)	HARP, 1995	1	41	0	39	2.86 (0.12, >10.0)	< <u> </u>
SCIMO, 1999 1 112 0 111 2.97 (0.12, >10.0) OFAM, 2001 6 150 0 150 130.0 (074, >10.0) DART-2, 2003 16 1571 14 1.543 1.12 (0.55, 2.29) JELIS, 2007 166 9.326 162 9.319 1.02 (0.83, 127) THIS DIET, 2008 3 51 1 50 2.04 (0.32, >10.0) MEGA, 2009 27 1.919 13 1.885 2.04 (106, 39.4) AphaOmega EPA-DHA, 2010 12 3.481 1.18 (0.52, 1.72)	SHOT, 1996	3	317	4	293	0.69 (0.16, 3.07)	<
OFAMI, 2001 6 150 13.00 (0.74, >10.0) DART-2, 2003 16 1.571 14 1.543 1.12 (0.55, 229) JELIS, 2007 166 9.326 162 9.319 1.02 (0.83, 1.27)	GISSI-P, 1999	92	5,665	77	5,658	1.19 (0.88, 1.61)	
DART-2, 2003 16 1,571 14 1,543 1,12 (0.55, 2.29) JELIS, 2007 166 9,326 162 9,319 102 (0.81, 127) JELIS, 2008 3 51 1 50 2.94 (0.32, >10.0) GISSIHF, 2008 122 3,481 118 (0.61, 5.34)	SCIMO, 1999	1	112	0	111	2.97 (0.12, >10.0)	¢
JELIS 2007 166 9.328 162 9.319 1.02 (0.83, 1.27) THIS DET, 2008 3 51 1 50 2.94 (0.82, 1.00) GISSHF, 2008 122 3.494 103 3.481 1.18 (0.91, 1.53) OMEGA, 2009 27 1.919 13 1.885 2.04 (106, 3.94) AphaOmega EPA+DHA, 2010 1 2.403 1.11 (0.7, 2.62)	OFAMI, 2001	6	150	0	150	13.00 (0.74, >10.0)	
THIS DIET, 2008 3 51 1 50 2.94 (0.32, >10.0) GISS.HF, 2008 122 3.494 103 3.481 1.18 (0.91, 1.53) AlphaOmega EPA+DHA, 2010 1 2.404 10 2.433 1.11 (0.47, 2.62) AlphaOmega EPA+DHA, 2010 1 2.404 10 2.433 1.11 (0.47, 2.62)	DART-2, 2003	16	1,571	14	1,543	1.12 (0.55, 2.29)	
GISSI-HF, 2008 122 3,494 103 3,481 1.18 (0.91, 1.53) OMEGA, 2009 27 1.919 13 1.885 2.04 (106, 3.94)	JELIS, 2007	166	9,326	162	9,319	1.02 (0.83, 1.27)	
OMEGA, 2009 27 1,919 13 1,885 2.04 (1.06, 3.94) AlphaOmega EPA+DHA, 2010 11 2,404 10 2,433 1,11 (0,47, 2,62) SU FOL, OM3, 2010 29 1,253 28 1,248 103 (0,62, 1.72) DOT, 2010 0 282 2 281 0.20 (0,01, 4.13) OPAL, 2010 7 376 8 372 0.87 (0.32, 2.36) Ozaydin, 2011 1 23 0 24 313 (0.13, 710.0) Okadri HF, 2011 0 67 1 66 0.33 (0.01, 7.92) ORIGIN, 2012 314 6,281 336 6,255 0.93 (0,80, 1.08) ORL, 2013 2 171 0 165 4.84 (0.23, >10.0) FORWARD, 2013 3 289 3 297 1.03 (0.21, 5.05) FORWARD, 2013 1 153 0 163 3.20 (0.13, >10.0) AFFORD, 2013 1 153 0 163 3.20 (0.13, >10.0) AFFORD, 2013 1 153 0 163 3.20 (0.13, >10.0)	THIS DIET, 2008	3	51	1	50	2.94 (0.32, >10.0)	<
AphaOmega EPA+DHA, 2010 11 2,404 10 2,433 1,11 (0,47, 2,62) Image: constraint of the second	GISSI-HF, 2008	122	3,494	103	3,481	1.18 (0.91, 1.53)	
SU.FOL.OM3, 2010 29 1,253 28 1,248 1.03 (0.62, 1.72) DO IT, 2010 0 282 2 281 0.20 (0.01, 4.13)	OMEGA, 2009	27	1,919	13	1,885	2.04 (1.06, 3.94)	IF
DD IT, 2010 0 282 2 281 0.20 (0.01, 4.13)	AlphaOmega EPA+DHA, 2010	11	2,404	10	2,433	1.11 (0.47, 2.62)	<
DO IT, 2010 0 282 2 281 0.20 (0.11, 4.13) OPAL, 2010 7 376 8 372 0.87 (0.32, 2.36) Caryolin, 2011 1 23 0 24 3.13 (0.13, >10.0) Nodari HF, 2011 0 67 1 66 0.33 (0.01, 7.92) ORIGIN, 2012 314 6.281 336 6.255 0.93 (0.80, 1.08) ORL, 2013 2 171 0 165 4.83 (0.23, >10.0) FISK % Prevention, 2013 80 6.239 60 6.266 1.34 (0.96, 1.87) NAT2, 2013 3 289 3 2.97 1.03 (0.21, 5.55) NAT2, 2013 0 150 1 150 0.33 (0.01, 8.12) AFFORD, 2013 1 153 0 163 3.20 (0.13, >10.0) FPOCH, 2014 2 195 0 196 5.03 (0.24, >10.0) FPOCH, 2014 2 195 0 196 5.03 (0.24, >10.0) AFFORD, 2014 48 2.147 41 2.056 1.12 (0.74, 1.69) Doi, 2014 0 119 4 119 0.11 (0.01, 2.04) ASEEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12.933 142 12.938 1.04 (0.83, 1.31)	SU.FOL.OM3, 2010	29	1,253	28	1,248	1.03 (0.62, 1.72)	· · · · · · · · · · · · · · · · · · ·
Ozaydin, 2011 1 23 0 24 3.13 (0.13, >10.0) Nodari HF, 2011 0 67 1 66 0.33 (0.01, 7.92) ORIGIN, 2012 314 6.281 336 6.255 0.93 (0.80, 1.08) ORL, 2013 2 171 0 165 4.83 (0.23, >10.0) FoRWARD, 2013 80 6.239 60 6.266 1.34 (0.96, 1.87) FORWARD, 2013 3 289 3 297 1.03 (0.21, 5.05) NAT2, 2013 0 150 1 150 0.33 (0.01, 8.12) FORH, 2014 2 195 0 196 5.03 (0.24, >10.0) EPOCH, 2014 2 195 0 196 5.03 (0.24, >10.0) Doi, 2014 0 119 4 119 0.11 (0.01, 2.04)	DO IT, 2010	0	282	2	281	0.20 (0.01, 4.13)	6
Oczaydin, 2011 1 23 0 24 3,13 (0,13,>10.0)	OPAL, 2010	7	376	8	372	0.87 (0.32, 2.36)	<
ORIGIN, 2012 314 6.281 336 6.255 0.93 (0.80, 1.08) ORL, 2013 2 171 0 165 4.83 (0.23, >10.0) Risk % Prevention, 2013 80 6.239 60 6.266 1.34 (0.96, 1.87) FORWARD, 2013 3 289 3 297 1.03 (0.21, 5.05)	Ozaydin, 2011	1	23	0	24	3.13 (0.13, >10.0)	• • • • • • • • • • • • • • • • • • •
ORIGIN, 2012 314 6,281 336 6,255 0.93 (0.80, 1.08) ORL, 2013 2 171 0 165 4.83 (0.23, >10.0) Risk % Prevention, 2013 80 6,239 60 6,266 1.34 (0.96, 1.87) FORWARD, 2013 3 289 3 297 1.03 (0.21, 5.05)	Nodari HF, 2011	0	67	1	66	0.33 (0.01, 7.92)	*
ORL, 2013 2 171 0 165 4.83 (0.23, >10.0) Risk % Prevention, 2013 80 6,239 60 6,266 1.34 (0.96, 1.87) FORWARD, 2013 3 289 3 297 1.03 (0.21, 5.05)	ORIGIN, 2012	314	6,281	336	6,255	0.93 (0.80, 1.08)	
Risk % Prevention, 2013 80 6,239 60 6,266 1,34 (0.96, 1.87) FORWARD, 2013 3 289 3 297 1.03 (0.21, 5.05)	ORL, 2013	2	171	0	165	4.83 (0.23, >10.0)	*
NAT2, 2013 0 150 1 150 0.33 (0.01, 8.12) AFFORD, 2013 1 153 0 163 3.20 (0.13, >10.0)	Risk % Prevention, 2013	80	6,239	60	6,266	1.34 (0.96, 1.87)	
NAT2, 2013 0 150 1 150 0.33 (0.01, 8.12) AFFORD, 2013 1 153 0 163 3.20 (0.13, >10.0) EPOCH, 2014 2 195 0 196 5.03 (0.24, >10.0) AREDS2, 2014 48 2.147 41 2.056 1.12 (0.74, 1.69) Doi, 2014 0 119 4 119 0.11 (0.01, 2.04)	FORWARD, 2013	3	289	3	297	1.03 (0.21, 5.05)	¢
EPOCH, 2014 2 195 0 196 5.03 (0.24, >10.0) AREDS2, 2014 48 2,147 41 2,056 1.12 (0.74, 1.69) Doi, 2014 0 119 4 119 0.11 (0.01, 2.04) Derosa, 2016 0 128 1 130 0.34 (0.01, 8.23) MAPT, 2017 1 820 4 832 0.25 (0.03, 2.26) ASCEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12,933 142 12,938 1.04 (0.83, 1.31)	NAT2, 2013	0	150	1	150	0.33 (0.01, 8.12)	¢
EPOCH, 2014 2 195 0 196 5.03 (0.24, >10.0) AREDS2, 2014 48 2,147 41 2,056 1.12 (0.74, 1.69) Doi, 2014 0 119 4 119 0.11 (0.01, 2.04) Derosa, 2016 0 128 1 130 0.34 (0.01, 8.23) MAPT, 2017 1 820 4 832 0.25 (0.03, 2.26) ASCEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12,933 142 12,938 1.04 (0.83, 1.31)	AFFORD, 2013	1	153	0	163	3.20 (0.13, >10.0)	¢
Doi, 2014 0 119 4 119 0.11 (0.01, 2.04) Derosa, 2016 0 128 1 130 0.34 (0.01, 8.23) MAPT, 2017 1 820 4 832 0.25 (0.03, 2.26) ASCEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12,933 142 12,938 1.04 (0.83, 1.31)	EPOCH, 2014	2	195	0	196	5.03 (0.24, >10.0)	
Doi, 2014 0 119 4 119 0.11 (0.01, 2.04) Derosa, 2016 0 128 1 130 0.34 (0.01, 8.23) MAPT, 2017 1 820 4 832 0.25 (0.03, 2.26) ASCEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12,933 142 12,938 1.04 (0.83, 1.31)	AREDS2, 2014	48	2,147	41	2,056	1.12 (0.74, 1.69)	
MAPT, 2017 1 820 4 832 0.25 (0.03, 2.26) ASCEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12,933 142 12,938 1.04 (0.83, 1.31)	Doi, 2014	0	119	4	119	0.11 (0.01, 2.04)	<
MAPT, 2017 1 820 4 832 0.25 (0.03, 2.26) ASCEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12,933 142 12,938 1.04 (0.83, 1.31)	Derosa, 2016	0	128	1	130	0.34 (0.01, 8.23)	ş
ASCEND, 2018 217 7,740 214 7,740 1.01 (0.84, 1.22) VITAL, 2018 148 12,933 142 12,938 1.04 (0.83, 1.31)		1	820	4	832	0.25 (0.03, 2.26)	<
	ASCEND, 2018	217	7,740	214	7,740	the second se	
Overall 1.305 65,431 1,238 65.278 1.05 (0.97, 1.13)	VITAL, 2018	148	12,933	142	12,938	1.04 (0.83, 1.31)	
	Overall	1,305	65,431	1,238	65,278	1.05 (0.97, 1.13)	


Supplement Figure 8: Forest plot showing effects of n n-3 long chain polyunsaturated fatty acids (LC PUFA) on coronary heart disease

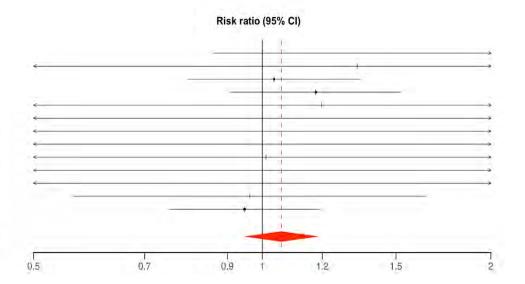
	Experime	ental	Control		Risk ratio		Ri
Study	Events	Total	Events	Total	(95% Cl)		
DART, 1989	337	1,015	366	1,018	0.92 (0.82, 1.04)		
Nye, 1990	5	36	11	37	0.47 (0.18, 1.21)	£	
HARP, 1995	7	41	7	39	0.95 (0.37, 2.46)	¢	
SHOT, 1996	7	317	12	293	0.54 (0.22, 1.35)	< 	
GISSI-P, 1999	424	5,666	485	5,658	0.87 (0.77, 0.99)		
SCIMO, 1999	1	112	4	111	0.25 (0.03, 2.18)	¢	
OFAMI, 2001	42	150	36	150	1.17 (0.80, 1.71)		
Brox, 2001	0	80	1	40	0.17 (0.01, 4.03)	¢	
Raitt, 2005	1	100	3	100	0.33 (0.04, 3.15)	*	
Baldassarre, 2006	1	32	0	32	3.00 (0.13, >10.0)	€	
SOFA, 2006	1	273	3	273	0.33 (0.03, 3.18)	s	
JELIS, 2007	262	9,326	324	9,319	0.81 (0.69, 0.95)		
THIS DIET, 2008	10	51	6	50	1.63 (0.64, 4.16)		
GISSI-HF, 2008	107	3,494	129	3,481	0.83 (0.64, 1.06)		+
ADCS, 2008	10	51	6	50	1.63 (0.64, 4.16)		
OMEGA, 2009	547	1,919	568	1,885	0.95 (0.86, 1.04)		
AlphaOmega EPA+DHA, 2010	122	2,404	132	2,433	0.94 (0.74, 1.19)		
SU.FOL.OM3, 2010	51	1,253	53	1,248	0.96 (0.66, 1.40)	_	
DO IT, 2010	11	282	9	281	1.22 (0.51, 2.89)		
ORIGIN, 2012	344	6,281	316	6,255	1.08 (0.93, 1.26)		
FORWARD, 2013	1	289	1	297	1.03 (0.06, >10.0)	· · ·	
EPE-A, 2014	2	168	1	75	0.89 (0.08, 9.70)	€	+
EPOCH, 2014	1	195	0	196	3.02 (0.12, >10.0)	e	
AREDS2, 2014	28	2,147	30	2,056	0.89 (0.54, 1.49)	-	+
Doi, 2014	1	119	0	119	3.00 (0.12, >10.0)	<	
Proudman, 2015	1	87	0	53	1.83 (0.08, >10.0)	<	
Derosa, 2016	0	128	4	130	0.11 (0.01, 2.07)	<	
FOSTAR, 2016	10	101	10	101	1.00 (0.44, 2.30)	e	
ASCEND, 2018	882	7,740	887	7,740	0.99 (0.91, 1.09)		
VITAL, 2018	308	12,933	370	12,938	0.83 (0.72, 0.97)		
Overall	3,524	56,790	3,774	56,458	0.93 (0.89, 0.98)		


Supplement Figure 9: Forest plot showing effects of vitamin D on all-cause mortality

