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APPENDIX A: PROOF OF THEOREM 1: STRONG

UNIFORM CONSISTENCY OF THE PROPOSED ES-

TIMATORS

We assume the number of cases n1 and total number of subjects n satisfy n1/n → π0 as
n→ ∞, where 0 < π0 < 1. In addition we assume the following regularity conditions:

A1. The time t is in a range of [0, τ ] for a constant τ > 0 such that the density of failure
time fT (t), the density of censoring time fC(t) and their survival functions, ST (t) and
SC(t) all take positive real values on [0, τ ].

A2. The density of failure time fT (t) and the density of censoring time fC(t) are both
continuous, uniformly bounded, and have second derivatives on [0, τ ].

A3. Random censoring: the censoring time C is independent of the failure time T , expo-
sure Z and confounder U for t ∈ [0, τ ].

A4. The bandwidth satisfies h = ndh0 for constants −1/2 < d < −1/5 and h0 > 0.

A5. The kernel function K(·) has bounded variation and satisfies the following conditions,

∫∞
−∞K(u)du = 1,

∫ ∞

−∞
K2(u)du <∞,

∫∞
−∞ uK(u)du = 0,

∫ ∞

−∞
u2K(u)du <∞.

A6. Z and U are bounded almost surely and have uniformly bounded total variation on
[0, τ ].
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Consider n subjects in a case-control study. Let Xi, ∆i, Zi and Ui be the observed
time, the censoring indicator, the exposure and confounders, respectively, for i = 1, ..., n.
We define the following notation.

An(t;βββ) =
1

n

n∑
i=1

∆iKh(t−Xi){1− exp(−βββTZi)},

Bn(t) =
1

n

n∑
i=1

∆iKh(t−Xi),

Cn(t) =
1

n

n∑
i=1

∆iKh(t−Xi){exp(−βββT
0 Zi)− exp(−β̂ββ

T
Zi)},

Dn(t;βββ) =
1

n

n∑
i=1

∆iKh(t−Xi)Zi exp(−βββTZi),

An(t;βββ,γγγ) =
1

n

n∑
i=1

(1−∆i)Kh(t−Xi) exp(βββ
TZi + γγγTUi),

Bn(t) =
1

n

n∑
i=1

(1−∆i)Kh(t−Xi),

Cn(t) =
1

n

n∑
i=1

(1−∆i)Kh(t−Xi){exp(β̂ββ
T
Zi + γ̂γγTUi)− exp(βββT

0 Zi + γγγT0 Ui)},

Dn(t;θθθ) =
1

n

n∑
i=1

(1−∆i)Kh(t−Xi)Vi exp(θθθ
TVi),

En(t;γγγ) =
1

n

n∑
i=1

(1−∆i)Kh(t−Xi) exp(γγγ
TUi),

F n(t) =
1

n

n∑
i=1

(1−∆i)Kh(t−Xi){exp(γ̂γγTUi)− exp(γγγT0 Ui)},

Gn(t;γγγ) =
1

n

n∑
i=1

(1−∆i)Kh(t−Xi)Ui exp(γγγ
TUi).

We use P0 and E0 to denote the probability and expectation with respect to the target
population from which cases and controls are sampled. It is also useful to regard cases
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and controls as members of a second, hypothetical population of individuals whose disease
probability is given by π0 (Zhao et al. 2017). We use P ∗ and E∗ to denote the probability
and expectation with respect to this hypothetical population. Let p0 = P0(T ≤ C),
π0 = P ∗(T ≤ C). Then the limits of An(t;βββ), Bn(t), Dn(t;θθθ), An(t;βββ,γγγ), Bn(t), Dn(t;βββ,γγγ),
En(t;γγγ) and Gn(t;γγγ) are denoted by

A(t) = ϕadj(t)fT (t)SC(t)π0/p0,

B(t) = fT (t)SC(t)π0/p0,

D(t;βββ) =
{∫

Z
z exp(−βββTz)dFZ|T (z|t)

}
fT (t)SC(t)π0/p0,

A(t) = ψ(t)fC(t)ST (t)(1− π0)/(1− p0),

B(t) = fC(t)ST (t)(1− π0)/(1− p0),

D(t;θθθ) =
{∫

V
v exp(θθθTv)dFV|T≥t(v)

}
fC(t)ST (t)(1− π0)/(1− p0),

E(t) = υ(t)fC(t)ST (t)(1− π0)/(1− p0),

G(t;γγγ) =
{∫

U
u exp(−γγγTu)dFU|T (u|t)

}
fC(t)ST (t)(1− π0)/(1− p0).

We first present the following lemmas before proving Theorem 1.

Lemma 1.1. Suppose assumptions A1-A6 are satisfied. Then,

supt∈[0,τ ]

∣∣∣φ̂(t; β̂ββ)− φ(t)
∣∣∣ → 0 a.s.

supt∈[0,τ ] |υ̂(t; γ̂γγ)− υ(t)| → 0 a.s.

as n→ ∞.

Proof. The uniform consistency of Bn(t) has been shown in Lemma 1.1 in Zhao et al.
(2017). Hence as argued in Lemma 1.2 in Zhao et al. (2017), it suffices to show the con-
sistency of the numerator An(t; β̂ββ). To simplify the notation, unless otherwise specified,
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the integration with respect to x is from 0 to ∞, integration with respect to z is on its
support Z and integration with respect to u is on its support U through out the proofs in
this article.
Note that An(t; β̂ββ) = An(t;βββ0)− Cn(t). The first term has expectation

E∗{An(t;βββ0)} = E∗{∆Kh(t−X) exp(−βββT
0 Z)}

= E∗{Kh(t− T ) exp(−βββT
0 Z)|T ≤ C}P ∗(T ≤ C)

=
π0
h

∫ ∫
exp(−βββT

0 z)K
(
t− x

h

)
fT,Z|T≤C(x, z)dxdz

=
π0
h

∫ ∫
exp(−βββT

0 z)K
(
t− x

h

)
fT |Z(x|z)SC(x)fZ(z)

P (T ≤ C)
dxdz

=
1

h

∫
K

(
t− x

h

)
fT (x)SC(x)π0/p0

∫
exp(−βββT

0 z)fZ|T (z|x)dzdx,

=
1

h

∫
K

(
t− x

h

)
A(x)dx.

