Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells

Pengfei Wang^{1†}, Mohammad Aminur Rahman^{2†}, Zhixiang Zhao^{2,3}, Kristin Weiss¹, Chao Zhang⁵, Zhengjia Chen⁵, Selwyn J. Hurwitz⁴, Zhuo G. Chen², Dong M. Shin^{1,2*}, and Yonggang Ke^{1,6*}

¹ Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA

² Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA

³ Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China. ⁴ Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.

⁵ Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA

⁶ Department of Chemistry, Emory University, Atlanta, GA 30322, USA

Corresponding Author Contact Information: yonggang.ke@emory.edu, dmshin@emory.edu

[†]These authors contributed equally

Section 1. Materials and Methods

Design of DNA origami nanostructures

DNA nanoparticles were designed using software called cadnano. p7560 scaffold DNA was amplified and extract from M13 bacteriophage following a published protocol.¹ p425 scaffold was cut from p7560 by restriction enzyme. All oligonucleotides and siRNA were purchased from IDT and used as received.

Preparation of p425 scaffold

p425 scaffold DNA was acquired from p7560 by restriction digestion using enzyme BsaAl (NEB, Catalog # R0531L). In a typical restriction reaction with volume of 100 μ L, 500 nM of p7560 was mixed with 5000 nM of helper strands (sequences) in 1× cutsmart buffer added with 5 μ L of BsaAl (5 U/ μ L). The mixture was incubated at 37°C for 3 hours following a 20 min heat inactivation at 65°C. The reaction solution was then subject to 0.7% agarose gel electrophoresis and the p425 DNA band was dissected out and extracted from gel using a ZymocleanTM Gel DNA Recovery Kit from Zymo Research (Catalog # D4008).

Assembly of DNA origami nanostructures

Small tetrahedron (ST), small rod (SR), large tetrahedron (LT), and large rod (LR) were prepared by mixing 5 fold of staple strands with 1 fold of scaffold DNA (p425 for ST and SR, p7560 for LT and LR) in an aqueous buffer containing 5 mM of Tris base, 1 mM of EDTA, and 10 mM of MgCl₂. The mixture was then subject to the following thermal annealing protocol: 65° C for 5 min, 60° C to 25° C over a period of 18 hours. Excessive staple DNA was removed using Amicon 100 KDa centrifugal filter with a centrifugation speed of 3000 G and a minimal of 3 times of washing to completely remove free DNA staple strands. DON concentrations were calculated from UV absorbance at 260 nm. Fluorophore (Cy5 or Alexa488) conjugated DNA was loaded onto DONs at a molar ratio of fluorophore-DNA: Handle = 1: 1. After thorough mixing, the solutions were incubated for at least 2 hours at room temperature under constant shaking prior to subsequent experiments.

Attaching gold nanoparticles onto DONs for TEM studies

Agarose gel electrophoresis

DONs were subjected to 1% of native agarose gel electrophoresis for 2 hours (gel prepared in $0.5 \times TBE$ buffer supplemented with 10 mM MgCl₂ and 0.005% (v/v) EtBr). If product purification is necessary, the target gel bands were excised and placed into a Freeze 'N Squeeze column (Bio-Rad Laboratories, Inc.). The gel was crushed into fine pieces by a microtube pestle in the column, and the column was then centrifuged at 7000 g for 5 minutes. Samples that were extracted through the column were collected for TEM or AFM imaging.

Atomic force microscopy

AFM images were obtained using a Multimode 8 system under peak force tapping mode (Bruker). 5 μ L of purified sample was applied onto the surface of a freshly cleaved mica chip and left for approximately 2 minutes to allow for adsorption. 60 μ L of 1×TE buffer with 10 mM MgCl₂ was then added onto the mica surface. The AFM tip used was on the short and thin cantilevers in the SNL-10 silicon nitride cantilever chip (Bruker).

Transmission electron microscopy

For imaging of DONs, 3 μ L of samples were adsorbed for 30 minutes onto glow-discharged, carbon-coated TEM copper grids. The grids were then stained for 10 seconds using a 1% aqueous uranyl formate solution containing 10 mM NaOH. Imaging was performed using a Hitachi 7700 microscope operated at 80 kV.