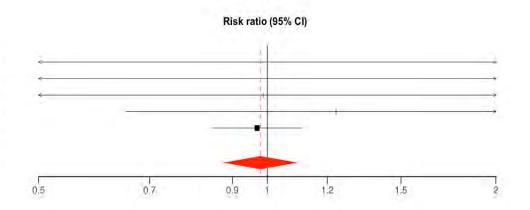
Study	Experimen Events	tal Total	Control Events	Total	Risk ratio (95% CI)
Brohult, 1973	1	25	0	25	3.00 (0.13, >10.0)
and the second	7	45	5	42	
Inkovaara, 1983	8	45	8	42	1.31 (0.45, 3.80)
Corless, 1985	0	41	1	41	1.00 (0.42, 2.41)
Ott, 1989	1		0		0.33 (0.01, 7.96)
Gallagher, 1990	1	25 50	0	25 48	3.00 (0.13, >10.0)
Grady, 1991					2.88 (0.12, >10.0)
Ooms, 1995	11	177	21	171	0.51 (0.25, 1.02)
Hamdy, 1995	4	89	1	87	3.91 (0.45, >10.0)
Lips, 1996	223	1,291	251	1,287	0.89 (0.75, 1.04)
Sato, 1997	1	45	1	39	0.87 (0.06, >10.0)
Sato, 1999	1	43		43	3.00 (0.13, >10.0)
OSTPRE, 1999	0	112	1	115	0.34 (0.01, 8.31)
Frazao, 2000	1	71	2	67	0.47 (0.04, 5.08)
STOP IT, 2001	1	123	1	123	1.00 (0.06, >10.0)
Meyer, 2002	169	569	163	575	1.05 (0.87, 1.26)
Cooper, 2003	0	93	1	94	0.34 (0.01, 8.16)
Trivedi, 2003	224	1,345	247	1,341	0.90 (0.77, 1.07)
NONOF, 2004	7	38	5	37	1.36 (0.47, 3.91)
Dukas, 2004	1	192	1	186	0.97 (0.06, >10.0)
Sato, 2005	1	48	2	48	0.50 (0.05, 5.33)
Flicker, 2005	76	313	85	312	0.89 (0.68, 1.16)
RECORD, 2005	438	2,649	460	2,643	0.95 (0.84, 1.07)
Aloia, 2005	1	104	2	104	0.50 (0.05, 5.43)
Schleithoff, 2006	7	61	6	62	1.19 (0.42, 3.33)
Law, 2006	347	1,762	322	1,955	1.20 (1.04, 1.37)
Coyne, 2006	2	107	1	113	2.11 (0.19, >10.0)
Smith, 2007	355	4,727	354	4,713	1.00 (0.87, 1.15)
Lyons, 2007	947	1,725	953	1,715	0.99 (0.93, 1.05)
Bjorkman, 2008	10	73	9	68	1.04 (0.45, 2.39)
Prince, 2008	0	151	1	151	0.33 (0.01, 8.12)
VITAL D, 2010	40	1,131	47	1,127	0.85 (0.56, 1.28)
Janssen, 2010	1	36	0	34	2.84 (0.12, >10.0)
VITAL, 2010	1	95	0	93	2.94 (0.12, >10.0)
Grimnes, 2011	0	51	1	53	0.35 (0.01, 8.31)
Cherniack, 2011	1	23	0	23	3.00 (0.13, >10.0)
Lehouck, 2012	9	91	6	91	1.50 (0.56, 4.04)
Glendenning, 2012	2	353	0	333	4.72 (0.23, >10.0)
Alvarez, 2012	1	24	1	24	1.00 (0.07. >10.0)
TIDE, 2012	0	607	2	614	0.20 (0.01, 4.21)
Witham, 2013	1	39	ō	36	2.77 (0.12, >10.0)
Hewitt, 2013	1	30	1	30	1.00 (0.07, >10.0)
Delanaye, 2013	6	22	5	21	1.15 (0.41, 3.19)
VitDISH, 2013	õ	80	1	79	0.33 (0.01, 7.96)
ViDA, 2017	18	2,558	15	2.550	1.20 (0.60, 2.37)
VITAL, 2018	485	12,927	493	12,944	0.99 (0.87, 1.11)
				12,944	0.99 (0.67, 1.11)
Overall	3,411	34,204	3,476	34,325	0.99 (0.96, 1.02)


Supplement Figure 10: Forest plot showing effects of vitamin D on cardiovascular mortality

	Experime	ntal	Control	Risk ratio		
Study	Events	Total	Events	Total	(95% CI)	
Trivedi, 2003	103	1,345	117	1,341	0.88 (0.68, 1.13)	
TIDE, 2012	0	607	1	614	0.34 (0.01, 8.26)	
ViDA, 2017	18	2,558	15	2,558	1.20 (0.61, 2.38)	
VITAL, 2018	152	12,927	138	12,944	1.10 (0.88, 1.39)	
Overall	273	17,437	271	17,457	1.00 (0.79, 1.28)	


Supplement Figure 11: Forest plot showing effects of vitamin D on myocardial infarction

	Experimental		Control	1.1	Risk ratio		
Study	Events	Total	Events	Total	(95% CI)		
Aloia, 1988	1	12	1	15	1.25 (0.09, >10.0)		
Ott, 1989	1	43	0	43	3.00 (0.13, >10.0)		
OSTPRE , 1999	1	112	0	115	3.08 (0.13, >10.0)		
Trivedi, 2003	224	1,345	233	1,341	0.96 (0.81, 1.13)		
Coburn, 2004	0	27	2	28	0.21 (0.01, 4.13)		
RECORD , 2005	78	2,649	84	2,643	0.93 (0.68, 1.25)		
Lappe, 2007	3	445	2	446	1.50 (0.25, 8.95)		
Prince, 2008	2	151	3	151	0.67 (0.11, 3.93)		
VITAL, 2010	2	95	0	93	4.90 (0.24, >10.0)		
Cherniack, 2011	1	23	1	23	1.00 (0.07, >10.0)		
TIDE, 2012	1	607	1	614	1.01 (0.06, >10.0)		
OPERA, 2014	0	30	2	30	0.20 (0.01, 4.00)		
ViDA, 2017	28	2,558	31	2,558	0.90 (0.54, 1.50)		
VITAL, 2018	169	12,927	176	12,944	0.96 (0.78, 1.19)		
Overall	511	21,024	536	21,044	0.95 (0.88, 1.03)		


Supplement Figure 12: Forest plot showing effects of vitamin D on stroke

Study	Experimental Events Total		Control Events Total		Risk ratio (95% Cl)	
		100	Construction of the second sec	0.000		
Inkovaara, 1983	12	45	5	42	2.24 (0.86, 5.82)	
STOP IT, 2001	4	123	3	123	1.33 (0.30, 5.83)	
Trivedi, 2003	105	1,345	101	1,341	1.04 (0.80, 1.35)	
RECORD , 2005	118	2,549	104	2,643	1.18 (0.91, 1.52)	
Lappe, 2007	6	446	5	445	1.20 (0.37, 3.89)	
Prince, 2008	3	151	3	151	1.00 (0.21, 4.88)	
VITAL, 2010	1	95	0	93	2.94 (0.12, >10.0)	
VIDOS, 2012	1	20	0	21	3.15 (0.14, >10.0)	
TIDE, 2012	1	607	1	614	1.01 (0.06, >10.0)	
VitDISH, 2013	3	80	1	79	2.96 (0.31, >10.0)	
OPERA, 2014	0	30	2	30	0.20 (0.01, 4.00)	
ViDA, 2017	26	2,558	27	2,558	0.96 (0.56, 1.65)	
VITAL, 2018	141	12,927	149	12,944	0.95 (0.75, 1.19)	
Overall	421	20,976	401	21,084	1.06 (0.95, 1.19)	

Supplement Figure 13: Forest plot showing effects of vitamin D on coronary heart disease

	Experime	ntal	Control	Risk ratio		
Study	Events	Total	Events	Total	(95% CI)	
Inkovaara, 1983	0	45	a l	42	0.31 (0.01, 7.44)	
VITAL, 2010	1	95	0	93	2.94 (0.12, >10.0)	
VitDISH, 2013	2	80	2	79	0.99 (0.14, 6.84)	
ViDA, 2017	21	2,558	17	2,550	1.23 (0.65, 2.33)	
VITAL, 2018	396	12,927	409	12,944	0.97 (0.85, 1.11)	
Overall	420	15,705	429	15,708	0.98 (0.87, 1.10)	

References

- 1. Jenkins DJA, Spence JD, Giovannucci EL, Kim YI, Josse R, Vieth R, et al. Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J Am Coll Cardiol. 2018;71(22):2570-84.
- 2. Riaz H, Khan SU, Rahman H, Shah NP, Kaluski E, Lincoff AM, et al. Effects of high-density lipoprotein targeting treatments on cardiovascular outcomes: A systematic review and metaanalysis. Eur J Prev Cardiol. 2019;26(5):533-43.
- 3. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11:Cd003177.
- 4. Hooper L, Al-Khudairy L, Abdelhamid AS, Rees K, Brainard JS, Brown TJ, et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:Cd011094.
- Liyanage T, Ninomiya T, Wang A, Neal B, Jun M, Wong MG, et al. Effects of the Mediterranean Diet on Cardiovascular Outcomes-A Systematic Review and Meta-Analysis. PLoS One. 2016;11(8):e0159252.
- 6. Adler AJ, Taylor F, Martin N, Gottlieb S, Taylor RS, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014(12):Cd009217.
- 7. Mente A, O'Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388(10043):465-75.
- Hooper L, Summerbell CD, Thompson R, Sills D, Roberts FG, Moore H, et al. Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database Syst Rev. 2011(7):Cd002137.
- 9. Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015(6):Cd011737.
- 10. Brohult J, Jonson B. Effects of large doses of calciferol on patients with rheumatoid arthritis. A double-blind clinical trial. Scand J Rheumatol. 1973;2(4):173-6.
- 11. Clofibrate and niacin in coronary heart disease. Jama. 1975;231(4):360-81.
- 12. Gillilan RE, Mondell B, Warbasse JR. Quantitative evaluation of vitamin E in the treatment of angina pectoris. Am Heart J. 1977;93(4):444-9.
- 13. Inkovaara J, Gothoni G, Halttula R, Heikinheimo R, Tokola O. Calcium, vitamin D and anabolic steroid in treatment of aged bones: double-blind placebo-controlled long-term clinical trial. Age Ageing. 1983;12(2):124-30.
- 14. Corless D, Dawson E, Fraser F, Ellis M, Evans SJ, Perry JD, et al. Do vitamin D supplements improve the physical capabilities of elderly hospital patients? Age Ageing. 1985;14(2):76-84.
- 15. Aloia JF, Vaswani A, Yeh JK, Ellis K, Yasumura S, Cohn SH. Calcitriol in the treatment of postmenopausal osteoporosis. Am J Med. 1988;84(3 Pt 1):401-8.
- 16. Korpela H, Kumpulainen J, Jussila E, Kemila S, Kaariainen M, Kaariainen T, et al. Effect of selenium supplementation after acute myocardial infarction. Res Commun Chem Pathol Pharmacol. 1989;65(2):249-52.
- 17. McKeown-Eyssen G, Holloway C, Jazmaji V, Bright-See E, Dion P, Bruce WR. A randomized trial of vitamins C and E in the prevention of recurrence of colorectal polyps. Cancer Res. 1988;48(16):4701-5.
- 18. Ott SM, Chesnut CH, 3rd. Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med. 1989;110(4):267-74.
- 19. Gallagher JC, Goldgar D. Treatment of postmenopausal osteoporosis with high doses of synthetic calcitriol. A randomized controlled study. Ann Intern Med. 1990;113(9):649-55.

- 20. Grady D, Halloran B, Cummings S, Leveille S, Wells L, Black D, et al. 1,25-Dihydroxyvitamin D3 and muscle strength in the elderly: a randomized controlled trial. J Clin Endocrinol Metab. 1991;73(5):1111-7.
- 21. Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med. 1992;327(23):1637-42.
- 22. Li JY, Taylor PR, Li B, Dawsey S, Wang GQ, Ershow AG, et al. Nutrition intervention trials in Linxian, China: multiple vitamin/mineral supplementation, cancer incidence, and disease-specific mortality among adults with esophageal dysplasia. J Natl Cancer Inst. 1993;85(18):1492-8.
- 23. Bogden JD, Bendich A, Kemp FW, Bruening KS, Shurnick JH, Denny T, et al. Daily micronutrient supplements enhance delayed-hypersensitivity skin test responses in older people. Am J Clin Nutr. 1994;60(3):437-47.
- 24. de la Maza MP, Petermann M, Bunout D, Hirsch S. Effects of long-term vitamin E supplementation in alcoholic cirrhotics. J Am Coll Nutr. 1995;14(2):192-6.
- 25. Hamdy NA, Kanis JA, Beneton MN, Brown CB, Juttmann JR, Jordans JG, et al. Effect of alfacalcidol on natural course of renal bone disease in mild to moderate renal failure. Bmj. 1995;310(6976):358-63.
- 26. Ooms ME, Roos JC, Bezemer PD, van der Vijgh WJ, Bouter LM, Lips P. Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. J Clin Endocrinol Metab. 1995;80(4):1052-8.
- 27. Pike J, Chandra RK. Effect of vitamin and trace element supplementation on immune indices in healthy elderly. Int J Vitam Nutr Res. 1995;65(2):117-21.
- 28. Steiner M, Glantz M, Lekos A. Vitamin E plus aspirin compared with aspirin alone in patients with transient ischemic attacks. Am J Clin Nutr. 1995;62(6 Suppl):1381s-4s.
- 29. Greenberg ER, Baron JA, Karagas MR, Stukel TA, Nierenberg DW, Stevens MM, et al. Mortality associated with low plasma concentration of beta carotene and the effect of oral supplementation. Jama. 1996;275(9):699-703.
- 30. Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;334(18):1145-9.
- 31. Lips P, Graafmans WC, Ooms ME, Bezemer PD, Bouter LM. Vitamin D supplementation and fracture incidence in elderly persons. A randomized, placebo-controlled clinical trial. Ann Intern Med. 1996;124(4):400-6.
- 32. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334(18):1150-5.
- 33. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996;347(9004):781-6.
- Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337(10):670-6.
- 35. Girodon F, Lombard M, Galan P, Brunet-Lecomte P, Monget AL, Arnaud J, et al. Effect of micronutrient supplementation on infection in institutionalized elderly subjects: a controlled trial. Ann Nutr Metab. 1997;41(2):98-107.
- 36. Moon TE, Levine N, Cartmel B, Bangert JL, Rodney S, Dong Q, et al. Effect of retinol in preventing squamous cell skin cancer in moderate-risk subjects: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol Biomarkers Prev. 1997;6(11):949-56.