Using the same arguments as in Lemma 1.1 and 1.2 in Zhao et al. (2017), we can conclude
that

sup
t∈[0,τ ]

|An(t;βββ0)− A(t)| → 0 a.s. (A.1)

as n→ 0, given K(.) has bounded variation, and Z is bounded almost surely.
By using Taylor’s expansion, the second term Cn(t) can written as

Cn(t) =
1

n

n∑
i=1

{exp(−βββT
0 Zi)− exp(−β̂ββ

T
Zi)}∆iKh(t−Xi)

= (β̂ββ − βββ0)
TDn(t;βββ0) + op(1).

Consistency of Dn(t;βββ) can be established similarly as in the proof of Lemma 1.3 in Zhao
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et al. (2017), by noticing that

E∗{Dn(t;βββ)} = E∗{Zi exp(−βββTZi)∆iKh(t−Xi)}

= E∗{Zi exp(−βββTZi)Kh(t−Xi)|T ≤ C}P ∗(T ≤ C)

=
π0
h

∫ ∫
{z exp(−βββTz)}K

(
t− x

h

)
fT,Z|T≤C(x, z)dxdz

=
1

h

∫
K

(
t− x

h

)
D(x;βββ)dx,

D(t;βββ) is continuous for t, and Z is bounded almost surely. By the strong consistency of
β̂ββ and the continuous mapping theorem, we have

sup
t∈[0,τ ]

|Cn(t)| → 0 a.s. (A.2)

as n→ 0. Putting (A.1) and (A.2) together, we conclude that

sup
t∈[0,τ ]

∣∣∣An(t; β̂ββ)− A(t)
∣∣∣ → 0 a.s.

as n→ 0.

Similarly, by replacing θθθ and Vi with γγγ and Ui respectively, we can prove supt∈[0,τ ] |υ̂(t; γ̂γγ)− υ(t)| →

0 a.s.. Lemma 1.1 is proved.

Lemma 1.2. Suppose assumptions A1-A6 are satisfied. Then,

sup
t∈[0,τ ]

∣∣∣ψ̂(t; β̂ββ, γ̂γγ)− ψ(t)
∣∣∣ → 0 a.s.

as n→ ∞.

Proof. Uniform consistency of Bn(t) can be shown following the similar argument of
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proving the uniform consistency of Bn(t), so it suffices to show the consistency of the
numerator An(t; β̂ββ, γ̂γγ). Note that An(t; β̂ββ, γ̂γγ) = An(t;βββ0, γγγ0) + Cn(t). The expectation of
An(t;βββ0, γγγ0) equals

E∗{An(t;βββ0, γγγ0)} = E∗{(1−∆)Kh(t−X) exp(βββT
0 Z + γγγT0 U)}

= E∗{Kh(t− T ) exp(βββT
0 Z + γγγT0 U)|C ≤ T}P ∗(C ≤ T )

=
1− π0
h

∫ ∫ ∫
exp(βββT

0 z + γγγT0 u)K
(
t− x

h

)
fC,Z,U|C≤T (x, z,u)dxdzdu

=
1− π0
1− p0

1

h

∫ ∫ ∫
exp(βββT

0 z + γγγT0 u)K
(
t− x

h

)
fC(x)ST (x)fZ,U(z,u)

P (T ≤ C)
dxdzdu

=
1

h

∫
K

(
t− x

h

)
A(x)dx.

Using the same arguments as in Lemma 1.1 and 1.2 in Zhao et al. (2017), we conclude that

sup
t∈[0,τ ]

∣∣An(t;βββ0, γγγ0)− A(t)
∣∣ → 0 a.s. (A.3)

as n→ 0, given K(.) has bounded variation, and Z and U are both bounded almost surely.
By using Taylor’s expansion, the second term Cn(t) can written as

Cn(t) =
1

n

n∑
i=1

{exp(θ̂θθ
T
Vi)− exp(θθθT0 Vi)}(1−∆i)Kh(t−Xi)

= (θ̂θθ − θθθ0)
TDn(t;θθθ0) + op(1).

The consistency of Dn(t;θθθ) can be established similarly as in the proof of Lemma 1.1, and
by the strong consistency of θ̂θθ and the continuous mapping theorem, we conclude that

sup
t∈[0,τ ]

∣∣Cn(t)
∣∣ → 0 a.s. (A.4)

as n→ 0. Putting (A.3) and (A.4) together, we conclude that

sup
t∈[0,τ ]

∣∣∣An(t; β̂ββ, γ̂γγ)− A(t)
∣∣∣ → 0 a.s.
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as n→ 0. Lemma 1.2 is proved.

Proof of Theorem 1. By applying Lemma 1.1 and Lemma 1.2, and using the con-
tinuous mapping theorem, we conclude that ϕ̂adj+(t; β̂ββ) and ϕ̂adj−(t; β̂ββ, γ̂γγ) are consistent for
ϕadj(t) uniformly on t ∈ [0, τ ]. As a weighted sum of ϕ̂adj+(t; β̂ββ) and ϕ̂adj−(t; β̂ββ, γ̂γγ) with fixed
weights, it is easy to prove ϕ̂adjw(t; β̂ββ, γ̂γγ) is uniformly consistent for ϕadj(t) on t ∈ [0, τ ].
Theorem 1 is proved.

APPENDIX B: PROOF OF THEOREM 2: ASYMP-

TOTIC NORMALITY OF THE PROPOSED ESTI-

MATORS

Proof. Let t ∈ [0, τ ]. The asymptotic normality of
√
nh{ϕ̂adj+(t; β̂ββ) − ϕadj(t)} can be

obtained using the same argument as in the proof of Theorem 2 in Zhao et al. (2017).
Specifically, we have

√
nh{ϕ̂adj+(t; β̂ββ)− ϕadj(t)} =

√
nh{ϕ̂adj+(t; β̂ββ)− ϕ̂adj+(t;βββ0)}+

√
nh{ϕ̂adj+(t;βββ0)− ϕadj(t)}

where the first part vanishes and the second part converges to a normal distribution as
n→ 0.
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Now we prove the asymptotic normality of ϕ̂adj−(t; β̂ββ, γ̂γγ). Write

√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ)− ϕadj(t)} = −

√
nh{ψ̂−1(t; β̂ββ, γ̂γγ)υ̂(t; γ̂γγ)− ψ−1(t)υ(t)}

= −
√
nh

{
En(t; γ̂γγ)

An(t; β̂ββ, γ̂γγ)
− ψ−1(t)υ(t)

}

= −
√
nh

{
En(t; γ̂γγ)− ψ−1(t)υ(t)An(t; β̂ββ, γ̂γγ)

An(t; β̂ββ, γ̂γγ)

}
.