For imaging of cells, H1299 cells (~60,000) were seeded into 24-well plate and incubated with AuNP tagged LRs (AuNP concentration of 2.5 nM) at 37°C for designated time points. Wash and then fix the cells twice with 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4). Cells were then rinsed with 0.1 M cacodylate buffer twice before post-fixation in 1% osmium tetroxide for 1 hour. After additional buffer rinses, cells were dehydrated through an ethanol series to 100% ethanol. Cells were infiltrated with a mixture of 100% ethanol and Eponate 12 resin for 3 hours, and then pure Eponate 12 resin overnight. CelsI were embedded in multiwall plate and then placed in a 60°C oven for polymerization. Ultrathin sections were cut on a Leica UltraCut microtome at 70-80 nm and placed on Formvar and carbon coated 200 mesh copper grids. Sections were then stained with 5% uranyl acetate for 15 mins followed by 2% lead citrate for 15 mins. Cells were then imaged with a Hitachi 7700 microscope operated at 80 kV.

Nuclease resistance study

20 μ L of DONs (mass: 400 ng) was added with 2.2 μ L of non-heat-inactivated fetal bovine serum (FBS) to reach a final concentration of 10% FBS. The solutions were then immediately incubated at 37°C within a thermal cycler for designated time (from 0 to 16 hours). Right after incubation, all samples were run on a 1% native agarose gel electrophoresis.

Cell Culture

H1299 lung cancer cell lines were kindly provided by Dr. Shi-Yong Sun (Emory University, GA). This cell line was maintained in RPMI 1640 with 10% FBS. Cells were maintained in a humidified incubator at 37°C, 5% CO₂. DMS53 cell lines were kindly provided by Dr. Shingming Deng (Emory University). SCLC cell lines DMS53 cell line was kindly provided by Dr. Xingming Deng (Emory University). DMS53 cultured in Weymouth's medium supplemented with 5% FBS as previously described (PMID:23824742).

Confocal Microscopy

Cells were incubated with Cy5-labeled DON structures (250nM) on glass coverslips (Lab-Tek II chamber slide, Nunc International) at 37°C for different time points. Then washed three times with PBS and fixed with 4% paraformaldehyde. Nuclear staining was performed by mounting Pro-Longed gold anti-fade reagent with DAPI (Invitrogen, Carlsbad CA). Cells were imaged on Leica Sp8 inverted microscope. For localization studies in H1299 cells (~18,000) into 4-well

chambered glass and incubate at 37°C over-night for cells to settle down. For lysosome staining, cells were treated with lyso-Tracker Green DND-26 at the concentration of 1 μ M together with DONs-Cy5 at the concentration of 250nM for 8 hours. For nucleus staining, add Hoechst 33324 to the concentration of 1 μ g/ml then incubate for 30mins. Wash the cells with PBS, and then add 500 μ L FluoroBrite DMEM Media before the cells are subject to confocal microscope.

Flow Cytometry for DONs cell internalization study

DMS53 and H1299 cells (~60,000) were seeded into 24-well plate and incubated with different structures of DONs-Cy5 or DONs-Alexa488 at 37°C for different time points. After washing the cells twice with PBS, we collected cell for flow cytometry analysis. Flow Jo software was used to quantify the % of Cy5 or Alexa positive cells as well as median intensity of the signal.

Quantitative polymerase chain reaction

H1299 cells (~60,000) were seeded into 24-well plate and incubated with DONs (7 nM) at 37°C for 4 hrs. After treatment, cells were washed twice using PBS and incubated for 15 min in PBS containing 0.5 U/µL Benzonase to degrade DONs adsorbed onto the well plate. Cells were subsequently washed, trypsinized, collected, counted and lysed using 250 µL DNAzol Reagent. After careful mixing, lysates were transferred to new tubes and left for 15 min. The mixtures were then centrifuged for 10 min at 7000 RPM. Supernatant were carefully recovered, added with 250 µL of 100% ethanol, inverted 2-3 times, and left for 15 min at -20 °C before centrifugation for 10 min at 13000 RPM. Supernatant were carefully removed and the pellets (invisible) were washed with 500 µL of 75% cold ethanol once and then left air dry. DNA was dissolved in 50 µL of 8 mM NaCl and stored at -20 °C for later PCR reactions. SR solutions with known numbers were used as standards for small DONs, and LRs were used as standards for large DONs. The primers were designed to target p425 scaffold DNA (and p7560 scaffold DNA since p425 DNA is part of p7560 DNA) with an amplicon size of 254 bp (Forward primer: CTGGTCGTGTGACTGGTGAA; Reverse primer: ATCAGTGAGGCCACCGAGTA). PCR reactions were performed in 20 µL of total volume containing 10 µL of SYBR Green qPCR SuperMix (Bio-Rad Laboratories, USA), 1 μL of primers (0.5 μM), 1 μL of template, and 8 µL of nuclease free water. All components were mixed in 96-well plates. The thermal conditions during reaction were 2 min at 50 °C, 10 min at 95 °C followed by 40 thermal cycles at 95 °C for 15 s and 60 °C for 1 min. Each reaction was run in duplicates. Ct values were acquired (using Applied Biosystem 7500) for each reaction and used for standard curve plotting and DONs copy number calculations.³