- 37. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N Engl J Med. 1997;336(17):1216-22.
- 38. Sato Y, Maruoka H, Oizumi K. Amelioration of hemiplegia-associated osteopenia more than 4 years after stroke by 1 alpha-hydroxyvitamin D3 and calcium supplementation. Stroke. 1997;28(4):736-9.
- 39. Baeksgaard L, Andersen KP, Hyldstrup L. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women. Osteoporos Int. 1998;8(3):255-60.
- 40. Mortality in DATATOP: a multicenter trial in early Parkinson's disease. Parkinson Study Group. Ann Neurol. 1998;43(3):318-25.
- 41. Virtamo J, Rapola JM, Ripatti S, Heinonen OP, Taylor PR, Albanes D, et al. Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease. Arch Intern Med. 1998;158(6):668-75.
- 42. Baron JA, Beach M, Mandel JS, van Stolk RU, Haile RW, Sandler RS, et al. Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. N Engl J Med. 1999;340(2):101-7.
- 43. Hoffman RM, Garewal HS. Alpha-tocopherol supplementation for men with existing coronary artery disease: a feasibility study. Prev Med. 1999;29(2):112-8.
- 44. Girodon F, Galan P, Monget AL, Boutron-Ruault MC, Brunet-Lecomte P, Preziosi P, et al. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: a randomized controlled trial. MIN. VIT. AOX. geriatric network. Arch Intern Med. 1999;159(7):748-54.
- 45. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet. 1999;354(9177):447-55.
- 46. Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet. 1999;354(9180):723-9.
- 47. Komulainen M, Kroger H, Tuppurainen MT, Heikkinen AM, Alhava E, Honkanen R, et al.
 Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: a population-based 5-year randomized trial. J Clin Endocrinol Metab. 1999;84(2):546-52.
- 48. Krieg MA, Jacquet AF, Bremgartner M, Cuttelod S, Thiebaud D, Burckhardt P. Effect of supplementation with vitamin D3 and calcium on quantitative ultrasound of bone in elderly institutionalized women: a longitudinal study. Osteoporos Int. 1999;9(6):483-8.
- 49. Sato Y, Manabe S, Kuno H, Oizumi K. Amelioration of osteopenia and hypovitaminosis D by 1alpha-hydroxyvitamin D3 in elderly patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1999;66(1):64-8.
- 50. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebocontrolled trial. Lancet. 2000;356(9237):1213-8.
- 51. Correa P, Fontham ET, Bravo JC, Bravo LE, Ruiz B, Zarama G, et al. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-helicobacter pylori therapy. J Natl Cancer Inst. 2000;92(23):1881-8.
- 52. Frazao JM, Elangovan L, Maung HM, Chesney RW, Acchiardo SR, Bower JD, et al. Intermittent doxercalciferol (1alpha-hydroxyvitamin D(2)) therapy for secondary hyperparathyroidism. Am J Kidney Dis. 2000;36(3):550-61.

- 53. Lee IM, Cook NR, Manson JE, Buring JE, Hennekens CH. beta-Carotene Supplementation and Incidence of Cancer and Cardiovascular Disease: the Women's Health Study. J Natl Cancer Inst. 1999;91(24):2102-6.
- 54. Leppala JM, Virtamo J, Fogelholm R, Huttunen JK, Albanes D, Taylor PR, et al. Controlled trial of alpha-tocopherol and beta-carotene supplements on stroke incidence and mortality in male smokers. Arterioscler Thromb Vasc Biol. 2000;20(1):230-5.
- 55. Jacobson JS, Begg MD, Wang LW, Wang Q, Agarwal M, Norkus E, et al. Effects of a 6-month vitamin intervention on DNA damage in heavy smokers. Cancer Epidemiol Biomarkers Prev. 2000;9(12):1303-11.
- 56. Salonen JT, Nyyssonen K, Salonen R, Lakka HM, Kaikkonen J, Porkkala-Sarataho E, et al. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J Intern Med. 2000;248(5):377-86.
- 57. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439-52.
- 58. Brown BG, Zhao XQ, Chait A, Fisher LD, Cheung MC, Morse JS, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345(22):1583-92.
- 59. de Gaetano G. Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention Project. Lancet. 2001;357(9250):89-95.
- Desnuelle C, Dib M, Garrel C, Favier A. A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2(1):9-18.
- 61. de Waart FG, Kok FJ, Smilde TJ, Hijmans A, Wollersheim H, Stalenhoef AF. Effect of glutathione S-transferase M1 genotype on progression of atherosclerosis in lifelong male smokers. Atherosclerosis. 2001;158(1):227-31.
- 62. Gallagher JC, Fowler SE, Detter JR, Sherman SS. Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. J Clin Endocrinol Metab. 2001;86(8):3618-28.
- 63. You WC, Chang YS, Heinrich J, Ma JL, Liu WD, Zhang L, et al. An intervention trial to inhibit the progression of precancerous gastric lesions: compliance, serum micronutrients and S-allyl cysteine levels, and toxicity. Eur J Cancer Prev. 2001;10(3):257-63.
- 64. Baker F PD, Blackwood S, Hunt J, Erskine M, Dyas M, Ashby M, Siva A, Brown MJ. Blinded comparison of folic acid and placebo in patients with ischaemic heart disease: an outcome trial. Circulation. 2002;106((suppl II):741).
- 65. Chapuy MC, Pamphile R, Paris E, Kempf C, Schlichting M, Arnaud S, et al. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporos Int. 2002;13(3):257-64.
- 66. Chylack LT, Jr., Brown NP, Bron A, Hurst M, Kopcke W, Thien U, et al. The Roche European American Cataract Trial (REACT): a randomized clinical trial to investigate the efficacy of an oral antioxidant micronutrient mixture to slow progression of age-related cataract. Ophthalmic Epidemiol. 2002;9(1):49-80.

- 67. Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. Jama. 2002;288(6):715-21.
- Hodis HN, Mack WJ, LaBree L, Mahrer PR, Sevanian A, Liu CR, et al. Alpha-tocopherol supplementation in healthy individuals reduces low-density lipoprotein oxidation but not atherosclerosis: the Vitamin E Atherosclerosis Prevention Study (VEAPS). Circulation. 2002;106(12):1453-9.
- 69. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):23-33.
- 70. Meyer HE, Smedshaug GB, Kvaavik E, Falch JA, Tverdal A, Pedersen JI. Can vitamin D supplementation reduce the risk of fracture in the elderly? A randomized controlled trial. J Bone Miner Res. 2002;17(4):709-15.
- 71. Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. Jama. 2002;288(8):973-9.
- 72. Waters DD, Alderman EL, Hsia J, Howard BV, Cobb FR, Rogers WJ, et al. Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women: a randomized controlled trial. Jama. 2002;288(19):2432-40.
- 73. Wluka AE, Stuckey S, Brand C, Cicuttini FM. Supplementary vitamin E does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study. J Rheumatol. 2002;29(12):2585-91.
- 74. Collins EG, Edwin Langbein W, Orebaugh C, Bammert C, Hanson K, Reda D, et al. PoleStriding exercise and vitamin E for management of peripheral vascular disease. Med Sci Sports Exerc. 2003;35(3):384-93.
- Cooper L, Clifton-Bligh PB, Nery ML, Figtree G, Twigg S, Hibbert E, et al. Vitamin D supplementation and bone mineral density in early postmenopausal women. Am J Clin Nutr. 2003;77(5):1324-9.
- 76. Liem A, Reynierse-Buitenwerf GH, Zwinderman AH, Jukema JW, van Veldhuisen DJ. Secondary prevention with folic acid: effects on clinical outcomes. J Am Coll Cardiol. 2003;41(12):2105-13.
- 77. Righetti M, Ferrario GM, Milani S, Serbelloni P, La Rosa L, Uccellini M, et al. Effects of folic acid treatment on homocysteine levels and vascular disease in hemodialysis patients. Med Sci Monit. 2003;9(4):Pi19-24.
- 78. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. Bmj. 2003;326(7387):469.
- 79. Virtamo J, Pietinen P, Huttunen JK, Korhonen P, Malila N, Virtanen MJ, et al. Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up. Jama. 2003;290(4):476-85.
- 80. Dukas L, Bischoff HA, Lindpaintner LS, Schacht E, Birkner-Binder D, Damm TN, et al. Alfacalcidol reduces the number of fallers in a community-dwelling elderly population with a minimum calcium intake of more than 500 mg daily. J Am Geriatr Soc. 2004;52(2):230-6.
- 81. Harwood RH, Sahota O, Gaynor K, Masud T, Hosking DJ. A randomised, controlled comparison of different calcium and vitamin D supplementation regimens in elderly women after hip fracture: The Nottingham Neck of Femur (NONOF) Study. Age Ageing. 2004;33(1):45-51.
- 82. Coburn JW, Maung HM, Elangovan L, Germain MJ, Lindberg JS, Sprague SM, et al. Doxercalciferol safely suppresses PTH levels in patients with secondary hyperparathyroidism associated with chronic kidney disease stages 3 and 4. Am J Kidney Dis. 2004;43(5):877-90.

- 83. Lange H, Suryapranata H, De Luca G, Borner C, Dille J, Kallmayer K, et al. Folate therapy and instent restenosis after coronary stenting. N Engl J Med. 2004;350(26):2673-81.
- 84. Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. J Bone Miner Res. 2004;19(3):370-8.
- 85. Liem AH, van Boven AJ, Veeger NJ, Withagen AJ, Robles de Medina RM, Tijssen JG, et al. Efficacy of folic acid when added to statin therapy in patients with hypercholesterolemia following acute myocardial infarction: a randomised pilot trial. Int J Cardiol. 2004;93(2-3):175-9.
- 86. Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation. 2004;110(23):3512-7.
- 87. Tornwall ME, Virtamo J, Korhonen PA, Virtanen MJ, Taylor PR, Albanes D, et al. Effect of alphatocopherol and beta-carotene supplementation on coronary heart disease during the 6-year post-trial follow-up in the ATBC study. Eur Heart J. 2004;25(13):1171-8.
- 88. Manuel-y-Keenoy B, Vinckx M, Vertommen J, van Gaal L, de Leeuw I. Impact of vitamin E supplementation on lipoprotein peroxidation and composition in type 1 diabetic patients treated with atorvastatin. Atherosclerosis. 2004;175(2):369-76.
- 89. McNeil JJ, Robman L, Tikellis G, Sinclair MI, McCarty CA, Taylor HR. Vitamin E supplementation and cataract: randomized controlled trial. Ophthalmology. 2004;111(1):75-84.
- 90. Meier C, Woitge HW, Witte K, Lemmer B, Seibel MJ. Supplementation with oral vitamin D3 and calcium during winter prevents seasonal bone loss: a randomized controlled open-label prospective trial. J Bone Miner Res. 2004;19(8):1221-30.
- 91. Meydani SN, Leka LS, Fine BC, Dallal GE, Keusch GT, Singh MF, et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. Jama. 2004;292(7):828-36.
- 92. Aloia JF, Talwar SA, Pollack S, Yeh J. A randomized controlled trial of vitamin D3 supplementation in African American women. Arch Intern Med. 2005;165(14):1618-23.
- Avenell A, Campbell MK, Cook JA, Hannaford PC, Kilonzo MM, McNeill G, et al. Effect of multivitamin and multimineral supplements on morbidity from infections in older people (MAVIS trial): pragmatic, randomised, double blind, placebo controlled trial. Bmj. 2005;331(7512):324-9.
- 94. Brazier M, Grados F, Kamel S, Mathieu M, Morel A, Maamer M, et al. Clinical and laboratory safety of one year's use of a combination calcium + vitamin D tablet in ambulatory elderly women with vitamin D insufficiency: results of a multicenter, randomized, double-blind, placebo-controlled study. Clin Ther. 2005;27(12):1885-93.
- 95. Flicker L, MacInnis RJ, Stein MS, Scherer SC, Mead KE, Nowson CA, et al. Should older people in residential care receive vitamin D to prevent falls? Results of a randomized trial. J Am Geriatr Soc. 2005;53(11):1881-8.
- 96. Graf M, Ecker D, Horowski R, Kramer B, Riederer P, Gerlach M, et al. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. J Neural Transm (Vienna). 2005;112(5):649-60.
- 97. Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet. 2005;365(9471):1621-8.

- 98. Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. Jama. 2005;294(1):56-65.
- 99. Limburg PJ, Wei W, Ahnen DJ, Qiao Y, Hawk ET, Wang G, et al. Randomized, placebo-controlled, esophageal squamous cell cancer chemoprevention trial of selenomethionine and celecoxib. Gastroenterology. 2005;129(3):863-73.
- 100. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. Jama. 2005;293(11):1338-47.
- 101. Mooney LA, Madsen AM, Tang D, Orjuela MA, Tsai WY, Garduno ER, et al. Antioxidant vitamin supplementation reduces benzo(a)pyrene-DNA adducts and potential cancer risk in female smokers. Cancer Epidemiol Biomarkers Prev. 2005;14(1):237-42.
- 102. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379-88.
- 103. Porthouse J, Cockayne S, King C, Saxon L, Steele E, Aspray T, et al. Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. Bmj. 2005;330(7498):1003.
- 104. Potena L, Grigioni F, Magnani G, Ortolani P, Coccolo F, Sassi S, et al. Homocysteine-lowering therapy and early progression of transplant vasculopathy: a prospective, randomized, IVUS-based study. Am J Transplant. 2005;5(9):2258-64.
- 105. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20(3):187-92.
- 106. Bairati I, Meyer F, Jobin E, Gelinas M, Fortin A, Nabid A, et al. Antioxidant vitamins supplementation and mortality: a randomized trial in head and neck cancer patients. Int J Cancer. 2006;119(9):2221-4.
- 107. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578-88.
- 108. Coyne D, Acharya M, Qiu P, Abboud H, Batlle D, Rosansky S, et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis. 2006;47(2):263-76.
- 109. Daly RM, Brown M, Bass S, Kukuljan S, Nowson C. Calcium- and vitamin D3-fortified milk reduces bone loss at clinically relevant skeletal sites in older men: a 2-year randomized controlled trial. J Bone Miner Res. 2006;21(3):397-405.
- 110. Law M, Withers H, Morris J, Anderson F. Vitamin D supplementation and the prevention of fractures and falls: results of a randomised trial in elderly people in residential accommodation. Age Ageing. 2006;35(5):482-6.
- 111. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354(15):1567-77.
- 112. Magliano D, McNeil J, Branley P, Shiel L, Demos L, Wolfe R, et al. The Melbourne Atherosclerosis Vitamin E Trial (MAVET): a study of high dose vitamin E in smokers. Eur J Cardiovasc Prev Rehabil. 2006;13(3):341-7.
- 113. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83(4):754-9.

- 114. Stranges S, Marshall JR, Trevisan M, Natarajan R, Donahue RP, Combs GF, et al. Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol. 2006;163(8):694-9.
- 115. Zoungas S, McGrath BP, Branley P, Kerr PG, Muske C, Wolfe R, et al. Cardiovascular morbidity and mortality in the Atherosclerosis and Folic Acid Supplementation Trial (ASFAST) in chronic renal failure: a multicenter, randomized, controlled trial. J Am Coll Cardiol. 2006;47(6):1108-16.
- 116. Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, et al. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res. 2007;22(4):509-19.
- 117. Catalano M, Born G, Peto R. Prevention of serious vascular events by aspirin amongst patients with peripheral arterial disease: randomized, double-blind trial. J Intern Med. 2007;261(3):276-84.
- 118. Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS, et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. Jama. 2007;297(21):2351-9.
- 119. Cook NR, Albert CM, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, et al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women's Antioxidant Cardiovascular Study. Arch Intern Med. 2007;167(15):1610-8.
- 120. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208-16.
- 121. Jamison RL, Hartigan P, Kaufman JS, Goldfarb DS, Warren SR, Guarino PD, et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. Jama. 2007;298(10):1163-70.
- 122. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr. 2007;85(6):1586-91.
- 123. Liu BA, McGeer A, McArthur MA, Simor AE, Aghdassi E, Davis L, et al. Effect of multivitamin and mineral supplementation on episodes of infection in nursing home residents: a randomized, placebo-controlled study. J Am Geriatr Soc. 2007;55(1):35-42.
- 124. Lyons RA, Johansen A, Brophy S, Newcombe RG, Phillips CJ, Lervy B, et al. Preventing fractures among older people living in institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D supplementation. Osteoporos Int. 2007;18(6):811-8.
- 125. Plummer M, Vivas J, Lopez G, Bravo JC, Peraza S, Carillo E, et al. Chemoprevention of precancerous gastric lesions with antioxidant vitamin supplementation: a randomized trial in a high-risk population. J Natl Cancer Inst. 2007;99(2):137-46.
- 126. Smith H, Anderson F, Raphael H, Maslin P, Crozier S, Cooper C. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women--a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford). 2007;46(12):1852-7.
- 127. Bjorkman M, Sorva A, Risteli J, Tilvis R. Vitamin D supplementation has minor effects on parathyroid hormone and bone turnover markers in vitamin D-deficient bedridden older patients. Age Ageing. 2008;37(1):25-31.
- Bolland MJ, Barber PA, Doughty RN, Mason B, Horne A, Ames R, et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. Bmj. 2008;336(7638):262-6.
- 129. Maraini G, Williams SL, Sperduto RD, Ferris F, Milton RC, Clemons TE, et al. A randomized, double-masked, placebo-controlled clinical trial of multivitamin supplementation for age-related

lens opacities. Clinical trial of nutritional supplements and age-related cataract report no. 3. Ophthalmology. 2008;115(4):599-607.e1.