The consistency of An(t; β̂ββ, γ̂γγ) has been shown in the proof of Lemma 1.2, so it suffices to
study the asymptotic normality of

√
nh{En(t; γ̂γγ)−ψ−1(t)υ(t)An(t; β̂ββ, γ̂γγ)}. Using the results

in the previous proofs, we note that

√
nh{En(t; γ̂γγ)− ψ−1(t)υ(t)An(t; β̂ββ, γ̂γγ)}

=
√
nh{En(t;γγγ0)− ψ−1(t)υ(t)An(t;βββ0, γγγ0)}+

√
nh{F n(t)− ψ−1(t)υ(t)Cn(t)}

=
√
nh{En(t;γγγ0)− ψ−1(t)υ(t)An(t;βββ0, γγγ0)}+ op(1),

so the asymptotic normality of
√
nh{En(t; γ̂γγ) − ψ−1(t)υ(t)An(t; β̂ββ, γ̂γγ)} only depends on

√
nh{En(t;γγγ0)− ψ−1(t)υ(t)An(t;βββ0, γγγ0)}. Let

en,i(t) =

√
h

n
{exp(γγγT0 Ui)− ψ−1(t)υ(t) exp(βββT

0 Zi + γγγ0Ui)}(1−∆i)Kh(t−Xi),

so that
√
nh{En(t;γγγ0) − ψ−1(t)υ(t)An(t;βββ0, γγγ0)} =

∑n
i=1 en,i(t). We will set forth the

Lyapunov’ conditions. Let g(u, z; t) = exp(γγγT0 u) − ψ−1(t)υ(t) exp(βββT
0 z + γγγT0 u). Then we
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have

E∗{en,i(t)} =

√
h

n
E∗ [{exp(γγγT0 U)− ψ−1(t)υ(t) exp(βββT

0 Z + γγγT0 U)}(1−∆)Kh(t−X)
]

=
1− π0√
nh

∫ ∫ ∫
g(u, z; t)K

(
t− x

h

)
fC,Z,U|C≤T (x, z,u)dxdzdu

=
1− π0√
nh(1− p0)

∫ ∫ ∫
g(u, z; t)K

(
t− x

h

)
fC(x)ST |Z,U(x|z,u)fZ,U(z,u)dxdzdu

=
1− π0
1− p0

√
h

n

∫ ∫ ∫
g(u, z; t)K(y)fC(t− yh)ST |Z,U(t− yh|z,u)fZ,U(z,u)dydzdu

by letting y =
t− x

h
,

=
1− π0
1− p0

√
h

n

{∫ ∫
g(u, z; t)fC(t)ST |Z,U(t|z,u)fZ,U(z,u)dzdu +O(h2)

}
by the Taylor′s expansion,

=
1− π0
1− p0

√
h

n
O(h2) = O(

√
h5/n).

The last step comes from the fact that∫ ∫
g(u, z; t)fC(t)ST |Z,U(t|z,u)fZ,U(z,u)dzdu

=

∫ ∫
{exp(γγγT0 u)− ψ−1(t)υ(t) exp(βββT

0 z + γγγT0 u)}fC(t)ST |Z,U(t|z,u)fZ,U(z,u)dzdu

= fC(t)ST (t)

∫ ∫
{exp(γγγT0 u)− ψ−1(t)υ(t) exp(βββT

0 z + γγγT0 u)}fZ,U|T≥t(z,u)dzdu

= fC(t)ST (t){υ(t)− ψ−1(t)υ(t) · ψ(t)} = 0.
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Similarly, we have

E∗{e2n,i(t)} =
h

n
E∗ [{exp(γγγT0 U)− ψ−1(t)υ(t) exp(βββT

0 Z + γγγT0 U)}2(1−∆)2K2
h(t−X)

]
=

1− π0
nh

∫ ∫ ∫
g2(u, z; t)K2

(
t− x

h

)
fC,Z,U|C≤T (x, z,u)dxdzdu

=
1− π0

nh(1− p0)

∫ ∫ ∫
g2(u, z; t)K2

(
t− x

h

)
fC(x)ST |Z,U(x|z,u)fZ,U(z,u)dxdzdu

=
1− π0

n(1− p0)

∫ ∫ ∫
g2(u, z; t)K2(y)fC(t− yh)ST |Z,U(t− yh|z,u)fZ,U(z,u)dydzdu

by letting y =
t− x

h
,

=
1− π0

n(1− p0)

{∫ ∫
g2(u, z; t)fC(t)ST |Z,U(t|z,u)fZ,U(z,u)dzdu

∫
K2(y)dy +O(h)

}
by the Taylor′s expansion,

and

E∗{e3n,i(t)} =

(
h

n

)3/2

E∗ [{exp(γγγT0 U)− ψ−1(t)υ(t) exp(βββT
0 Z + γγγT0 U)}3(1−∆)3K3

h(t−X)
]

=
1− π0
1− p0

(
1

nh
)3/2

∫ ∫ ∫
g3(u, z; t)K3

(
t− x

h

)
fC,Z,U|C≤T (x, z,u)dxdzdu

=
1− π0
1− p0

(
1

nh
)3/2

∫ ∫ ∫
g3(u, z; t)K3

(
t− x

h

)
fC(x)ST |Z,U(x|z,u)fZ,U(z,u)dxdzdu

=
1− π0

n
√
nh(1− p0)

∫ ∫ ∫
g3(u, z; t)K3(y)fC(t− yh)ST |Z,U(t− yh|z,u)fZ,U(z,u)dydzdu

by letting y =
t− x

h
,

=
1− π0

n
√
nh(1− p0)

{∫ ∫
g3(u, z; t)fC(t)ST |Z,U(t|z,u)fZ,U(z,u)dzdu

∫
K3(y)dy +O(h)