Pharmacological inhibition study

For cellular internalization pathway, DMS53, H1299, or HeLa cells (~60,000) were seeded into 12-well plate and incubate at 37°C overnight for cells to settle down. To inhibit Scavenger receptor, pre-treat the cells with Poly I at the concentration of 40 µg/ml for 30 mins; Cytochlasin D at the concentration of 0.25 µM for 15mins to block non-receptor mediated endocytosis; M β CD at the concentration of 625 nM for 30 mins to block caveolin-dependent endocytosis; Sucrose at the concentration of 100 mM for 30 mins to block clathrin-dependent endocytosis. Add DONs-Cy5 at the concentration of 250 nM then incubate for 8 hours with the presence of chemicals. Wash the cells with PBS and collected for flow cytometry analysis.

Statistical Analysis

All flow cytometry results represent the average of three independent experiments and are expressed as mean±SD. One-way ANOVA were used to compare the difference among the 3 experiments. P-value less than or equal to 0.05 is considered statistically significant.

Section 2. Additional Figures and Tables

Table S1. Specific design parameters of DONs. Loading site refer to the number of fluorophore being loaded onto DONs.

DNP	Scaffold (nt)	Mass (bp)	Dimensions (nm ³)	Loading sites
ST	425	384	4×2×11 per edge	24
SR	425	396	4×4×32	28
LT	7560	6456	7.2×12×47 per arm	36
LR	7560	6144	8×8×127	36

Figure S1. Schematic illustrations on calculating DONs dimensions. **a**. 3D schematics of DONs. **b**. Side view of ST's edge, SR, LT's arm, and LR.

Figure S2. Strand diagram of ST. Scaffold DNA: blue; Staples: red. Single stranded DNA handles are extended from both the 5' and 3' ends of staples for capturing of fluorophore.

Figure S3. Strand diagram of SR. Scaffold DNA: blue; Staples: red. Single stranded DNA handles are extended from both the 5' and 3' ends of staples for capturing of fluorophore.

Figure S4. Strand diagram of LR. Scaffold DNA: blue; Staples: orange (Face-1), green (Face-2), black (Face-3), pink (Face-4), and grey (core). Single stranded DNA handles are extended from 5' end of orange staples on Face-1 for capturing fluorophore.

Figure S5. Strand diagram of LT. Scaffold DNA: blue; Staples: red, green, and grey. Singlestranded DNA handles are extended from 5' end of red staples for capturing Cy5-DNA.

Figure S6. Preparation of p425 by cutting p7560 using BsaAI. Agarose gel electrophoresis (1%) showed the successful production of p425.

Figure S7. Agarose gel electrophoresis (left: 1.5%, middle and right: 1%) of purified DONs with excessive staples removed by cut-off filters. Discrete bands with expected motilities suggest the successful formation of DONs.

Figure S8. Large scale AFM (for ST, SR) and TEM (for LT, LR) images of DONs. Scale bars: 200 nm.