- 130. Ebbing M, Bleie O, Ueland PM, Nordrehaug JE, Nilsen DW, Vollset SE, et al. Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. Jama. 2008;300(7):795-804.
- 131. Guyton JR, Brown BG, Fazio S, Polis A, Tomassini JE, Tershakovec AM. Lipid-altering efficacy and safety of ezetimibe/simvastatin coadministered with extended-release niacin in patients with type IIa or type IIb hyperlipidemia. J Am Coll Cardiol. 2008;51(16):1564-72.
- 132. Logan RF, Grainge MJ, Shepherd VC, Armitage NC, Muir KR. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology. 2008;134(1):29-38.
- 133. Milman U, Blum S, Shapira C, Aronson D, Miller-Lotan R, Anbinder Y, et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol. 2008;28(2):341-7.
- 134. Prince RL, Austin N, Devine A, Dick IM, Bruce D, Zhu K. Effects of ergocalciferol added to calcium on the risk of falls in elderly high-risk women. Arch Intern Med. 2008;168(1):103-8.
- 135. Reid IR, Ames R, Mason B, Reid HE, Bacon CJ, Bolland MJ, et al. Randomized controlled trial of calcium supplementation in healthy, nonosteoporotic, older men. Archives of internal medicine. 2008;168(20):2276-82.
- 136. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. Jama. 2008;300(18):2123-33.
- 137. Zhu K, Devine A, Dick IM, Wilson SG, Prince RL. Effects of calcium and vitamin D supplementation on hip bone mineral density and calcium-related analytes in elderly ambulatory Australian women: a five-year randomized controlled trial. J Clin Endocrinol Metab. 2008;93(3):743-9.
- 138. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436-48.
- 139. Hodis HN, Mack WJ, Dustin L, Mahrer PR, Azen SP, Detrano R, et al. High-dose B vitamin supplementation and progression of subclinical atherosclerosis: a randomized controlled trial. Stroke. 2009;40(3):730-6.
- 140. Imasa MS, Gomez NT, Nevado JB, Jr. Folic acid-based intervention in non-ST elevation acute coronary syndromes. Asian Cardiovasc Thorac Ann. 2009;17(1):13-21.
- 141. LaCroix AZ, Kotchen J, Anderson G, Brzyski R, Cauley JA, Cummings SR, et al. Calcium plus vitamin D supplementation and mortality in postmenopausal women: the Women's Health Initiative calcium-vitamin D randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2009;64(5):559-67.
- 142. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Jama. 2009;301(1):39-51.
- 143. Saposnik G, Ray JG, Sheridan P, McQueen M, Lonn E. Homocysteine-lowering therapy and stroke risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke. 2009;40(4):1365-72.
- 144. Sang ZC, Wang F, Zhou Q, Li YH, Li YG, Wang HP, et al. Combined use of extended-release niacin and atorvastatin: safety and effects on lipid modification. Chin Med J (Engl). 2009;122(14):1615-20.

- 145. Wu K, Platz EA, Willett WC, Fuchs CS, Selhub J, Rosner BA, et al. A randomized trial on folic acid supplementation and risk of recurrent colorectal adenoma. Am J Clin Nutr. 2009;90(6):1623-31.
- 146. Armitage JM, Bowman L, Clarke RJ, Wallendszus K, Bulbulia R, Rahimi K, et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. Jama. 2010;303(24):2486-94.
- 147. Chailurkit LO, Saetung S, Thakkinstian A, Ongphiphadhanakul B, Rajatanavin R. Discrepant influence of vitamin D status on parathyroid hormone and bone mass after two years of calcium supplementation. Clin Endocrinol (Oxf). 2010;73(2):167-72.
- 148. de Zeeuw D, Agarwal R, Amdahl M, Audhya P, Coyne D, Garimella T, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376(9752):1543-51.
- 149. Galan P, Kesse-Guyot E, Czernichow S, Briancon S, Blacher J, Hercberg S. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial. Bmj. 2010;341:c6273.
- 150. Heinz J, Kropf S, Domrose U, Westphal S, Borucki K, Luley C, et al. B vitamins and the risk of total mortality and cardiovascular disease in end-stage renal disease: results of a randomized controlled trial. Circulation. 2010;121(12):1432-8.
- 151. Hercberg S, Kesse-Guyot E, Druesne-Pecollo N, Touvier M, Favier A, Latino-Martel P, et al. Incidence of cancers, ischemic cardiovascular diseases and mortality during 5-year follow-up after stopping antioxidant vitamins and minerals supplements: a postintervention follow-up in the SU.VI.MAX Study. Int J Cancer. 2010;127(8):1875-81.
- 152. House AA, Eliasziw M, Cattran DC, Churchill DN, Oliver MJ, Fine A, et al. Effect of B-vitamin therapy on progression of diabetic nephropathy: a randomized controlled trial. Jama. 2010;303(16):1603-9.
- 153. Janssen HC, Samson MM, Verhaar HJ. Muscle strength and mobility in vitamin D-insufficient female geriatric patients: a randomized controlled trial on vitamin D and calcium supplementation. Aging Clin Exp Res. 2010;22(1):78-84.
- 154. Salovaara K, Tuppurainen M, Karkkainen M, Rikkonen T, Sandini L, Sirola J, et al. Effect of vitamin D(3) and calcium on fracture risk in 65- to 71-year-old women: a population-based 3-year randomized, controlled trial--the OSTPRE-FPS. J Bone Miner Res. 2010;25(7):1487-95.
- 155. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual highdose oral vitamin D and falls and fractures in older women: a randomized controlled trial. Jama. 2010;303(18):1815-22.
- 156. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-85.
- 157. B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol. 2010;9(9):855-65.
- 158. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255-67.
- 159. Cherniack EP, Florez HJ, Hollis BW, Roos BA, Troen BR, Levis S. The response of elderly veterans to daily vitamin D3 supplementation of 2,000 IU: a pilot efficacy study. J Am Geriatr Soc. 2011;59(2):286-90.
- 160. Grimnes G, Figenschau Y, Almas B, Jorde R. Vitamin D, insulin secretion, sensitivity, and lipids: results from a case-control study and a randomized controlled trial using hyperglycemic clamp technique. Diabetes. 2011;60(11):2748-57.

- 161. Lewis JR, Calver J, Zhu K, Flicker L, Prince RL. Calcium supplementation and the risks of atherosclerotic vascular disease in older women: results of a 5-year RCT and a 4.5-year follow-up. J Bone Miner Res. 2011;26(1):35-41.
- 162. Gallagher JC, Sai A, Templin T, 2nd, Smith L. Dose response to vitamin D supplementation in postmenopausal women: a randomized trial. Ann Intern Med. 2012;156(6):425-37.
- 163. Marshall JR, Tangen CM, Sakr WA, Wood DP, Jr., Berry DL, Klein EA, et al. Phase III trial of selenium to prevent prostate cancer in men with high-grade prostatic intraepithelial neoplasia: SWOG S9917. Cancer Prev Res (Phila). 2011;4(11):1761-9.
- 164. Alvarez JA, Law J, Coakley KE, Zughaier SM, Hao L, Shahid Salles K, et al. High-dose cholecalciferol reduces parathyroid hormone in patients with early chronic kidney disease: a pilot, randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2012;96(3):672-9.
- 165. Glendenning P, Zhu K, Inderjeeth C, Howat P, Lewis JR, Prince RL. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. J Bone Miner Res. 2012;27(1):170-6.
- 166. Lehouck A, Mathieu C, Carremans C, Baeke F, Verhaegen J, Van Eldere J, et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2012;156(2):105-14.
- 167. Ma JL, Zhang L, Brown LM, Li JY, Shen L, Pan KF, et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst. 2012;104(6):488-92.
- 168. Punthakee Z, Bosch J, Dagenais G, Diaz R, Holman R, Probstfield J, et al. Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia. 2012;55(1):36-45.
- 169. Sesso HD, Christen WG, Bubes V, Smith JP, MacFadyen J, Schvartz M, et al. Multivitamins in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. Jama. 2012;308(17):1751-60.
- 170. Delanaye P, Weekers L, Warling X, Moonen M, Smelten N, Medart L, et al. Cholecalciferol in haemodialysis patients: a randomized, double-blind, proof-of-concept and safety study. Nephrol Dial Transplant. 2013;28(7):1779-86.
- 171. Hewitt NA, O'Connor AA, O'Shaughnessy DV, Elder GJ. Effects of cholecalciferol on functional, biochemical, vascular, and quality of life outcomes in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8(7):1143-9.
- 172. Lamas GA, Boineau R, Goertz C, Mark DB, Rosenberg Y, Stylianou M, et al. Oral high-dose multivitamins and minerals after myocardial infarction: a randomized trial. Ann Intern Med. 2013;159(12):797-805.
- 173. Manning PJ, Sutherland WH, Williams SM, Walker RJ, Berry EA, De Jong SA, et al. The effect of lipoic acid and vitamin E therapies in individuals with the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2013;23(6):543-9.
- 174. Prentice RL, Pettinger MB, Jackson RD, Wactawski-Wende J, Lacroix AZ, Anderson GL, et al. Health risks and benefits from calcium and vitamin D supplementation: Women's Health Initiative clinical trial and cohort study. Osteoporos Int. 2013;24(2):567-80.
- 175. Witham MD, Price RJ, Struthers AD, Donnan PT, Messow CM, Ford I, et al. Cholecalciferol treatment to reduce blood pressure in older patients with isolated systolic hypertension: the VitDISH randomized controlled trial. JAMA Intern Med. 2013;173(18):1672-9.
- 176. Witham MD, Dove FJ, Khan F, Lang CC, Belch JJ, Struthers AD. Effects of vitamin D supplementation on markers of vascular function after myocardial infarction--a randomised controlled trial. Int J Cardiol. 2013;167(3):745-9.

- 177. Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, et al. Effects of extendedrelease niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203-12.
- 178. Wang AY, Fang F, Chan J, Wen YY, Qing S, Chan IH, et al. Effect of paricalcitol on left ventricular mass and function in CKD--the OPERA trial. J Am Soc Nephrol. 2014;25(1):175-86.
- 179. van Wijngaarden JP, Swart KM, Enneman AW, Dhonukshe-Rutten RA, van Dijk SC, Ham AC, et al. Effect of daily vitamin B-12 and folic acid supplementation on fracture incidence in elderly individuals with an elevated plasma homocysteine concentration: B-PROOF, a randomized controlled trial. Am J Clin Nutr. 2014;100(6):1578-86.
- 180. Wang L, Sesso HD, Glynn RJ, Christen WG, Bubes V, Manson JE, et al. Vitamin E and C supplementation and risk of cancer in men: posttrial follow-up in the Physicians' Health Study II randomized trial. Am J Clin Nutr. 2014;100(3):915-23.
- 181. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. Jama. 2015;313(13):1325-35.
- 182. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur Heart J. 2015;36(11):657-68.
- 183. Wang LL, H. Zhou, Y. Jin, L. Liu, J. Low-dose B vitamins supplementation ameliorates cardiovascular risk: a double-blind randomized controlled trial in healthy Chinese elderly. Eur J Nutr. 2015;54(3):455-64.
- 184. van Dijk SC, Enneman AW, Swart KM, van Wijngaarden JP, Ham AC, Brouwer-Brolsma EM, et al. Effects of 2-year vitamin B12 and folic acid supplementation in hyperhomocysteinemic elderly on arterial stiffness and cardiovascular outcomes within the B-PROOF trial. J Hypertens. 2015;33(9):1897-906; discussion 906.
- 185. Gupta A, Prabhakar S, Modi M, Bhadada SK, Kalaivani M, Lal V, et al. Effect of Vitamin D and calcium supplementation on ischaemic stroke outcome: a randomised controlled open-label trial. Int J Clin Pract. 2016;70(9):764-70.
- 186. Lappe J, Watson P, Travers-Gustafson D, Recker R, Garland C, Gorham E, et al. Effect of Vitamin D and Calcium Supplementation on Cancer Incidence in Older Women: A Randomized Clinical Trial. Jama. 2017;317(12):1234-43.
- 187. Brox J, Olaussen K, Osterud B, Elvevoll EO, Bjornstad E, Brattebog G, et al. A long-term seal- and cod-liver-oil supplementation in hypercholesterolemic subjects. Lipids. 2001;36(1):7-13.
- 188. Feagan BG, Sandborn WJ, Mittmann U, Bar-Meir S, D'Haens G, Bradette M, et al. Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC Randomized Controlled Trials. Jama. 2008;299(14):1690-7.
- 189. Nye ER, Ablett MB, Robertson MC, Ilsley CDJ, Sutherland WHF. Effect of eicosapentaenoic acid on restenosis rate, clinical course and blood lipids in patients after percutaneous transluminal coronary angioplasty. Australian and New Zealand Journal of Medicine. 1990;20(4):549-52.
- 190. Chen JS, Hill CL, Lester S, Ruediger CD, Battersby R, Jones G, et al. Supplementation with omega-3 fish oil has no effect on bone mineral density in adults with knee osteoarthritis: a 2-year randomized controlled trial. Osteoporos Int. 2016;27(5):1897-905.
- 191. Pasternak RC, Brown LE, Stone PH, Silverman DI, Gibson CM, Sacks FM. Effect of combination therapy with lipid-reducing drugs in patients with coronary heart disease and "normal" cholesterol levels. A randomized, placebo-controlled trial. Harvard Atherosclerosis Reversibility Project (HARP) Study Group. Ann Intern Med. 1996;125(7):529-40.
- 192. Nigam A, Talajic M, Roy D, Nattel S, Lambert J, Nozza A, et al. Fish oil for the reduction of atrial fibrillation recurrence, inflammation, and oxidative stress. J Am Coll Cardiol. 2014;64(14):1441-8.

- 193. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, et al. Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol. 2004;122(9):1297-305.
- 194. Garbagnati F, Cairella G, De Martino A, Multari M, Scognamiglio U, Venturiero V, et al. Is antioxidant and n-3 supplementation able to improve functional status in poststroke patients? Results from the Nutristroke Trial. Cerebrovasc Dis. 2009;27(4):375-83.
- 195. Zhang YP, Miao R, Li Q, Wu T, Ma F. Effects of DHA Supplementation on Hippocampal Volume and Cognitive Function in Older Adults with Mild Cognitive Impairment: A 12-Month Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis. 2017;55(2):497-507.
- 196. Bates D, Cartlidge NE, French JM, Jackson MJ, Nightingale S, Shaw DA, et al. A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1989;52(1):18-22.
- 197. Derosa G, Cicero AF, D'Angelo A, Borghi C, Maffioli P. Effects of n-3 pufas on fasting plasma glucose and insulin resistance in patients with impaired fasting glucose or impaired glucose tolerance. Biofactors. 2016;42(3):316-22.
- 198. Kumar S, Sutherland F, Stevenson I, Lee JM, Garg ML, Sparks PB. Effects of long-term omega-3 polyunsaturated fatty acid supplementation on paroxysmal atrial tachyarrhythmia burden in patients with implanted pacemakers: results from a prospective randomised study. Int J Cardiol. 2013;168(4):3812-7.
- 199. Baldassarre D, Amato M, Eligini S, Barbieri SS, Mussoni L, Frigerio B, et al. Effect of n-3 fatty acids on carotid atherosclerosis and haemostasis in patients with combined hyperlipoproteinemia: A double-blind pilot study in primary prevention. Annals of Medicine. 2006;38(5):367-75.
- 200. Tuttle KR, Shuler LA, Packard DP, Milton JE, Daratha KB, Bibus DM, et al. Comparison of low-fat versus Mediterranean-style dietary intervention after first myocardial infarction (from The Heart Institute of Spokane Diet Intervention and Evaluation Trial). Am J Cardiol. 2008;101(11):1523-30.
- 201. von Schacky C, Angerer P, Kothny W, Theisen K, Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;130(7):554-62.
- 202. Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer's disease. J Alzheimers Dis. 2014;38(1):111-20.
- 203. Tokudome S, Kuriki K, Yokoyama Y, Sasaki M, Joh T, Kamiya T, et al. Dietary n-3/long-chain n-3 polyunsaturated fatty acids for prevention of sporadic colorectal tumors: a randomized controlled trial in polypectomized participants. Prostaglandins Leukot Essent Fatty Acids. 2015;94:1-11.
- 204. Doi M, Nosaka K, Miyoshi T, Iwamoto M, Kajiya M, Okawa K, et al. Early eicosapentaenoic acid treatment after percutaneous coronary intervention reduces acute inflammatory responses and ventricular arrhythmias in patients with acute myocardial infarction: a randomized, controlled study. Int J Cardiol. 2014;176(3):577-82.
- 205. Souied EH, Delcourt C, Querques G, Bassols A, Merle B, Zourdani A, et al. Oral docosahexaenoic acid in the prevention of exudative age-related macular degeneration: the Nutritional AMD Treatment 2 study. Ophthalmology. 2013;120(8):1619-31.
- 206. Macchia A, Grancelli H, Varini S, Nul D, Laffaye N, Mariani J, et al. Omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: results of the FORWARD (Randomized Trial to Assess Efficacy of PUFA for the Maintenance of Sinus Rhythm in Persistent Atrial Fibrillation) trial. J Am Coll Cardiol. 2013;61(4):463-8.