}
by the Taylor′s expansion.
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Given that
n∑

i=1

E∗{en,i(t)− E∗en,i(t)}3 = nE∗{en,i(t)3} − 3nE∗{en,i(t)2}E∗{en,i(t)}+ 2n [E∗{en,i(t)}]3

= O(1/
√
nh) + 3nO(1/n) ·O(

√
h5/n) + 2nO((h/n)3/2)

= O(1/
√
nh),

and
n∑

i=1

V ar∗{en,i(t)} = nE∗{e2n,i(t)} − n[E∗{en,i(t)}]2

=
(1− π0)

(1− p0)

∫ ∫
g2(u, z; t)fC(t)ST |Z,U(t|z,u)fZ,U(z,u)dzdu

∫
K2(y)dy +O(h) +O(h5)

= σ2
E(t) +O(h),

where

σ2
E(t) = B(t)

∫
K2(u)du

∫ ∫
{exp(γγγT0 u)− ψ−1(t)υ(t) exp(βββT

0 z + γγγT0 u)}2fZ,U|T≥t(z,u)dzdu,

the Lyapunov’s condition satisfies by verifying∑n
i=1E

∗{en,i(t)− E∗en,i(t)}3

[
∑n

i=1 V ar
∗{en,i(t)}]3/2

= O(1/
√
nh) → 0

as
√
nh → ∞. Then by Lyapunov’s Central Limit theorem and Slutsky’s theorem, we

conclude that

√
nh{En(t;γγγ0)− ψ−1(t)υ(t)An(t;βββ0, γγγ0)} →d N(0, σ2

E(t)),

and thereafter

√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ)− ϕadj(t)} →d N(0, σ2

−(t)),
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where σ2
−(t) = σ2

E(t)A
−2
(t;βββ0, γγγ0).

Write

√
nh{ϕ̂adjw(t; β̂ββ, γ̂γγ)− ϕadj(t)}

= π0
√
nh{ϕ̂adj+(t; β̂ββ)− ϕadj(t)}+ (1− π0)

√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ)− ϕadj(t)}. (A.5)

= π0[
√
nh{ϕ̂adj+(t; β̂ββ)− ϕ̂adj+(t;βββ0)}+

√
nh{ϕ̂adj+(t;βββ0)− ϕadj(t)}] (A.6)

−(1− π0)

[√
nh{En(t;γγγ0)− ψ−1(t)υ(t)An(t;βββ0, γγγ0)}+

√
nh{F n(t)− ψ−1(t)υ(t)Cn(t)}

An(t; β̂ββ, γ̂γγ)

]
.

The asymptotic normality of the two parts in (A.5) has been studied. Now we study
the covariance between them. We have shown in the previous proofs that the asymp-
totic normality of

√
nh{ϕ̂adj+(t; β̂ββ)− ϕadj(t)} is determined by

√
nh{ϕ̂adj+(t;βββ0)− ϕadj(t)}

which only relies on the cases, and that of
√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ) − ϕadj(t)} is determined by

√
nh{En(t;γγγ0)−ψ−1(t)υ(t)An(t;βββ0, γγγ0)} which only relies the controls. Therefore they are

asymptotically independent. By multivariate central limit theorem,

√
nh{ϕ̂adjw(t; β̂ββ, γ̂γγ)− ϕadj(t)} →d N(0, σ2

w(t)),

where

σ2
w(t) = π2

0σ
2
+(t) + (1− π0)

2σ2
−(t).

Theorem 2 is proved.
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APPENDIX C: PROOF OF THEOREM 3: VARI-

ANCE ESTIMATORS FOR THE PROPOSED ESTI-

MATORS

Proof. Using results in the proofs of Theorem 1 and Theorem 2 and with similar ar-
guments, it is straightforward to show that σ̂∗2

+ (t;h), σ̂∗2
− (t;h) and σ̂∗2

w (t;h) are uniformly
consistent for σ2

+(t), σ2
−(t) and σ2

w(t). Below we show how to derive the variance estimators
under finite sampling σ̂∗2

+ (t;h), σ̂∗2
− (t;h), and σ̂∗2

w (t;h).

Note that in equation (A.6), we have
√
nh{ϕ̂adj+(t; β̂ββ)− ϕ̂adj+(t;βββ0)} =

√
h{

√
n(β̂ββ − βββ0)

T}Dn(t;βββ0)/Bn(t) +Op(
√
h/n),

in which the first leading term goes to 0 in O(
√
h) and under finite sampling does not

converge to 0 quickly. So the variance under finite sampling would be approximately
σ2
+(t) plus a correction term from the variance of

√
nh{ϕ̂adj+(t; β̂ββ) − ϕ̂adj+(t;βββ0)} and the

covariance between
√
nh{ϕ̂adj+(t; β̂ββ)− ϕ̂adj+(t;βββ0)} and

√
nh{ϕ̂adj+(t;βββ0)− ϕadj(t)}.

Using similar arguments in the proof of Theorem 2, it is straightforward to see that the
limiting variance of

√
nh{ϕ̂adj+(t; β̂ββ)−ϕ̂adj+(t;βββ0)} equals to σ2

C(t;h)B
−2(t) and the limiting

covariance between
√
nh{ϕ̂adj+(t; β̂ββ) − ϕ̂adj+(t;βββ0)} and

√
nh{ϕ̂adj+(t;βββ0) − ϕadj(t;βββ0)} is

σAC(t;h)B
−2(t), where

σ2
C(t;h) = hD(t;βββ0)

T I−1(βββ0)D(t;βββ0),

σAC(t;h) = hD(t;βββ0)
TE [∆iKh(t−Xi){1− ϕadj(t)− exp(−βββ0Zi)}lβββ(Xi)] ,

where lβββ(Xi) is the efficient influence function for βββ in the logistic model. We substitute
the parameters and expectations with respective (empirical) estimators to obtain σ̂∗2

+ (t;h).
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Similarly we can estimate the variance of ϕ̂adj−(t; β̂ββ; γ̂γγ) with finite sampling correction.
Recall that
√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ)− ϕadj(t)} = −

√
nh{En(t; γ̂γγ)− ψ−1(t)υ(t)An(t; β̂ββ, γ̂γγ)}A

−1

n (t; β̂ββ, γ̂γγ).