Figure S9. Attachment of Cy5-DNA onto DONs. The presence of Cy5 dimmed the fluorescence of EtBr possibly due to fluorescence resonance energy transfer (FRET) where the emission light of EtBr was absorbed by Cy5. Without EtBr staining, SR-Cy5, LT-Cy5, and LR-Cy5 showed visible bands due to Cy5 fluorescence under UV excitation that exhibited same mobility while under EtBr staining, confirming the successful loading of Cy5-DNA onto DONs. No free Cy5-DNA was observed in the gel at ratio of 1:1 for LT-Cy5 and LR-Cy5, and the presence of excessive amount of Cy5-DNA at ratio of 1:10 led to no observable increase in LT-Cy5 and LR-Cy5 band intensity comparing to that ratio of 1:1, indicating that Cy5-DNA was efficiently loaded onto DONs.

Figure S10. Concentration dependency of DONs uptake into H1299 cells after 4 hours of incubation. Similar trend in DONs cellular uptake was observed at Cy5 concentration of 50 nM and 1 uM comparing to 250 nM (Figure 3a), with larger DONs exhibiting higher uptake efficiency. Well, Cy5-DNA had significant cellular uptake by itself at 1 uM concentration, suggesting that Cy5-DNA may interfere DONs uptake at this condition, thus lower concentration shall be used (e.g. 250 nM).

Figure S11. DONs uptake into H1299 cells after 4 hours of incubation with Alexa-488 as the tracking fluorophore at concentration of 250 nM. Similar trend was observed comparing to same experiments with Cy5 as the fluorophore (Figure 3a). ST and SR had higher uptake efficiency than p425 (*P<0.05), while p7560 exhibited similarly cell uptake as LT but lower uptake efficiency than LR (*P<0.05). All DONs exhibited significantly higher uptake efficiency than Alexa-488-DNA alone ((*P<0.05).

Figure S12. Median fluorescence intensity derived from flow cytometry of H1299 and DMS53 cells after 0.5, 2, 4, and 8 hrs incubation with DONs. Non-treated (NT) and Cy5-DNA treated cells were included as negative controls. Each column represents the average fluorescence intensity of cells from three independent experiments. Error bars represent standard deviations. Same trend was observed as shown in Figure 3a.

Figure S13. DONs uptake into H1299 cells after 4 hours of incubation. p425 and p7560 scaffolds were included for comparison. Cy5-DNA concentration was set at 250 nM. ST and SR had higher uptake efficiency than p425 (*P<0.05), while p7560 exhibited similarly high cell uptake as LT and LR, which may attribute to its long and circular nature that formed randomly coiled 3D structures of potent cellular uptake capability.

	I	n H12	99 Ce	II		n DM	S53 C	ell	H129	99 Cel	l vs DI	NS53	Cell
Pairwise comparison	0.5 H	2 H	4 H	8 H	0.5 H	2 H	4 H	8 H		0.5 H	2 H	4 H	8 H
ST vs NT	*	*	*	*	*	*	*	*	ST	*	*	*	*
ST vs Cy5-DNA	*	*	*	*	*	*	*	*	SR	*	*	*	*
ST vs SR	*	*	NS	NS	*	NS	*	*	LT	*	*	*	*
ST vs LT	*	*	*	*	*	*	*	*	LR	*	*	*	*
ST vs LR	*	*	*	*	*	*	*	*	Cy5-DNA	NS	NS	NS	NS
SR vs NT	*	*	*	*	*	*	*	*	NT	NS	NS	NS	NS
SR vs Cy5-DNA	*	*	*	*	*	*	*	*					
SR vs LT	NS	*	*	*	*	NS	*	*					
SR vs LR	*	*	*	*	*	*	*	*	*Indicate	s the o	differe	nce be	etween
LT vs NT	*	*	*	*	*	*	*	*	this pair a	are sta	tistica	lly sigr	nificant
LT vs Cy5-DNA	*	*	*	*	*	*	*	*	with P<0.	05			
LT vs LR	*	*	NS	NS	*	*	*	*	NS=Non	statitic	ally si	gnifica	Int
LR vs NT	*	*	*	*	*	*	*	*					
LR vs Cy5-DNA	*	*	*	*	*	*	*	*					
Cy5-DNA vs NT	NS	NS	NS	NS	*	NS	*	*					

Table S2. Statistical analysis of cellular uptake of DONs in H1299 and DMS53 cells.

Note: Statistical analysis is based on the flow cytometry data shown in Figure 3a.