- 207. Nodari S, Triggiani M, Campia U, Manerba A, Milesi G, Cesana BM, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2011;57(7):870-9.
- 208. Brouwer IA, Raitt MH, Dullemeijer C, Kraemer DF, Zock PL, Morris C, et al. Effect of fish oil on ventricular tachyarrhythmia in three studies in patients with implantable cardioverter defibrillators. Eur Heart J. 2009;30(7):820-6.
- 209. Mehmet Özaydın DE, Şenol Tayyar, Bayram Ali Uysal, Abdullah Doğan, Atilla İçli, Emel Özkan1,, Ercan Varol YT, Akif Arslan. N-3 polyunsaturated fatty acids administration does not reduce the recurrence rates of atrial fibrillation and inflammation after electrical cardioversion: a prospective randomized study. The Anatolian Journal of Cardiology; Istanbul. 2011;11(4):305-9.
- 210. Harrison RA, Elton PJ. Is there a role for long-chain omega3 or oil-rich fish in the treatment of atrial fibrillation? Med Hypotheses. 2005;64(1):59-63.
- 211. Eritsland J, Arnesen H, Gronseth K, Fjeld NB, Abdelnoor M. Effect of dietary supplementation with n-3 fatty acids on coronary artery bypass graft patency. Am J Cardiol. 1996;77(1):31-6.
- 212. Brouwer IA, Zock PL, Camm AJ, Bocker D, Hauer RN, Wever EF, et al. Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: the Study on Omega-3 Fatty Acids and Ventricular Arrhythmia (SOFA) randomized trial. Jama. 2006;295(22):2613-9.
- 213. Dangour AD, Allen E, Elbourne D, Fasey N, Fletcher AE, Hardy P, et al. Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr. 2010;91(6):1725-32.
- 214. Nilsen DW, Albrektsen G, Landmark K, Moen S, Aarsland T, Woie L. Effects of a high-dose concentrate of n-3 fatty acids or corn oil introduced early after an acute myocardial infarction on serum triacylglycerol and HDL cholesterol. Am J Clin Nutr. 2001;74(1):50-6.
- 215. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. Jama. 2010;304(17):1903-11.
- 216. Leaf A, Albert CM, Josephson M, Steinhaus D, Kluger J, Kang JX, et al. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation. 2005;112(18):2762-8.
- 217. Einvik G, Klemsdal TO, Sandvik L, Hjerkinn EM. A randomized clinical trial on n-3 polyunsaturated fatty acids supplementation and all-cause mortality in elderly men at high cardiovascular risk. Eur J Cardiovasc Prev Rehabil. 2010;17(5):588-92.
- 218. Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy M, Bordes S, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017;16(5):377-89.
- 219. Vesin C, Galan P, Gautier B, Czernichow S, Hercberg S, Blacher J. Control of baseline cardiovascular risk factors in the SU-FOL-OM3 study cohort: does the localization of the arterial event matter? Eur J Cardiovasc Prev Rehabil. 2010;17(5):541-8.
- 220. Galan P, Briancon S, Blacher J, Czernichow S, Hercberg S. The SU.FOL.OM3 Study: a secondary prevention trial testing the impact of supplementation with folate and B-vitamins and/or Omega-3 PUFA on fatal and non fatal cardiovascular events, design, methods and participants characteristics. Trials. 2008;9:35.
- 221. Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989;2(8666):757-61.

- 222. Geleijnse JM, Giltay EJ, Schouten EG, de Goede J, Oude Griep LM, Teitsma-Jansen AM, et al. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4,837 post-myocardial infarction patients: design and baseline characteristics of the Alpha Omega Trial. Am Heart J. 2010;159(4):539-46.e2.
- 223. Tatsuno I, Saito Y, Kudou K, Ootake J. Long-term safety and efficacy of TAK-085 in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized long-term (ORL) study. J Clin Lipidol. 2013;7(6):615-25.
- 224. Chew EY, Clemons TE, Sangiovanni JP, Danis RP, Ferris FL, 3rd, Elman MJ, et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmol. 2014;132(2):142-9.
- 225. Danthiir V, Burns NR, Nettelbeck T, Wilson C, Wittert G. The older people, omega-3, and cognitive health (EPOCH) trial design and methodology: a randomised, double-blind, controlled trial investigating the effect of long-chain omega-3 fatty acids on cognitive ageing and wellbeing in cognitively healthy older adults. Nutr J. 2011;10:117.
- 226. Danthiir V, Hosking D, Burns NR, Wilson C, Nettelbeck T, Calvaresi E, et al. Cognitive performance in older adults is inversely associated with fish consumption but not erythrocyte membrane n-3 fatty acids. J Nutr. 2014;144(3):311-20.
- 227. Proudman SM, James MJ, Spargo LD, Metcalf RG, Sullivan TR, Rischmueller M, et al. Fish oil in recent onset rheumatoid arthritis: a randomised, double-blind controlled trial within algorithm-based drug use. Ann Rheum Dis. 2015;74(1):89-95.
- 228. Proudman SM, Cleland LG, Metcalf RG, Sullivan TR, Spargo LD, James MJ. Plasma n-3 fatty acids and clinical outcomes in recent-onset rheumatoid arthritis. Br J Nutr. 2015;114(6):885-90.
- 229. Long-term effects of interventional

strategies to prevent cognitive decline in elderly (MAPTPLUS). NCT01513252.

- 230. Sanyal AJ, Abdelmalek MF, Suzuki A, Cummings OW, Chojkier M. No significant effects of ethyleicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology. 2014;147(2):377-84.e1.
- 231. Burr ML, Ashfield-Watt PA, Dunstan FD, Fehily AM, Breay P, Ashton T, et al. Lack of benefit of dietary advice to men with angina: results of a controlled trial. Eur J Clin Nutr. 2003;57(2):193-200.
- 232. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090-8.
- 233. Roncaglioni MC, Tombesi M, Avanzini F, Barlera S, Caimi V, Longoni P, et al. n-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368(19):1800-8.
- 234. Bosch J, Gerstein HC, Dagenais GR, Diaz R, Dyal L, Jung H, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309-18.
- 235. Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1223-30.
- 236. Bates D, Fawcett PR, Shaw DA, Weightman D. Polyunsaturated fatty acids in treatment of acute remitting multiple sclerosis. Br Med J. 1978;2(6149):1390-1.
- 237. Eussen SR, Geleijnse JM, Giltay EJ, Rompelberg CJ, Klungel OH, Kromhout D. Effects of n-3 fatty acids on major cardiovascular events in statin users and non-users with a history of myocardial infarction. Eur Heart J. 2012;33(13):1582-8.

- 238. Geleijnse JM, Giltay EJ, Kromhout D. Effects of n-3 fatty acids on cognitive decline: a randomized, double-blind, placebo-controlled trial in stable myocardial infarction patients. Alzheimers Dement. 2012;8(4):278-87.
- 239. Kromhout D, Giltay EJ, Geleijnse JM. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363(21):2015-26.
- 240. Rodriguez-Leyva D, Weighell W, Edel AL, LaVallee R, Dibrov E, Pinneker R, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013;62(6):1081-9.
- 241. Bemelmans WJ, Broer J, Feskens EJ, Smit AJ, Muskiet FA, Lefrandt JD, et al. Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study. Am J Clin Nutr. 2002;75(2):221-7.
- 242. Natvig H, Borchgrevink F, Dedichen J, Owren PA, Schiøtz EH, Westlund K. A Controlled Trial of the Effect of Linolenic Acid on Incidence of Coronary Heart Disease. Scandinavian Journal of Clinical and Laboratory Investigation. 1968;21(sup105):1-20.
- 243. Ros E. Effect of a 1-year walnut supplementation on blood lipids among older individuals: Findings from the walnuts and healthy aging (WAHA) study. FASEB Journal, The. 2016;30(1):293.
- 244. Black HS, Herd JA, Goldberg LH, Wolf JE, Jr., Thornby JI, Rosen T, et al. Effect of a low-fat diet on the incidence of actinic keratosis. N Engl J Med. 1994;330(18):1272-5.
- 245. McIllmurray MB, Turkie W. Controlled trial of gamma linolenic acid in Duke's C colorectal cancer. Br Med J (Clin Res Ed). 1987;294(6582):1260.
- 246. Controlled trial of soya-bean oil in myocardial infarction. Lancet. 1968;2(7570):693-9.
- 247. The National Diet-Heart Study Final Report. Circulation. 1968;37(3 Suppl):I1-428.
- 248. Rose GA, Thomson WB, Williams RT. CORN OIL IN TREATMENT OF ISCHAEMIC HEART DISEASE. Br Med J. 1965;1(5449):1531-3.
- 249. Woodhill JM, Palmer AJ, Leelarthaepin B, McGilchrist C, Blacket RB. Low fat, low cholesterol diet in secondary prevention of coronary heart disease. Adv Exp Med Biol. 1978;109:317-30.
- 250. Dayton S, Pearce ML. Prevention of coronary heart disease and other complications of arteriosclerosis by modified diet. Am J Med. 1969;46(5):751-62.
- 251. Vijayakumar M, Vasudevan DM, Sundaram KR, Krishnan S, Vaidyanathan K, Nandakumar S, et al. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease. Indian Heart J. 2016;68(4):498-506.
- 252. Keen H, Payan J, Allawi J, Walker J, Jamal GA, Weir AI, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care. 1993;16(1):8-15.
- 253. Houtsmuller AJ, Zahn KJ, Henkes HE. Unsaturated fats and progression of diabetic retinopathy. Doc Ophthalmol. 1980;48(2):363-71.
- 254. Moy TF, Yanek LR, Raqueño JV, Bezirdjian PJ, Blumenthal RS, Wilder LB, et al. Dietary Counseling for High Blood Cholesterol in Families at Risk of Coronary Disease. Preventive Cardiology. 2001;4(4):158-64.
- 255. Ley SJ, Metcalf PA, Scragg RK, Swinburn BA. Long-term effects of a reduced fat diet intervention on cardiovascular disease risk factors in individuals with glucose intolerance. Diabetes Res Clin Pract. 2004;63(2):103-12.
- 256. Leren P. The Oslo diet-heart study. Eleven-year report. Circulation. 1970;42(5):935-42.
- 257. Watts GF, Lewis B, Brunt JN, Lewis ES, Coltart DJ, Smith LD, et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas' Atherosclerosis Regression Study (STARS). Lancet. 1992;339(8793):563-9.

- 258. Howard BV, Van Horn L, Hsia J, Manson JE, Stefanick ML, Wassertheil-Smoller S, et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. Jama. 2006;295(6):655-66.
- 259. Chlebowski RT, Blackburn GL, Thomson CA, Nixon DW, Shapiro A, Hoy MK, et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women's Intervention Nutrition Study. J Natl Cancer Inst. 2006;98(24):1767-76.
- 260. Ball KP, et al. Low-fat diet in myocardial infarction. A controlled trial. Lancet. 1965;2:501-4.
- 261. MacLennan R, Macrae F, Bain C, Battistutta D, Chapuis P, Gratten H, et al. Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas. J Natl Cancer Inst. 1995;87(23):1760-6.
- 262. Hebert JR, Ebbeling CB, Olendzki BC, Hurley TG, Ma Y, Saal N, et al. Change in women's diet and body mass following intensive intervention for early-stage breast cancer. J Am Diet Assoc. 2001;101(4):421-31.
- 263. Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. Jama. 2003;289(16):2083-93.
- 264. Hjerkinn EM, Abdelnoor M, Breivik L, Bergengen L, Ellingsen I, Seljeflot I, et al. Effect of diet or very long chain omega-3 fatty acids on progression of atherosclerosis, evaluated by carotid plaques, intima-media thickness and by pulse wave propagation in elderly men with hypercholesterolaemia. Eur J Cardiovasc Prev Rehabil. 2006;13(3):325-33.
- 265. Pierce JP, Natarajan L, Caan BJ, Parker BA, Greenberg ER, Flatt SW, et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial. Jama. 2007;298(3):289-98.
- 266. Rose GA, Thomson WB, Williams RT. CORN OIL IN TREATMENT OF ISCHAEMIC HEART DISEASE. British medical journal. 1965;1(5449):1531-3.
- 267. Frantz ID, Jr., Dawson EA, Ashman PL, Gatewood LC, Bartsch GE, Kuba K, et al. Test of effect of lipid lowering by diet on cardiovascular risk. The Minnesota Coronary Survey. Arteriosclerosis. 1989;9(1):129-35.
- Chang HY, Hu YW, Yue CS, Wen YW, Yeh WT, Hsu LS, et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr. 2006;83(6):1289-96.
- 269. Salt substitution: a low-cost strategy for blood pressure control among rural Chinese. A randomized, controlled trial. J Hypertens. 2007;25(10):2011-8.
- 270. Kwok TC, Lam LC, Sea MM, Goggins W, Woo J. A randomized controlled trial of dietetic interventions to prevent cognitive decline in old age hostel residents. Eur J Clin Nutr. 2012;66(10):1135-40.
- 271. Morgan T, Adam W, Gillies A, Wilson M, Morgan G, Carney S. Hypertension treated by salt restriction. Lancet. 1978;1(8058):227-30.
- 272. Whelton PK, Appel LJ, Espeland MA, Applegate WB, Ettinger WH, Jr., Kostis JB, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). TONE Collaborative Research Group. Jama. 1998;279(11):839-46.
- 273. Shah M, Jeffery RW, Laing B, Savre SG, Van Natta M, Strickland D. Hypertension Prevention Trial (HPT): food pattern changes resulting from intervention on sodium, potassium, and energy intake. Hypertension Prevention Trial Research Group. J Am Diet Assoc. 1990;90(1):69-76.
- 274. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. Jama. 1992;267(9):1213-20.

- 275. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. The Trials of Hypertension Prevention Collaborative Research Group. Arch Intern Med. 1997;157(6):657-67.
- 276. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34.
- 277. Ng GW, Chan UM, Li PC, Wong WC. Can a Mediterranean diet reduce the effects of lipodystrophy syndrome in people living with HIV? A pilot randomised controlled trial. Sex Health. 2011;8(1):43-51.
- Singh RB, Dubnov G, Niaz MA, Ghosh S, Singh R, Rastogi SS, et al. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high risk patients (Indo-Mediterranean Diet Heart Study): a randomised single-blind trial. Lancet. 2002;360(9344):1455-61.
- 279. de Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, et al. Mediterranean alphalinolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454-9.
- 280. Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. Jama. 1987;257(23):3233-40.
- 281. Whitney EJ, Krasuski RA, Personius BE, Michalek JE, Maranian AM, Kolasa MW, et al. A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann Intern Med. 2005;142(2):95-104.
- 282. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N Engl J Med. 2018.
- 283. Scragg R, Stewart AW, Waayer D, Lawes CMM, Toop L, Sluyter J, et al. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study : A Randomized Clinical Trial. JAMA Cardiol. 2017;2(6):608-16.
- 284. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547-59.
- 285. Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008;372(9644):1174-83.
- 286. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N Engl J Med. 2018.
- 287. Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, et al. Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus. N Engl J Med. 2018;379(16):1540-50.