Let

Ẽn(t;βββ,γγγ) = En(t;γγγ)− ψ−1(t)υ(t)An(t;βββ,γγγ)

=
1

n

n∑
i=1

(1−∆i)Kh(t−Xi){exp(γγγTUi)− ψ−1(t)υ(t) exp(βββTZi + γγγTUi)},

F̃n(t) = Ẽn(t; β̂ββ, γ̂γγ)− Ẽn(t;βββ0, γγγ0) = F n(t)− ψ−1(t)υ(t)Cn(t).

Then
√
nh{En(t; γ̂γγ)− ψ−1(t)υ(t)An(t; β̂ββ, γ̂γγ)} =

√
nhẼn(t;βββ0, γγγ0) +

√
nhF̃n(t)

=
n∑

i=1

en,i(t) +
n∑

i=1

fn,i(t) + op(1),

where

en,i(t) =

√
h

n
(1−∆i)Kh(t−Xi){exp(γγγT0 Ui)− ψ−1(t)υ(t) exp(βββT

0 Zi + γγγT0 Ui)},

fn,i(t) =

√
h

n
{lγγγ(Xi)

TG(t;γγγ0)− ψ−1(t)υ(t)lθθθ(Xi)
TD(t;θθθ0)}.

Therefore, the limiting variance of
√
nh{En(t; γ̂γγ)−ψ−1(t)υ(t)An(t; β̂ββ, γ̂γγ)}/An(t; β̂ββ, γ̂γγ) under

finite sampling is {σ2
E(t) + σ2

F (t;h) + 2σEF (t;h)}/A
2
(t), where

σ2
E(t) = B(t)

∫
K2(u)du

∫ ∫
{exp(γγγT0 u)− ψ−1(t)υ(t) exp(βββT

0 z + γγγT0 u)}2fZ,U|T≥t(z,u)dzdu,

σ2
F (t;h) = hE{lγγγ(Xi)

TG(t;γγγ0)− ψ−1(t)υ(t)lθθθ(Xi)
TD(t;θθθ0)}2,

σEF (t;h) = nE{en,i(t)fn,i(t)}.
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We substitute the parameters and expectations with respective (empirical) estimators to
obtain σ̂∗2

− (t;h).

To obtain the limiting variance of ϕ̂adjw(t; β̂ββ; γ̂γγ) under finite sampling, write

√
nh{ϕ̂adjw(t; β̂ββ, γ̂γγ)− ϕadj(t)}

= π0
√
nh{ϕ̂adj+(t; β̂ββ)− ϕadj(t)}+ (1− π0)

√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ)− ϕadj(t)}.

The variances of these two terms under finite sampling have been studied. Write the
components into asymptotic i.i.d. forms

√
nh{ϕ̂adj+(t; β̂ββ)− ϕadj(t)} =

n∑
i=1

an,i(t)B
−1(t) +

n∑
i=1

cn,i(t)B
−1(t) + op(1),

√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ)− ϕadj(t)} = −

n∑
i=1

en,i(t)A
−1
(t;βββ0, γγγ0)−

n∑
i=1

fn,i(t)A
−1
(t;βββ0, γγγ0) + op(1),

where an,i(t) =
√
h/n{1−ϕadj(t)−exp(−βββT

0 Zi)}∆iKh(t−Xi) and cn,i(t) =
√
h/nlβββ(Xi)

TD(t).
Then we obtain the covariance between

√
nh{ϕ̂adj+(t; β̂ββ)−ϕadj(t)} and

√
nh{ϕ̂adj−(t; β̂ββ, γ̂γγ)−

ϕadj(t)} as

−
{
σAF (t)A

−1
(t;βββ0, γγγ0)B

−1(t) + σCE(t)A
−1
(t;βββ0, γγγ0)B

−1(t)

+σCF (t)A
−1
(t;βββ0, γγγ0)B

−1(t)
}
,

where σAF (t) = nE{an,i(t)fn,i(t)}, σCE(t) = nE{cn,i(t)en,i(t)} and σCF (t) = nE{cn,i(t)fn,i(t)}.
We substitute the parameters and expectations with respective (empirical) estimators to
obtain σ̂∗2

w (t;h).
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APPENDIX D: SUPPLEMENTARY RESULTS FOR

THE SIMULATION STUDIES AND REAL DATA EX-

AMPLE

The additional results for the simulations and real data example are presented in Table
A.1-A.9 and Figure A.1.
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APPENDIX E: THE TRUE VALUES OF ϕadj(t) AND

Φadj(t) UNDER VARIOUS PARAMETER SPECIFI-

CATIONS

To check the sensitivity of the proposed ϕadj(t) against the rare disease assumption, we
calculated differences between ϕadj(t) and Φadj(t) numerically under a wide range of sce-
narios. The results show that when disease probability Pr(T < 70) is below 5%, the
approximation is mostly satisfied with absolute difference below 0.05. When the disease
probability increases, additional parameter restrictions need to be imposed to maintain a
good approximation.

We consider the Cox model λ(t|Z,U) = λ0(t) exp(βZ + γU) with a Weibull base-
line hazard λ0(t) = (ν/η) (t/η)ν−1, a dichotomous exposure Z and a dichotomous con-
founder U . Let PZ = Pr{Z = 1}, PU = Pr{U = 1}, and PZU = Pr{Z = 1, U = 1}

at baseline. Specifically, we set parameters as the combination of the following values:
η = 90, 180, 360, 720, ν = 2, β = 0.5, 1, 2, 4, 8, γ = 0.5, 1, 2, 4, 8, PZ = 0.05, 0.1, 0.2, 0.4, 0.8,
PU = 0.05, 0.1, 0.2, 0.4, 0.8, and D

′
= −1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, where D′

is the scaled correlation used for association of two binary variables (genetic variants)
(Slatkin 2008) and here we use it for the association of Z and U , because it has a full range
from -1 to 1. With the inclusion constraint of PZ + PU − PZU ≤ 1 and Φadj(t) ≥ 0 at
selected ages, a total of 17,581 scenarios are considered. For each scenario, we calculated
ϕadj(t), Φadj(t), and the difference ϕadj(t)− Φadj(t) at t = 30, 50, 70, respectively.

A total of 2,167 scenarios have the disease probability below 5%. Among them, only
48 scenarios have absolute difference above 0.05. There scenarios have the feature of {β ≤

2, γ = 4, PU = 0.05}. For the remaining 2119 scenarios, we generated the scatter plots
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for difference ϕadj(t)− Φadj(t) versus Φadj(t) in Figure A.2, in which each point represents
one scenario. From Figure A.2, the vast majority of scenarios have absolute difference very
close to 0.

A total of 2,121 scenarios have the disease probability within the range of 5% to 10%.
Among them, 180 scenarios having absolute difference above 0.05. There scenarios have
the feature of {β = 0.05, γ ≥ 4, PU ≤ 0.1}, {1 ≤ β ≤ 2, γ ≥ 2, PU ≤ 0.1}, {β = 4, γ ≥

2, PZ ≤ 0.1, PU ≤ 0.2} or {β = 8, γ = 8, PZ = 0.05, PU = 0.05}.
A total of 2,269 scenarios have the disease probability within the range of 10% to 20%.

Among them, 321 scenarios having absolute difference above 0.05. There scenarios have
the feature of {β = 0.05, γ ≥ 4, PU ≤ 0.2}, {1 ≤ β ≤ 2, γ ≥ 2, PU ≤ 0.4}, {β = 4, γ ≥

1, PZ ≤ 0.4, PU ≤ 0.4} or {β = 8, γ ≥ 2, PZ ≤ 0.1}.
In practice, if the disease probability is common, one should examine the parameter

estimates. Generally speaking, if the effects of confounders and/or exposure are large,
there might be a discrepancy between ϕadj(t) and Φadj(t) and one should be cautious to use
ϕadj(t) as an alternative.
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Table A.1: Summary statistics for ϕ̂adjw(t; β̂, γ̂) with different bandwidth. hCV : bandwidth
from cross-validation. Bias: absolute difference between the true value of ϕadj(t) and the
mean of the point estimator. ESD: empirical standard deviation. ASE: mean of asymptotic-
based standard error estimates. CR pointwise: coverage rate of 95% pointwise confidence
intervals.

Scenario I: binary U

Age(yrs) hCV h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

Bias 30 0.000 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
50 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
70 0.000 -0.002 -0.003 -0.002 -0.002 -0.001 -0.001 -0.001 0.000 0.000 0.000

ESD 30 0.025 0.044 0.035 0.032 0.030 0.028 0.028 0.027 0.026 0.026 0.026
50 0.025 0.046 0.036 0.032 0.030 0.029 0.028 0.027 0.026 0.026 0.026
70 0.028 0.063 0.047 0.040 0.036 0.034 0.032 0.031 0.030 0.029 0.028

ASE 30 0.026 0.043 0.035 0.031 0.029 0.028 0.027 0.027 0.026 0.026 0.026
50 0.026 0.046 0.036 0.032 0.030 0.029 0.028 0.027 0.026 0.026 0.026
70 0.028 0.062 0.047 0.040 0.036 0.034 0.032 0.031 0.030 0.029 0.028

CR(%) 30 95.4 94.2 95.0 94.8 94.7 95.0 95.3 95.3 95.2 95.0 95.2
pointwise 50 95.1 94.0 94.8 95.1 94.8 94.8 94.3 94.5 94.8 94.6 94.5

70 95.4 93.6 94.5 94.7 94.9 95.4 95.3 95.6 95.1 95.1 95.4

Scenario II: continuous U

Age(yrs) hCV h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10

Bias 30 0.000 -0.001 -0.001 0.000 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
50 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000
70 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000

ESD 30 0.026 0.046 0.035 0.032 0.030 0.028 0.028 0.027 0.026 0.026 0.026
50 0.026 0.045 0.035 0.031 0.029 0.028 0.027 0.026 0.026 0.025 0.025
70 0.028 0.057 0.043 0.037 0.034 0.032 0.031 0.030 0.029 0.028 0.028

ASE 30 0.026 0.045 0.036 0.032 0.030 0.029 0.028 0.027 0.027 0.026 0.026
50 0.026 0.045 0.036 0.032 0.030 0.029 0.028 0.027 0.026 0.026 0.026
70 0.027 0.056 0.043 0.037 0.034 0.032 0.031 0.029 0.029 0.028 0.027

CR(%) 30 94.3 93.9 95.0 95.9 95.3 95.3 95.1 94.9 95.0 95.0 95.2
pointwise 50 94.9 94.5 94.8 95.5 95.8 95.7 95.9 95.7 95.5 95.6 95.6

70 94.7 93.8 95.5 95.1 94.8 94.5 94.7 94.6 94.7 95.0 95.5
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Table A.2: Estimates and the 95% confidence intervals of ϕadj(t) and the model-based
adjusted PAF for the colorectal cancer case-control study

History of diabetes Obesity

Parameter Estimate 95% CI Estimate 95% CI

ϕ̂adjw(50) 0.020 0.005, 0.035 0.070 0.005, 0.035

ϕ̂adjw(60) 0.025 0.012, 0.038 0.050 0.012, 0.038

ϕ̂adjw(70) 0.028 0.014, 0.042 0.044 0.014, 0.042

ϕ̂adjw(80) 0.028 0.014, 0.042 0.037 0.014, 0.042

ϕ̂adjw(90) 0.025 0.008, 0.041 0.032 0.008, 0.041

P̂AF adj 0.027 -0.002, 0.056 0.043 0.002, 0.083

Year-since-quit-smoking Pack year

Parameter Estimate 95% CI Estimate 95% CI

ϕ̂adjw(50) 0.058 -0.032, 0.149 0.151 0.076, 0.226

ϕ̂adjw(60) 0.045 -0.024, 0.114 0.151 0.079, 0.223

ϕ̂adjw(70) 0.037 -0.020, 0.094 0.153 0.081, 0.226

ϕ̂adjw(80) 0.030 -0.017, 0.078 0.144 0.075, 0.213

ϕ̂adjw(90) 0.023 -0.015, 0.061 0.137 0.067, 0.207

P̂AF adj 0.037 -0.029, 0.104 0.150 0.074, 0.226
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Figure A.1: The simultaneous confidence bands calculated based on bootstrap with 200
replicates and the pointwise confidence intervals of ϕadj(t) for GECCO study
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Table A.3: Summary statistics of the ϕadj(t) estimators under scenario I and II for 70% cen-
soring and equal number of cases and controls. Bias: absolute difference between the true
value of ϕadj(t) and the mean of the point estimator. ESD: empirical standard deviation.
ASE: mean of asymptotic-based standard error estimates. CR pointwise: coverage rate
of 95% pointwise confidence intervals. CR: coverage rate of 95% simultaneous confidence
bands.