Effects of Nutritional Supplements and Dietary Interventions on Cardiovascular Outcomes

An Umbrella Review and Evidence Map

Safi U. Khan, MD; Muhammad U. Khan, MD; Haris Riaz, MD; Shahul Valavoor, MD; Di Zhao, PhD; Lauren Vaughan, MD; Victor Okunrintemi, MD, MPH; Irbaz Bin Riaz, MD, MS; Muhammad Shahzeb Khan, MD; Edo Kaluski, MD; M. Hassan Murad, MD; Michael J. Blaha, MD, MPH; Eliseo Guallar, MD, DrPH; and Erin D. Michos, MD, MHS

Background: The role of nutritional supplements and dietary interventions in preventing mortality and cardiovascular disease (CVD) outcomes is unclear.

Purpose: To examine evidence about the effects of nutritional supplements and dietary interventions on mortality and cardio-vascular outcomes in adults.

Data Sources: PubMed, CINAHL, and the Cochrane Library from inception until March 2019; ClinicalTrials.gov (10 March 2019); journal Web sites; and reference lists.

Study Selection: English-language, randomized controlled trials (RCTs) and meta-analyses of RCTs that assessed the effects of nutritional supplements or dietary interventions on all-cause mortality or cardiovascular outcomes, such as death, myocardial infarction, stroke, and coronary heart disease.

Data Extraction: Two independent investigators abstracted data, assessed the quality of evidence, and rated the certainty of evidence.

Data Synthesis: Nine systematic reviews and 4 new RCTs were selected that encompassed a total of 277 trials, 24 interventions, and 992 129 participants. A total of 105 meta-analyses were generated. There was moderate-certainty evidence that reduced salt intake decreased the risk for all-cause mortality in normotensive participants (risk ratio [RR], 0.90 [95% CI, 0.85 to 0.95]) and car-

diovascular mortality in hypertensive participants (RR, 0.67 [CI, 0.46 to 0.99]). Low-certainty evidence showed that omega-3 long-chain polyunsaturated fatty acid (LC-PUFA) was associated with reduced risk for myocardial infarction (RR, 0.92 [CI, 0.85 to 0.99]) and coronary heart disease (RR, 0.93 [CI, 0.89 to 0.98]). Folic acid was associated with lower risk for stroke (RR, 0.80 [CI, 0.67 to 0.96]; low certainty), whereas calcium plus vitamin D increased the risk for stroke (RR, 1.17 [CI, 1.05 to 1.30]; moderate certainty). Other nutritional supplements, such as vitamin B₆, vitamin A, multivitamins, antioxidants, and iron and dietary interventions, such as reduced fat intake, had no significant effect on mortality or cardiovascular disease outcomes (very low- to moderate-certainty evidence).

Limitations: Suboptimal quality and certainty of evidence.

Conclusion: Reduced salt intake, omega-3 LC-PUFA use, and folate supplementation could reduce risk for some cardiovascular outcomes in adults. Combined calcium plus vitamin D might increase risk for stroke.

Primary Funding Source: None.

Ann Intern Med. 2019;171:190-198. doi:10.7326/M19-0341Annals.orgFor author affiliations, see end of text.This article was published at Annals.org on 9 July 2019.

Current U.S. dietary guidelines recommend several healthy eating patterns, including U.S., Mediterranean, and vegetarian diets (1). Although the guidelines recognize the occasional need for nutritional supplementation or food fortification for specific nutrients that may be consumed in inadequate amounts, they do not recommend routine use of any dietary supplement to reduce risk for cardiovascular disease (CVD) or other chronic diseases. Despite these recommendations, most U.S. adults use supplements to enhance their diets, with uncertain health benefits (2, 3). From 1999 to 2012, the NHANES (National Health and Nutrition Examination Survey) reported that 52% of participants used at least 1 and 10% used at least 4 dietary supple-

ments (4). From 2011 to 2014, the NHANES reported that among participants aged 60 years or older, 70% used at least 1 and 29% used at least 4 supplements, and 41% of supplement takers reported that they did so to improve their overall health (5).

In 2013, the U.S. Preventive Services Task Force conducted a systematic review of the utility of vitamin and mineral supplements for CVD prevention and found little evidence to support use (6). More recently, Jenkins and colleagues published a meta-analysis of randomized controlled trials (RCTs) of dietary supplements published through October 2017 (7). They found some stroke benefit conferred by folate; no CVD benefit for multivitamins, vitamin C, vitamin D, or calcium; and evidence for mortality harm for niacin and antioxidants. Since then, several landmark RCTs evaluating the efficacy of fish oils (8-10) and vitamin D (11, 12) for CVD prevention have been published, which add to the evidence level. In addition, the quality of the evidence base of these various nutritional supplements and dietary interventions still needs to be evaluated to ascertain the confidence in their efficacy. Thus, we performed a systematic review of existing meta-analyses of RCTs and generated an evidence map for efficacy of nutritional supplements and dietary interventions for CVD prevention.

METHODS

Search Strategy

We used PubMed, CINAHL, and the Cochrane Library from inception to March 2019 to find meta-analyses published in the English language about vitamins, minerals, dietary supplements or products, and dietary interventions using the following search terms: (*minerals OR *vitamins OR *diet AND *cardiovascular outcomes) and (meta-analy* OR metaanaly* OR systematic review*). After selecting systematic reviews on the basis of a priori criteria, the search timelines of the systematic reviews were reviewed for recency and an updated search for RCTs published in English was performed starting from the end date of searches from selected systematic reviews until March 2019 (Supplement Table 1, available at Annals .org). Additional sources included Web sites of major cardiovascular and medicine journals (www.onlinejacc .org; https://academic.oup.com/eurheartj; www.ahajournals.org/journal/circ; www.nejm.org; https://jamanetwork .com; and http://annals.org/aim) and bibliographies of relevant studies. We also searched ClinicalTrials.gov (10 March 2019) to check for publication bias and to identify any new or ongoing trials (Supplement Table 2, available at Annals.org).

Study Selection

The prespecified inclusion criteria were metaanalyses of RCTs assessing efficacy of nutritional supplements (vitamins, minerals, dietary supplements) or dietary interventions in adult participants (≥18 years) that report effect estimates for all-cause mortality and cardiovascular outcomes of interest and were written in English. Because the nutritional and dietary recommendations are universal, there were no restrictions on baseline health status, race, or sex of the participants.

Meta-analyses of observational studies or those reporting efficacy of interventions on surrogate or other outcomes, such as blood pressure, lipid values, inflammatory markers, electrolytes, renal values, or quality-of-life indicators, were excluded. Systematic reviews reporting meta-analyses of both clinical trials and observational studies were reviewed for data related to RCTs only. In case of multiple meta-analyses of the same intervention and outcome, we preferred the most recent, largest, and updated meta-analysis. However, the competing metaanalyses were screened for any additional trials not included in the selected meta-analysis.

After removing duplicates and following the selection criteria, we screened the retrieved articles at the title and abstract level and then at the methods level. The search, selection, and abstraction processes were performed independently by 2 authors (M.U.K. and S.V.). Any discrepancies were resolved by discussion and mutual consensus, referring to the original study or third-party review (S.U.K.).

Data Extraction, Outcomes, and Quality Assessment

We first extracted information from eligible metaanalyses on first author, journal, year of publication, interventions, outcomes of interest, number of trials, whether an appropriate study search and selection criteria was reported, method of pooling estimates (fixed or random effects), methods of detecting publication bias, measure of heterogeneity, and risk-of-bias assessment. Second, we generated the pool of clinical trials by identifying trials contained in the selected meta-analyses and screening competing meta-analyses for additional trials and trials published after the selected meta-analyses (Supplement Table 3, available at Annals.org). Among new clinical trials for omega-3 long-chain polyunsaturated fatty acid (LC-PUFA) (8-10), we excluded REDUCE-IT (Reduction of Cardiovascular Events With EPA-Intervention Trial) (9) because icosapent ethyl, a highly purified form of eicosapentaenoic acid (EPA), does not qualify as a dietary supplement according to the Dietary Supplement Health and Education Act of 1994 (13). Third, after removing duplicates, we abstracted data on trial name, first author, year, intervention, outcomes, raw events, and sample sizes for each group.

The main outcome of interest was all-cause mortality. The secondary outcomes were cardiovascular mortality, myocardial infarction (MI), stroke, and coronary heart disease (CHD).

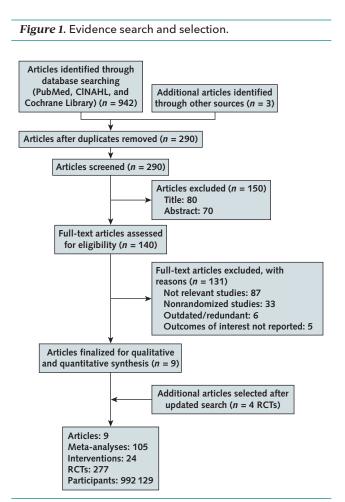
Two independent reviewers (V.O. and M.S.K.) assessed the methodological quality of meta-analyses on specific potential factors that may affect the validity of summary estimates—that is, appropriate search and selection criteria, number of trials and participants included, risk-of-bias assessment of included trials, method of pooling the estimates, assessment of publication bias, and degree of heterogeneity (**Supplement Table 4**, available at Annals.org).

Data Synthesis and Analysis

We created an evidence map that displays the plausible benefits of each intervention and the certainty of the evidence (14). The certainty of the evidence was evaluated using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach (GRADEpro GDT) (https://gdt.gradepro.org /app/) (14) and was classified as high, moderate, low, or very low (**Supplement Table 5**, available at Annals .org). Two reviewers (V.O. and M.S.K.) performed these assessments under the supervision of a third reviewer (S.U.K.).

Estimates were pooled according to Mantel-Haenszel random-effects model. The Paule-Mandel method was used for reestimating outcomes. Hartung-Knapp small-sample adjustments were applied when the number of studies was less than 10 (15). Effect sizes were reported as risk ratios (RRs) with 95% Cls. We used l^2 statistics to estimate the extent of unexplained heterogeneity; l^2 greater than 50% was considered a high degree of between-study heterogeneity. We calculated the Egger regression test as an estimate of publication bias for any reanalysis that included at least 10 studies (16).

Statistical analyses were conducted using "meta," version 4.9-4 (R Project for Statistical Computing). Statistical significance was set at 0.05 for all analyses except for the Egger regression test, which had a threshold less than 0.10 because of the test's limited statistical power.


Role of the Funding Source

The study received no funding.

Results

Search Results

Of 942 citations, after removing duplicates and screening at the title and abstract level we reviewed 140 full-text articles for eligibility. We excluded 131 articles because they focused on nonrandomized studies, were not relevant, or were outdated, as well as 5 systematic reviews that assessed intake of nuts (17), fruits and vegetables (18), fiber (19), and green or black tea (20) and those focusing on low-carbohydrate and low-fat diets (21) that did not report cardiovascular outcomes of interest. Ultimately, we included 9 systematic reviews and 4 new RCTs for a total of 105 meta-analyses of 24 interventions (277 RCTs, 992 129 partic-

RCT = randomized controlled trial.

ipants) (7, 22-29) (Figure 1). The interventions evaluated in the meta-analyses included 16 types of supplements (antioxidants, β -carotene, vitamin B complex, multivitamins, selenium, vitamin A, vitamin B₃ or niacin, vitamin B₆, vitamin C, vitamin E, vitamin D, calcium plus vitamin D, calcium, folic acid, iron, and omega-3 LC-PUFA) and 8 types of dietary interventions (Mediterranean diet and intake of reduced saturated fat, modified dietary fat, reduced dietary fat, reduced salt among hypertensive and normotensive participations, increased omega-3 α -linolenic acid [ALA], and increased omega-6 PUFA) (Supplement Table 6, available at Annals.org).

Quality Assessment

All included studies were trial-level meta-analyses (7, 22-28), except the study by Mente and colleagues, which was a patient-level analysis of 4 studies (29) (Supplement Table 4). All trial-level systematic reviews reported comprehensive search and selection criteria as well as quality assessment of studies by using the Cochrane Risk of Bias Tool (30). Six systematic reviews primarily used random-effects models for meta-analyses, of which 4 used fixed-effects models for sensitivity analyses. Two studies primarily used fixed-effects models, of which 1 selected a random-effects model only for estimates with an l^2 greater than 50%. Out of all trial-level analyses, only 2 did not assess publication bias, and 1 did not evaluate between-study variance because of the limited number of trials (<10). Eighty-one (77%) meta-analyses included fewer than 10 trials. Thirty-six (34%) meta-analyses included fewer than 84% double-blind RCTs; of these, 3 (2.8%) had a total sample of fewer than 1000 participants, 16 (15%) had I^2 greater than 50%, and 4 (3.8%) had significant publication bias.

All-Cause Mortality

All 24 interventions assessed the risk for all-cause mortality. Reduced salt intake in normotensive participants was found to reduce risk (RR, 0.90 [95% CI, 0.85 to 0.95]; P = 0.01; $l^2 = 0\%$; moderate certainty) (Figure 2). Other nutritional supplements or dietary interventions had no association with risk for this outcome. The Egger regression test was consistent with publication bias for omega-3 LC-PUFA (P = 0.09) and reduced saturated fat intake for all-cause mortality (P = 0.02) (Supplement Table 7, available at Annals.org).

Cardiovascular Mortality

Twenty-one interventions assessed the risk for cardiovascular mortality. Reduced salt intake in hypertensive participants reduced risk (RR, 0.67 [CI, 0.46 to 0.99]; P = 0.04; $l^2 = 0\%$; moderate certainty) (Figure 3). Other nutritional supplements or dietary interventions were not associated with risk for this outcome.

MI

Twenty-one interventions assessed risk for MI. Use of omega-3 LC-PUFA was associated with reduced risk (RR, 0.92 [CI, 0.85 to 0.99]; P = 0.03; $I^2 = 1\%$; low certainty) (**Supplement Figure 1**, available at Annals.org). Other nutritional supplements or dietary interventions

Intervention	Author, Year (Reference)	Studies, <i>n</i>	Events, <i>n</i>	Participants, <i>n</i>	Risk Ratio (95% Cl)	Risk Ratio (95% CI)
Nutritional supplements						
Vitamin E	Jenkins et al, 2018 (7)	32	8984	123 001	1.00 (0.97-1.03)	+
Vitamin C	Jenkins et al, 2018 (7)	4	1819	16 004	1.02 (0.94-1.11)	_
Vitamin B complex	Jenkins et al, 2018 (7)	16	6245	45 424	1.02 (0.97-1.07)	_ _
Vitamin B ₆	Jenkins et al, 2018 (7)	2	239	3429	1.02 (0.59-1.76)	I
Vitamin B ₂ /niacin	Jenkins et al, 2018 (7),	5	2694	33 246	1.04 (0.94-1.16)	++
5	and Riaz et al, 2019 (28)				
Vitamin A	Jenkins et al, 2018 (7)	1	48	2297	0.99 (0.56–1.72)	
Selenium	Jenkins et al, 2018 (7)	4	992	19 373	0.99 (0.89-1.10)	
Multivitamins	Jenkins et al, 2018 (7)	10	3633	22 869	0.95 (0.90-1.01)	-+-
Iron	Jenkins et al, 2018 (7)	2	35	762	0.79 (0.16-3.85)	< + + →
Folic acid	Jenkins et al, 2018 (7)	10	877	25 580	0.85 (0.65-1.10)	+
Calcium	Jenkins et al, 2018 (7)	6	1084	9765	1.08 (0.97-1.20)	- -
Calcium plus vitamin D	Jenkins et al, 2018 (7)	20	3690	42 072	0.95 (0.90-1.00)	-8-
β-Carotene	Jenkins et al, 2018 (7)	6	4284	42 342	1.03 (0.94-1.13)	-+
Antioxidants	Jenkins et al, 2018 (7)	21	8472	105 780	1.06 (0.99-1.12)	⊢ ∎-
Vitamin D	Khan et al, 2019*	45	6887	68 529	0.99 (0.96-1.02)	+
omega-3 LC-PUFA	Khan et al, 2019*	41	10707	134 034	0.98 (0.93-1.02)	
Dietary interventions						
Modified dietary fat	Hooper et al, 2011 (26)	8	1120	11 441	1.02 (0.83-1.25)	+
Reduced salt (normotensive)	Adler et al, 2014 (22)	3	79	3518	0.90 (0.85-0.95)	-+
Reduced salt (hypertensive)	Adler et al, 2014 (22)	5	674	3680	0.99 (0.92-1.07)	
Reduced saturated fat	Hooper et al, 2015 (27)	12	3276	55 858	0.97 (0.88-1.07)	
Mediterranean diet	Liyanage et al, 2016 (23)	5	693	10 671	0.81 (0.45-1.47)	<
Reduced dietary fat	Hooper et al, 2011 (26)	10	2936	58 130	0.97 (0.92-1.02)	-+
omega-6 PUFA	Hooper et al, 2018 (25)	10	740	4506	1.00 (0.88-1.13)	
omega-3 ALA PUFA	Abdelhamid et al, 2018 (2	4) 5	459	19 327	1.01 (0.82-1.23)	
-						
						0.5 0.7 0.9 1.0 1.2 1.5 2.