Scenario I: binary U Scenario II: continuous U

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

30 0.509 0.507 30 0.512 0.510

50 0.491 0.486 50 0.497 0.492

70 0.462 0.450 70 0.473 0.463

Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw

Bias 30 -0.001 -0.003 -0.002 Bias 30 0.000 -0.003 -0.001

50 -0.001 -0.003 -0.002 50 -0.001 -0.002 -0.001

70 -0.001 -0.002 -0.001 70 -0.001 -0.001 -0.001

ESD 30 0.027 0.030 0.025 ESD 30 0.028 0.034 0.027

50 0.026 0.032 0.025 50 0.027 0.032 0.026

70 0.028 0.037 0.027 70 0.028 0.036 0.027

ASE 30 0.027 0.031 0.026 ASE 30 0.028 0.032 0.027

50 0.027 0.030 0.025 50 0.027 0.031 0.026

70 0.028 0.034 0.026 70 0.027 0.033 0.026

CR(%) 30 96.0 95.4 95.9 CR(%) 30 95.2 94.8 95.4

pointwise 50 95.6 95.2 95.2 pointwise 50 95.6 94.9 95.7

70 94.6 93.3 94.0 70 94.3 94.7 95.2

CR(%) 20:70 94.8 94.9 95.0 CR(%) 20:70 93.9 94.4 95.6
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Table A.4: Summary statistics of the ϕadj(t) estimators under scenario I and II for 90% cen-
soring and equal number of cases and controls. Bias: absolute difference between the true
value of ϕadj(t) and the mean of the point estimator. ESD: empirical standard deviation.
ASE: mean of asymptotic-based standard error estimates. CR pointwise: coverage rate
of 95% pointwise confidence intervals. CR: coverage rate of 95% simultaneous confidence
bands.

Scenario I: binary U Scenario II: continuous U

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

30 0.517 0.516 30 0.518 0.518

50 0.513 0.511 50 0.515 0.513

70 0.506 0.503 70 0.509 0.507

Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw

Bias 30 -0.001 -0.004 -0.001 Bias 30 -0.002 -0.004 -0.003

50 0.000 -0.001 -0.001 50 -0.001 -0.003 -0.001

70 0.000 -0.002 -0.001 70 -0.001 -0.003 -0.001

ESD 30 0.029 0.036 0.027 ESD 30 0.030 0.036 0.028

50 0.027 0.032 0.027 50 0.028 0.032 0.027

70 0.027 0.032 0.026 70 0.028 0.033 0.026

ASE 30 0.029 0.033 0.027 ASE 30 0.030 0.035 0.028

50 0.027 0.030 0.026 50 0.028 0.031 0.026

70 0.028 0.031 0.026 70 0.027 0.031 0.026

CR(%) 30 94.2 93.3 94.2 CR(%) 30 95.6 94.2 93.7

pointwise 50 94.7 93.7 94.6 pointwise 50 94.2 94.8 94.5

70 95.2 94.0 95.3 70 94.4 94.4 94.5

CR(%) 20:70 94.4 93.9 94.3 CR(%) 20:70 94.5 93.4 93.5
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Table A.5: Summary statistics of the ϕadj(t) estimators under scenario I and II for 95% cen-
soring and equal number of cases and controls. Bias: absolute difference between the true
value of ϕadj(t) and the mean of the point estimator. ESD: empirical standard deviation.
ASE: mean of asymptotic-based standard error estimates. CR pointwise: coverage rate
of 95% pointwise confidence intervals. CR: coverage rate of 95% simultaneous confidence
bands.

Scenario I: binary U Scenario II: continuous U

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

30 0.517 0.516 30 0.518 0.518

50 0.513 0.511 50 0.515 0.513

70 0.506 0.503 70 0.509 0.507

Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw

Bias 30 0.001 0.000 0.000 Bias 30 0.000 -0.001 -0.001

50 0.000 -0.001 -0.001 50 0.000 -0.001 -0.001

70 0.000 -0.002 0.000 70 0.001 -0.002 0.000

ESD 30 0.028 0.031 0.026 ESD 30 0.028 0.032 0.027

50 0.026 0.031 0.026 50 0.028 0.031 0.027

70 0.029 0.039 0.028 70 0.031 0.035 0.028

ASE 30 0.027 0.030 0.026 ASE 30 0.028 0.031 0.027

50 0.027 0.030 0.026 50 0.027 0.031 0.026

70 0.030 0.035 0.028 70 0.029 0.034 0.027

CR(%) 30 93.7 95.1 94.8 CR(%) 30 94.0 95.0 94.3

pointwise 50 95.8 94.7 96.3 pointwise 50 95.2 93.9 94.8

70 94.9 94.5 94.1 70 93.2 95.8 94.4

CR(%) 20:70 93.9 93.5 93.9 CR(%) 20:70 94.1 92.3 94.0
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Table A.6: Summary statistics of the ϕadj(t) estimators under scenario I and II for 80%

censoring and 1000 controls. Bias: absolute difference between the true value of ϕadj(t)

and the mean of the point estimator. ESD: empirical standard deviation. ASE: mean of
asymptotic-based standard error estimates. CR pointwise: coverage rate of 95% pointwise
confidence intervals. CR: coverage rate of 95% simultaneous confidence bands.