Figure 2. Effects of nutritional supplements and dietary interventions on all-cause mortality.

ALA = α -linolenic acid; LC-PUFA = long-chain polyunsaturated fatty acid.

* Updated meta-analysis after inclusion of new clinical trials.

had no association with risk for this outcome. The Egger regression test was consistent with publication bias for meta-analyses of vitamin E (P = 0.01) (**Supplement Table 7**).

Stroke

Twenty interventions assessed the risk for stroke. Folic acid was associated with lower risk (RR, 0.80 [Cl, 0.67 to 0.96]; P = 0.02; $I^2 = 0\%$; low certainty), whereas combined calcium plus vitamin D intake was associated with increased risk (RR, 1.17 [Cl, 1.05 to 1.30]; P = 0.01; $I^2 = 0\%$; moderate certainty) (**Supplement Figure 2**, available at Annals.org). Other nutritional supplements or dietary interventions had no association with risk for this outcome. The Egger regression test was consistent with publication bias for meta-analyses of vitamin E (P = 0.08) (**Supplement Table 7**).

CHD

Nineteen interventions assessed the risk for CHD. Use of omega-3 LC-PUFA was associated with reduced risk (RR, 0.93 [CI, 0.89 to 0.98]; P = 0.01; $I^2 = 2\%$; low certainty) (**Supplement Figure 3**, available at Annals .org). There was no association between other nutritional supplements or dietary interventions with risk for CHD.

Evidence Map

Figure 4 is an evidence map summarizing the findings for included interventions. There is a paucity of data assessing the effects of vitamin B_6 , vitamin A, mul-

Annals.org

tivitamins, iron, antioxidants, and reduced salt intake on certain cardiovascular end points. The map also shows the lack of significant effects on all-cause mortality and cardiovascular outcomes for most nutritional supplements, that the certainty of evidence varies from very low to low for most of the interventions, and that none of the interventions have high-quality evidence.

DISCUSSION

In this overview of 24 nutritional supplements and dietary interventions evaluating data from RCTs and meta-analyses of RCTs, we found some evidence that reduced salt intake was protective for all-cause mortality in normotensive participants and cardiovascular mortality in hypertensive participants, that omega-3 LC-PUFA was protective for MI and CHD, and folic acid was protective for stroke. Conversely, combined calcium plus vitamin D intake increased the risk for stroke. Other supplements, such as multivitamins, selenium, vitamin A, vitamin B₆, vitamin C, vitamin E, vitamin D alone, calcium alone, folic acid, and iron, or such dietary interventions as the Mediterranean diet, reduced saturated fat intake, modified fat intake, reduced dietary fat intake, and increased intake of omega-3 ALA or omega-6 PUFA, did not seem to have a significant effect on mortality or CVD outcomes (with very low- to moderate-certainty evidence).

Intervention	Author, Year (Reference)	Studies, n	Events, <i>n</i>	Participants, <i>n</i>	Risk Ratio (95% Cl)	Risk Ratio (95% Cl)
Nutritional supplements	((22.2.2.2.)	
Vitamin E	Jenkins et al, 2018 (7)	11	2887	102 533	0.95 (0.88–1.03)	_ + +
Vitamin C	Jenkins et al, 2018 (7)	2	646	15 497	1.07 (0.87–1.33)	
Vitamin B complex	Jenkins et al, 2018 (7)	5	2642	33 693	1.00 (0.79–1.26)	
Vitamin B ₃ /niacin	Jenkins et al, 2018 (7),	4	958	7677	0.95 (0.82-1.11)	+
5	and Riaz et al, 2019 (28)				
Selenium	Jenkins et al, 2018 (7)	3	346	18 851	0.92 (0.15–5.63)	<
Multivitamins	Jenkins et al, 2018 (7)	3	984	17 351	0.94 (0.74–1.19)	
Iron	Jenkins et al, 2018 (7)	2	31	760	0.80 (0.03->10.0)
Folic acid	Jenkins et al, 2018 (7)	5	188	22 468	0.89 (0.68–1.17)	
Calcium	Jenkins et al, 2018 (7)	2	47	2931	1.24 (0–>10.0)	← →
Calcium plus vitamin D	Jenkins et al, 2018 (7)	1	510	36282	0.99 (0.95–1.03)	-4-
β-Carotene	Jenkins et al, 2018 (7)	4	1191	33 668	1.10 (0.93–1.30)	
Antioxidants	Jenkins et al, 2018 (7)	7	2263	49729	1.02 (0.92–1.12)	i
Vitamin D	Khan et al, 2019*	4	544	34 894	1.00 (0.79–1.28)	
omega-3 LC-PUFA	Khan et al, 2019*	27	5270	109 123	0.93 (0.86–1.01)	
Dietary interventions						
Modified dietary fat	Hooper et al, 2011 (26)	6	593	10788	0.92 (0.68–1.25)	
Reduced salt (hypertensive)	Adler et al, 2014 (22)	3	106	2656	0.67 (0.46–0.99)	← →→
Reduced saturated fat	Hooper et al, 2015 (27)	12	1096	53 421	0.95 (0.78–1.15)	
Mediterranean diet	Liyanage et al, 2016 (23)	4	315	10 623	0.68 (0.21–2.19)	<
Reduced dietary fat	Hooper et al, 2011 (26)	7	602	52 971	0.96 (0.82–1.14)	
omega-6 PUFA	Hooper et al, 2018 (25)	7	472	4019	1.09 (0.68–1.75)	
omega-3 ALA PUFA	Abdelhamid et al, 2018 (2	4) 4	219	18 619	0.96 (0.80–1.15)	
						0.5 0.7 0.9 1.0 1.2 1.5 2.0

Figure 3. Effects of nutritional supplements and dietary interventions on cardiovascular mortality.

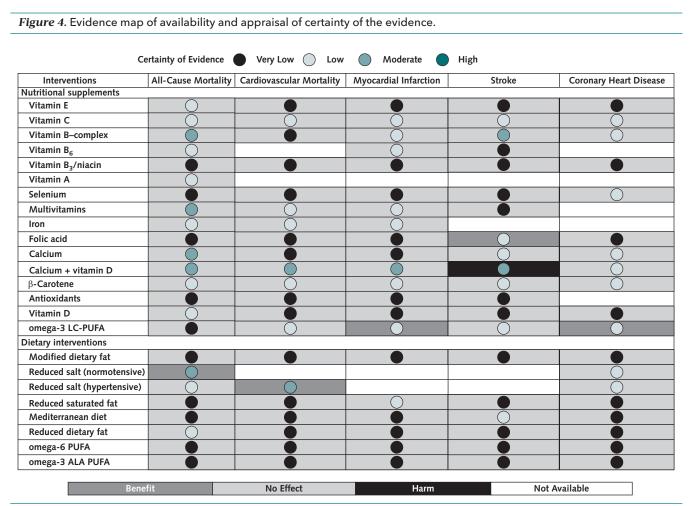
ALA = α -linolenic acid; LC-PUFA = long-chain polyunsaturated fatty acid.

* Updated meta-analysis after inclusion of new clinical trials.

The beneficial effects of reduced salt intake on mortality and CVD risk reduction remain a debatable issue. Although some data support lower salt intake to reduce CVD risk (31, 32), other studies have shown a U-shaped relationship between sodium intake and death (33-35). Recently, 2 studies explored the relationship between measures of sodium intake, estimated from urinary sodium excretion and death (29, 32). A patient-level study of 4 prospective studies (133 118 participants) concluded that reduced intake of sodium should be confined to hypertensive patients only who also consume high sodium (29). However, Cook and colleagues reported a higher risk for all-cause mortality with increased sodium intake in participants of the TOHP (Trials of Hypertension Prevention) and showed the benefit of reduced sodium intake on death during a period of 20 years (32).

The mechanism behind the benefit of reduced salt intake on death is most likely related to reduced blood pressure. Hypertension is a known risk factor for CVD, and scientific evidence exists of a direct relationship between dietary salt intake and blood pressure (36-38). A meta-analysis of 34 trials (3230 participants) showed that reduction in salt intake (an average of 4.4 g/d) was associated with reduced systolic and diastolic blood pressures in both hypertensive and normotensive patients, regardless of sex or ethnicity (36). This benefit can potentially translate into cardiovascular risk reduction. It was estimated that lowering salt intake to 6 g per day would be associated with a reduction in systolic blood pressure by about 7 mm Hg and a reduction in diastolic blood pressure by about 4 mm Hg in hypertensive patients and approximately 4 and 2 mm Hg, respectively, in normotensive patients; in turn, this could predict reduction in stroke rates by 24% and CHD by 18% (36, 39).

Clinical trials of omega-3 LC-PUFA have shown conflicting results regarding reduction of cardiovascular outcomes. However, recent randomized data have shown cardiovascular benefits (8-10). Although VITAL (Vitamin D and Omega-3 Trial) (8) and ASCEND (A Study of Cardiovascular Events iN Diabetes) (10) did not find convincing evidence of protective effects of omega-3 LC-PUFA for overall cardiovascular benefits (primary outcomes), VITAL did show a benefit of omega-3 LC-PUFA at 1 g per day for the reduction of MI, a secondary outcome (8). Moreover, VITAL showed a 19% reduction in major CVD outcomes among the subgroup of participants with low dietary fish intake (8).


Even more notable was the recent publication of the landmark REDUCE-IT, that found, compared with placebo, a remarkable 25% reduction in cardiovascular end points with the use of icosapent ethyl, a modified and highly purified form of EPA (9). This trial studied a much higher dose of EPA (4 g/d) than previous studies and included high-risk participants (those with known atherosclerotic CVD or diabetes mellitus and at least 1 additional vascular risk factor) who had controlled lowdensity lipoprotein cholesterol while receiving statin therapy but had elevated triglyceride levels (135 to 499 mg/dL) (9). As the cardiovascular risk reduction seen with icosapent ethyl exceeded the anticipated benefits from triglyceride reduction alone, other potential beneficial mechanisms, such as anti-inflammatory or anti-thrombotic effects, have been speculated. Icosapent ethyl is proprietary and is available only by prescription. It is unclear whether the effects observed in REDUCE-IT are specific for icosapent ethyl or reflect use of the higher dose of omega-3 LC-PUFA. The results should thus not be generalized to dietary supplement formulations of omega-3 LC-PUFA, which are unregulated and have variable composition (typically EPA plus docosahexaenoic acid).

Folate supplementation was associated with a lower risk for stroke, but this was largely driven by the results of the CSPPT (China Stroke Primary Prevention Trial), which evaluated the efficacy of folic acid therapy for primary prevention of stroke among hypertensive adults in China (40). This benefit might be due to the lack of folate fortification of foods in China (7), and whether these results can be generalized to a population, such as the United States, which has folate fortification, remains unclear.

On the other hand, we found that combined calcium plus vitamin D supplementation resulted in a higher

risk for stroke. In a reanalysis of the WHI CaD Study (Women's Health Initiative Calcium/Vitamin D Supplementation Study), risk for cardiovascular events, including stroke, was higher in women allocated to calcium plus vitamin D administration who were not taking personal calcium supplements (41). Potential biological explanations are hypercalcemia-mediated vascular calcifications, triggering of atherosclerosis, and hypercoagulability (42, 43). Of note, a recent observational analysis from NHANES found that use of calcium supplements was associated with an increased risk for death from cancer (2). Another analysis found an association with increased risk for MI (44). These findings, along with our findings from RCTs regarding stroke risk, raise concerns about harms from calcium supplement use. Regarding vitamin D alone (without calcium), despite new RCT data from the VITAL (11) and ViDA (Vitamin D Assessment Study) (12) trials, there was no evidence found for benefit or harm for vitamin D supplementation and CVD risk reduction.

Regarding multivitamins, our review was consistent with a previous meta-analysis (3) and supports the statements by the U.S. Preventive Services Task Force in 2014 regarding the lack of adequate evidence to support the benefit of multivitamin supplementation for CVD or death (6, 45). The lack of benefit of dietary sup-

ALA = α -linolenic acid; LC-PUFA = long-chain polyunsaturated fatty acid.

plements on death was also seen in a recent observational study from NHANES (2).

Regarding dietary recommendations from food sources, the American Heart Association (46) and the 2015 to 2020 U.S. dietary guidelines suggest limiting saturated fats and trans fats as a "key recommendation" for promoting a healthy lifestyle. The Mediterranean diet has been shown to be effective in reducing cardiovascular risk (23), but concerns have been raised regarding the methodological validity of some of the RCT studies. For instance, the Indo-Mediterranean study generated considerable controversy because of the lack of trained professionals required to run a trial of scientific validity (47). Similarly, the PREDIMED (Prevención con Dieta Mediterránea) (48) study was retracted and republished after errors in random assignment were found, although the conclusions were largely unchanged in the reanalysis. In our analysis, the Mediterranean diet, modified dietary fat, reduced dietary fat, reduced saturated fat intake, omega-6 PUFA, or omega-3 ALA PUFA did not reduce the risk for mortality or cardiovascular outcomes.

We compared our results with previous metaanalyses identified in our searches. Graudal and colleagues (274 683 patients) concluded that both low and high salt intake were associated with higher risk for all-cause mortality (35). However, their results were predominantly based on observational studies (23 cohort studies and 2 follow-up studies of RCTs). Conversely, Adler and colleagues showed little evidence for cardiovascular mortality reduction with lowered salt intake among hypertensive patients (RR, 0.67 [CI, 0.45 to 1.01]), which did not achieve statistical significance (22). We included the same clinical trials, but the discrepancy in results may be due to the different analytic approach used in the meta-analyses. Adler and colleagues used a fixed-effects model to analyze the results, whereas our meta-analysis was conducted using a more robust Paule-Mandel estimator with Hartung-Knapp adjustments (15). The same explanation applies to differences in results related to multivitamins and minerals from a recent meta-analysis by Jenkins and colleagues (7), except for folic acid, where we are in accord with Jenkins and colleagues' findings. Abdelhamid and colleagues suggested benefit of omega-3 LC-PUFA in reducing CHD risk (RR, 0.93 [CI, 0.88 to 0.97]) but found no statistically significant effect on MI (24). Another meta-analysis by Aung and colleagues (10 RCTs, 77 917 participants) showed that omega-3 LC-PUFA supplementation was not associated with prevention of fatal CHD or CVD events (49). Our analysis is updated with recent data through March 2019, which explains the difference in results for omega-3 LC-PUFA compared with earlier reviews (8, 10, 24, 49). Regarding the higher risk for stroke due to combined calcium plus vitamin D, our results are consistent with a previous meta-analysis (41).