Scenario I: binary U Scenario II: continuous U

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

30 0.509 0.507 30 0.512 0.510

50 0.491 0.486 50 0.497 0.492

70 0.462 0.450 70 0.473 0.463

Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw

Bias 30 0.000 -0.002 -0.001 Bias 30 -0.001 -0.003 -0.001

50 0.000 -0.004 -0.001 50 -0.001 -0.003 -0.001

70 0.000 -0.005 -0.001 70 -0.001 -0.005 -0.001

ESD 30 0.029 0.038 0.028 ESD 30 0.030 0.038 0.029

50 0.029 0.042 0.028 50 0.029 0.040 0.029

70 0.031 0.053 0.031 70 0.033 0.050 0.031

ASE 30 0.030 0.036 0.029 ASE 30 0.030 0.037 0.029

50 0.029 0.037 0.029 50 0.030 0.037 0.029

70 0.032 0.049 0.031 70 0.032 0.045 0.030

CR(%) 30 97.3 94.7 96.5 CR(%) 30 95.6 93.6 94.9

pointwise 50 95.8 94.2 95.8 pointwise 50 95.3 94.6 95.0

70 96.5 94.2 95.4 70 95.3 95.0 95.0

CR(%) 20:70 96.0 95.1 95.4 CR(%) 20:70 96.0 94.6 95.3
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Table A.7: Summary statistics of the ϕadj(t) estimators under scenario I and II for 80%

censoring and 4000 controls. Bias: absolute difference between the true value of ϕadj(t)

and the mean of the point estimator. ESD: empirical standard deviation. ASE: mean of
asymptotic-based standard error estimates. CR pointwise: coverage rate of 95% pointwise
confidence intervals. CR: coverage rate of 95% simultaneous confidence bands.

Scenario I: binary U Scenario II: continuous U

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

30 0.509 0.507 30 0.512 0.510

50 0.491 0.486 50 0.497 0.492

70 0.462 0.450 70 0.473 0.463

Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw

Bias 30 0.000 -0.001 -0.001 Bias 30 -0.002 -0.002 -0.002

50 -0.002 -0.001 -0.001 50 -0.001 -0.002 -0.001

70 -0.001 -0.004 -0.002 70 -0.002 -0.003 -0.002

ESD 30 0.025 0.027 0.024 ESD 30 0.026 0.027 0.025

50 0.026 0.027 0.024 50 0.026 0.028 0.025

70 0.031 0.034 0.027 70 0.029 0.033 0.027

ASE 30 0.025 0.026 0.024 ASE 30 0.026 0.026 0.024

50 0.025 0.026 0.024 50 0.025 0.026 0.024

70 0.029 0.031 0.026 70 0.028 0.030 0.026

CR(%) 30 94.7 93.9 94.6 CR(%) 30 94.0 94.6 93.6

pointwise 50 93.9 95.0 95.0 pointwise 50 93.7 93.6 93.6

70 94.3 93.7 93.7 70 94.0 92.2 93.8

CR(%) 20:70 93.2 93.7 93.7 CR(%) 20:70 93.6 92.8 93.5
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Table A.8: Summary statistics of the estimators from simulated datasets based on real data
for 1250 controls. Bias: absolute difference between the true value of ϕadj(t) and the mean
of the point estimator. ESD: sampling standard deviation. ASE: mean of asymptotic-
based standard error estimates. CR pointwise: coverage rate of 95% pointwise confidence
intervals. CR: coverage rate of 95% simultaneous confidence bands.

Diabetes as the exposure Obesity as the exposure

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

40 .0269 .0269 40 .0408 .0408

60 .0266 .0266 60 .0407 .0407

80 .0253 .0252 80 .0403 .0401

Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw

Bias 40 -0.0002 -0.0003 -0.0002 Bias 40 -0.0008 -0.0006 -0.0007

60 -0.0002 -0.0003 -0.0002 60 -0.0006 -0.0005 -0.0006

80 -0.0002 0.0002 -0.0001 80 -0.0005 -0.0010 -0.0006

ESD 40 0.0094 0.0106 0.0090 ESD 40 0.0213 0.0217 0.0213

60 0.0083 0.0087 0.0083 60 0.0212 0.0212 0.0212

80 0.0087 0.0101 0.0085 80 0.0211 0.0211 0.0210

ASE 40 0.0095 0.0107 0.0093 ASE 40 0.0209 0.0211 0.0208

60 0.0087 0.0089 0.0086 60 0.0207 0.0208 0.0207

80 0.0090 0.0102 0.0088 80 0.0207 0.0207 0.0205

CR(%) 40 95.1 92.9 95.1 CR(%) 40 94.5 95.1 94.8

pointwise 60 95.4 96.4 96.1 pointwise 60 94.7 94.4 94.4

80 95.6 94.0 96.5 80 94.3 94.7 94.4

CR(%) 40:80 94.4 93.5 93.9 CR(%) 40:80 93.1 93.1 93.8
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Table A.9: Summary statistics of the estimators from simulated datasets based on real data
for 5000 controls. Bias: absolute difference between the true value of ϕadj(t) and the mean
of the point estimator. ESD: sampling standard deviation. ASE: mean of asymptotic-
based standard error estimates. CR pointwise: coverage rate of 95% pointwise confidence
intervals. CR: coverage rate of 95% simultaneous confidence bands.

Diabetes as the exposure Obesity as the exposure

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

40 .0269 .0269 40 .0408 .0408

60 .0266 .0266 60 .0407 .0407

80 .0253 .0252 80 .0403 .0401

Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw Age ϕ̂adj+ ϕ̂adj− ϕ̂adjw

Bias 40 -0.0005 -0.0004 -0.0004 Bias 40 -0.0006 -0.0005 -0.0005

60 -0.0004 -0.0002 -0.0003 60 -0.0006 -0.0005 -0.0005

80 0.0000 -0.0003 -0.0003 80 -0.0004 -0.0006 -0.0005

ESD 40 0.0077 0.0072 0.0072 ESD 40 0.0159 0.0157 0.0157

60 0.0067 0.0066 0.0065 60 0.0156 0.0156 0.0156

80 0.0078 0.0067 0.0066 80 0.0156 0.0153 0.0153

ASE 40 0.0076 0.0071 0.0069 ASE 40 0.0152 0.0151 0.0151

60 0.0066 0.0065 0.0065 60 0.0150 0.0150 0.0150

80 0.0072 0.0067 0.0066 80 0.0151 0.0149 0.0148

CR(%) 40 93.8 94.7 95.0 CR(%) 40 94.5 94.4 94.4

pointwise 60 95.2 95.2 95.3 pointwise 60 94.2 94.5 94.4

80 93.3 94.5 94.5 80 94.5 93.9 94.8

CR(%) 40:80 94.1 93.6 93.1 CR(%) 40:80 93.8 93.1 93.9
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Figure A.2: The difference for the 2119 scenarios when the disease probability pr{T ≤

70} ≤ 5%. In each sub-graph, the horizontal axis is Φadj(t) and the vertical axis is the
difference ϕadj(t)− Φadj(t) at t = 30, 50, 70.
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