Our study's strengths included using data only from RCTs and their meta-analyses, considering both dietary interventions and dietary supplements, and incorporating new trial data published in 2018 and 2019 after prior meta-analyses. The U.S. Department of Health and Human Services and the U.S. Department of Agriculture have been criticized for the paucity of sound scientific background behind their dietary recommendations (50). Similarly, the U.S. Preventive Services Task Force report has not been updated since 2014 (45). Our review provides a direct quantitative comparison of various nutritional and dietary interventions for cardiovascular outcomes. Because our generated evidence map is derived from RCTs, this report can assist to cover the "evidence-free zone" in this field (50).

Nevertheless, our findings need to be considered in the context of certain limitations. There are inherent limitations secondary to the shortcomings of included meta-analyses and RCTs (that is, heterogeneity of baseline characteristics of the participants, including age, sex, health and socioeconomic status, and interventions; lack of dose-response analyses; and variable duration of follow-up). Because the focus of our study was to provide broad-based evidence for various nutritional supplements and dietary interventions using existing meta-analyses and trial-level information, we could not analyze interventions according to important subgroups, such as sex, body mass index, lipid values, blood pressure thresholds, diabetes, and history of CVD. Various meta-analyses pooled a smaller number of trials, leading to the risk for small-study effects (51), and were limited by trials that were not double blind, lacked robust methods of pooling estimates, and had publication bias. Using the GRADE system, we found that the certainty of evidence was generally low or very low. Issues related to precision of the estimates, indirectness, quantitative and qualitative heterogeneity, and publication bias resulted in generally low-quality evidence.

In summary, this overview of the efficacy of nutritional supplements and dietary interventions on mortality and cardiovascular outcomes found evidence that supports reduced salt intake, omega-3 LC-PUFA intake, and folate supplementation for CVD risk reduction. Conversely, combined calcium plus vitamin D showed an increased risk for stroke. Other vitamins, minerals, dietary supplements, and dietary interventions were not associated with survival or cardiovascular benefits. Overall, these findings are limited by suboptimal quality of the evidence. This study can help those who create professional cardiovascular and dietary guidelines modify their recommendations, provide the evidence base for clinicians to discuss dietary supplements with their patients, and guide new studies to fulfill the evidence gap.

From West Virginia University, Morgantown, West Virginia (S.U.K., M.U.K., S.V.); Cleveland Clinic, Cleveland, Ohio (H.R.); Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (D.Z.); East Carolina University, Greenville, North Carolina (L.V., V.O.); Mayo Clinic, Rochester, Minnesota (I.B.R., M.H.M.); John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois (M.S.K.); Guthrie Robert Packer Hospital, Sayre, Pennsylvania (E.K.); Johns Hopkins School of Medicine, Baltimore, Maryland (M.J.B.); Johns Hopkins Bloomberg School of Public Health and Johns Hopkins School of Medicine, Baltimore, Maryland (E.G.); and Johns Hopkins School of Medicine and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (E.D.M.).

Financial Support: Drs. Zhao, Guallar, and Michos are funded by the Blumenthal Scholars Fund in Preventive Cardiology at Johns Hopkins University.

Disclosures: Dr. Blaha reports grants from the National Heart, Lung, and Blood Institute, the Food and Drug Administration, the American Heart Association, Amgen, and the Aetna Foundation and personal fees from the Food and Drug Administration, Amgen, Sanofi, Novartis, Novo Nordisk, and Bayer outside the submitted work. Authors not named here have disclosed no conflicts of interest. Disclosures can also be viewed at www.acponline.org/authors/icmje/ConflictOfInterest Forms.do?msNum=M19-0341.

Corresponding Author: Safi U. Khan, MD, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26505; e-mail, safinmc@gmail.com.

Current author addresses and author contributions are available at Annals.org.

References

1. DeSalvo KB, Olson R, Casavale KO. Dietary guidelines for Americans. JAMA. 2016;315:457-8. [PMID: 26746707] doi:10.1001/jama .2015.18396

2. Chen F, Du M, Blumberg JB, et al. Association among dietary supplement use, nutrient intake, and mortality among U.S. adults. A cohort study. Ann Intern Med. 2019. [PMID: 30959527] doi:10.7326 /M18-2478

3. Kim J, Choi J, Kwon SY, et al. Association of multivitamin and mineral supplementation and risk of cardiovascular disease: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2018;11:e004224. [PMID: 29991644] doi:10.1161/CIRCOUTCOMES .117.004224

4. Kantor ED, Rehm CD, Du M, et al. Trends in dietary supplement use among US adults from 1999-2012. JAMA. 2016;316:1464-74. [PMID: 27727382] doi:10.1001/jama.2016.14403

5. Gahche JJ, Bailey RL, Potischman N, et al. Dietary supplement use was very high among older adults in the United States in 2011-2014. J Nutr. 2017;147:1968-76. [PMID: 28855421] doi:10.3945/jn.117 .255984

6. Fortmann SP, Burda BU, Senger CA, et al. Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer. An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2013;159:824-34. [PMID: 24217421]

7. Jenkins DJA, Spence JD, Giovannucci EL, et al. Supplemental vitamins and minerals for CVD prevention and treatment. J Am Coll Cardiol. 2018;71:2570-84. [PMID: 29852980] doi:10.1016/j.jacc.2018 .04.020

8. Manson JE, Cook NR, Lee IM, et al; VITAL Research Group. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380:23-32. [PMID: 30415637] doi:10.1056 /NEJMoa1811403

9. Bhatt DL, Steg PG, Miller M, et al; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11-22. [PMID: 30415628] doi:10.1056 /NEJMoa1812792

10. Bowman L, Mafham M, Wallendszus K, et al; ASCEND Study Collaborative Group. Effects of n-3 fatty acid supplements in diabe-

tes mellitus. N Engl J Med. 2018;379:1540-50. [PMID: 30146932] doi:10.1056/NEJMoa1804989

11. Manson JE, Cook NR, Lee IM, et al; VITAL Research Group. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380:33-44. [PMID: 30415629] doi:10 .1056/NEJMoa1809944

12. Scragg R, Stewart AW, Waayer D, et al. Effect of monthly highdose vitamin D supplementation on cardiovascular disease in the Vitamin D Assessment Study: a randomized clinical trial. JAMA Cardiol. 2017;2:608-16. [PMID: 28384800] doi:10.1001/jamacardio .2017.0175

13. Dodge T, Litt D, Kaufman A. Influence of the Dietary Supplement Health and Education Act on consumer beliefs about the safety and effectiveness of dietary supplements. J Health Commun. 2011;16: 230-44. [PMID: 21120738] doi:10.1080/10810730.2010.529493

14. Farah WH, Alsawas M, Mainou M, et al. Non-pharmacological treatment of depression: a systematic review and evidence map. Evid Based Med. 2016;21:214-21. [PMID: 27836921] doi:10.1136 /ebmed-2016-110522

15. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in metaanalysis. Res Synth Methods. 2016;7:55-79. [PMID: 26332144] doi: 10.1002/jrsm.1164

16. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629-34. [PMID: 9310563]

17. Martin N, Germanò R, Hartley L, et al. Nut consumption for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2015:CD011583. [PMID: 26411417] doi:10.1002/14651858 .CD011583.pub2

18. Hartley L, Igbinedion E, Holmes J, et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst Rev. 2013:CD009874. [PMID: 23736950] doi:10.1002/14651858.CD009874.pub2

19. Hartley L, May MD, Loveman E, et al. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2016:CD011472. [PMID: 26758499] doi:10.1002 /14651858.CD011472.pub2

20. Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013:CD009934. [PMID: 23780706] doi:10.1002/14651858 .CD009934.pub2

21. Mansoor N, Vinknes KJ, Veierød MB, et al. Effects of lowcarbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2016;115:466-79. [PMID: 26768850] doi:10 .1017/S0007114515004699

22. Adler AJ, Taylor F, Martin N, et al. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014:CD009217. [PMID: 25519688] doi:10.1002/14651858 .CD009217.pub3

23. Liyanage T, Ninomiya T, Wang A, et al. Effects of the Mediterranean diet on cardiovascular outcomes: a systematic review and meta-analysis. PLoS One. 2016;11:e0159252. [PMID: 27509006] doi: 10.1371/journal.pone.0159252

24. Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11:CD003177. [PMID: 30521670] doi:10.1002/14651858.CD003177.pub4

25. Hooper L, Al-Khudairy L, Abdelhamid AS, et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD011094. [PMID: 30019765] doi:10.1002/14651858.CD011094.pub3

26. Hooper L, Summerbell CD, Thompson R, et al. Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database Syst Rev. 2011:CD002137. [PMID: 21735388] doi:10.1002 /14651858.CD002137.pub2

27. Hooper L, Martin N, Abdelhamid A, et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015:CD011737. [PMID: 26068959] doi:10 .1002/14651858.CD011737

28. **Riaz H, Khan SU, Rahman H, et al.** Effects of high-density lipoprotein targeting treatments on cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2019;26:533-43. [PMID: 30861690] doi:10.1177/2047487318816495

29. Mente A, O'Donnell M, Rangarajan S, et al; PURE, EPIDREAM and ONTARGET/TRANSCEND Investigators. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388:465-75. [PMID: 27216139] doi:10.1016/S0140 -6736(16)30467-6

30. **Higgins JP, Altman DG, Gøtzsche PC, et al; Cochrane Bias Methods Group.** The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. [PMID: 22008217] doi:10.1136/bmj.d5928

31. Cook NR, Appel LJ, Whelton PK. Lower levels of sodium intake and reduced cardiovascular risk. Circulation. 2014;129:981-9. [PMID: 24415713] doi:10.1161/CIRCULATIONAHA.113.006032

32. Cook NR, Appel LJ, Whelton PK. Sodium intake and all-cause mortality over 20 years in the Trials of Hypertension Prevention. J Am Coll Cardiol. 2016;68:1609-17. [PMID: 27712772] doi:10.1016/j.jacc .2016.07.745

33. O'Donnell M, Mente A, Rangarajan S, et al; PURE Investigators. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371:612-23. [PMID: 25119607] doi: 10.1056/NEJMoa1311889

34. Kalogeropoulos AP, Georgiopoulou VV, Murphy RA, et al. Dietary sodium content, mortality, and risk for cardiovascular events in older adults: the Health, Aging, and Body Composition (Health ABC) Study. JAMA Intern Med. 2015;175:410-9. [PMID: 25599120] doi:10 .1001/jamainternmed.2014.6278

35. Graudal N, Jürgens G, Baslund B, et al. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am J Hypertens. 2014;27:1129-37. [PMID: 24651634] doi:10.1093/ajh/hpu028

36. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. [PMID: 23558162] doi:10 .1136/bmj.f1325

37. Bray GA, Vollmer WM, Sacks FM, et al; DASH Collaborative Research Group. A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium Trial. Am J Cardiol. 2004;94:222-7. [PMID: 15246908] 38. He FJ, Markandu ND, Sagnella GA, et al. Importance of the renin system in determining blood pressure fall with salt restriction in black and white hypertensives. Hypertension. 1998;32:820-4. [PMID: 9822438]

39. **He FJ**, **MacGregor GA**. How far should salt intake be reduced? Hypertension. 2003;42:1093-9. [PMID: 14610100]

40. Huo Y, Li J, Qin X, et al; CSPPT Investigators. Efficacy of folic acid therapy in primary prevention of stroke among adults with hyperten-

sion in China: the CSPPT randomized clinical trial. JAMA. 2015;313: 1325-35. [PMID: 25771069] doi:10.1001/jama.2015.2274

41. Bolland MJ, Grey A, Avenell A, et al. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and metaanalysis. BMJ. 2011;342:d2040. [PMID: 21505219] doi:10.1136/bmj .d2040

42. Chin K, Appel LJ, Michos ED. Vitamin D, calcium, and cardiovascular disease: A"D"vantageous or "D"etrimental? An era of uncertainty. Curr Atheroscler Rep. 2017;19:5. [PMID: 28127710] doi:10 .1007/s11883-017-0637-2

43. Anderson JJ, Kruszka B, Delaney JA, et al. Calcium intake from diet and supplements and the risk of coronary artery calcification and its progression among older adults: 10-year follow-up of the multi-ethnic study of atherosclerosis (MESA). J Am Heart Assoc. 2016;5. [PMID: 27729333]

44. Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691. [PMID: 20671013] doi:10 .1136/bmj.c3691

45. Moyer VA; U.S. Preventive Services Task Force. Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer. U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160:558-64. [PMID: 24566474] doi:10.7326/M14-0198

46. Lichtenstein AH, Appel LJ, Brands M, et al; American Heart Association Nutrition Committee. Diet and Lifestyle Recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82-96. [PMID: 16785338]

47. Singh RB, Dubnov G, Niaz MA, et al. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high risk patients (Indo-Mediterranean Diet Heart Study): a randomised single-blind trial. Lancet. 2002;360:1455-61. [PMID: 12433513]

48. Estruch R, Ros E, Salas-Salvadó J, et al; PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378:e34. [PMID: 29897866] doi:10.1056 /NEJMoa1800389

49. Aung T, Halsey J, Kromhout D, et al; Omega-3 Treatment Trialists' Collaboration. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018;3:225-34. [PMID: 29387889] doi:10.1001/jamacardio.2017.5205

50. **Nissen SE.** U.S. dietary guidelines. An evidence-free zone. Ann Intern Med. 2016;164:558-9. [PMID: 26783992] doi:10.7326/M16 -0035

51. Schwarzer G, Carpenter JR, Rücker G. Small-study effects in meta-analysis. In: Schwarzer G, Carpenter JR, Rücker G, eds. Meta-Analysis with R. Cham, Switzerland: Springer Publishing; 2015: 107-41.

Current Author Addresses: Drs. S.U. Khan, M.U. Khan, and Valavoor: West Virginia University, One Medical Center Drive, Morgantown, WV 26508.

Dr. H. Riaz: Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195.

Drs. Zhao and Guallar: Johns Hopkins Bloomberg School of Public Health, Welch Center, 2024 East Monument Street, Suite 2600, Baltimore, MD 21205.

Drs. Vaughan and Okunrintemi: East Carolina University, 2100 Stantonsburg Road, Greenville, NC 27834.

Drs. I.B. Riaz and Murad: Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55901.

Dr. M.S. Khan: 903 South Ashland Avenue, Apt 1206, Chicago, IL 60607.

Dr. Kaluski: Guthrie Robert Packer Hospital, One Guthrie Square, Sayre, PA 18840.

Dr. Blaha: Johns Hopkins School of Medicine, 600 North Wolfe Street, Blalock 524-D1, Baltimore, MD 21287.

Dr. Michos: Johns Hopkins School of Medicine, 600 North Wolfe Street, Blalock 524-B, Baltimore, MD 21287.

Author Contributions: Conception and design: S.U. Khan.

Analysis and interpretation of the data: S.U. Khan, D. Zhao, E. Guallar, E.D. Michos.

Drafting of the article: S.U. Khan, H. Riaz, L. Vaughan, V. Okunrintemi, E. Guallar, E.D. Michos.

Critical revision of the article for important intellectual content: S.U. Khan, I.B. Riaz, M.S. Khan, M.H. Murad, M.J. Blaha, E. Guallar, E.D. Michos.

Final approval of the article: S.U. Khan, M.U. Khan, H. Riaz, S. Valavoor, D. Zhao, L. Vaughan, V. Okunrintemi, I.B. Riaz, M.S. Khan, E. Kaluski, M.H. Murad, M.J. Blaha, E. Guallar, E.D. Michos.

Provision of study materials or patients: S.U. Khan, M.U. Khan, S. Valavoor.

Statistical expertise: S.U. Khan, M.H. Murad, D. Zhao, E. Guallar, E.D. Michos.

Administrative, technical, or logistic support: E.D. Michos.

Collection and assembly of data: S.U. Khan, M.U. Khan, S. Valavoor.