Figure S14. Quantitative PCR quantification of DONs uptake into H1299 cells after 4 hours of incubation. **a**. Number of DONs per cell derived from qPCR. LT and LR exhibited significantly higher number of DONs per cell than ST and SR (**P*<0.05). And rod-shaped DONs had higher uptake than tetrahedron-shaped DONs of similar size. **b**. Standard curve for small DONs. **c**. Standard curve for large DONs. Note that the absolute number of DONs per cell from qPCR was underestimated because significant loss of DONs may happen prior to PCR amplification, such as intracellular nuclease degradation, loss during cellular DNA extraction, loss during ethanol precipitation. And the loss was theoretically more severe for small DONs given p425 scaffold DNA's higher vulnerability to nuclease digestion and lower ethanol precipitation efficiency (since it is shorter and linear).

Figure S15. Cellular uptake of DONs in DMS53 cells after 8 hours of incubation studied by confocal. Blue: DAPI, red: Cy5. Scale bars: $25 \mu m$.

Figure S16. Continuous z-sections of confocal images of ST-Cy5 in H1299 cells with 8 hours of incubation. Blue: DAPI, red: Cy5. Scale bars: 25 µm.

Figure S17. Intracellular co-localization study of SR-Cy5 with lysosome in H1299 cells. Cy5 fluorescence partially co-localize with lysosome. Scale bars: $25 \mu m$.

Figure S18. Pharmacological inhibition study of DONs-Cy5 in cancer cells. **a**. Pathway study of ST, LR, and ST-CONT in HeLa cells. **b**. Pathway study of ST, LR, and ST-CONT in H1299 and DMS53 cells. **c**. Conditions used for pharmacological inhibition study. All columns represent mean±standard deviation from three independent experiments. **P*<0.05 compared with NT. Noted that percentage of Cy5+ cells was normalized based on NT which was set at 100%.

Figure S19. Barcoding AuNPs onto LR. **a**. Native agarose gel electrophoresis. **b**. Lowmagnification TEM image of LRs barcoded with AuNPs. **c**. Statistical distribution of AuNP numbers tagged onto LR. Stage-I: Binding with membrane

Figure S20. Additional representative TEM images of each internalization stage of LRs in H1299 cells. Scale bars: 50 nm.

Figure S21. Representative TEM images of barcoded LRs in H1299 cells at varied time points.

Figure S22. TEM study of free AuNP's internalization in H1299 cells.

References

1. Douglas, S. M.; Chou, J. J.; Shih, W. M. *Proc Natl Acad Sci USA.* **2007,** *104* (16), 6644-6648.

2. Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y. *J Am Chem Soc* **2016**, *138* (24), 7733-7740.

3. Okholm, A. H.; Nielsen, J. S.; Vinther, M.; Sorensen, R. S.; Schaffert, D.; Kjems, J. *Methods* **2014**, *67* (2), 193-197.

Section 3. DNA Strands Sequences

p7560

AGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGG CGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCCGGCACCAGAAGCGGT GCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCA ACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACA GGAAGGCCAGACGCGAATTATTTTTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAAATATTAACGTTAC AATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATACCGTTCATCG ATTCTCTTGTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGATCTCTCAAAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGG TTGAATATCATATTGATGGTGATTTGACTGTCTCCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACACTTACTCAGGCATTGCATTTAAAATATATGAGGGT TCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTAGCTTTAGCTCTGAGG CTITATTGCTIAATTTTGCTAATTCTTTGCCTTGCCTGGATGATTATTGGATGTTAATGCTACTACTACTACTAGTGAGAATTGATGCCACCTTTTCAGCTCGCGCC CCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTGCTCGCAGAATTGGGAATCGACACCGTATTAAACATGTTGGGAAATGAACTACAACTAAATCTACCGTTCGCAGAATTGGGAAATCGACCATCCGCAAAAATGACC TCTTATCAAAAGGGAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTG AAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTGATTTAAGGCATCCGCTTTGCATCCCCT TTTCTGAACTGTTTAAAGCATTTGAGGGGGGATTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCCTC TGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCGGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTC CTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTATTAA CGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAG CCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCCGGTTCTTG TCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATT GACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTC GCGCTTGGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTA CCCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGG GACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTAGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACT TCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGGCGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGG GTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAAC CCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGGCATTAACTGTTTAA TCGGTTTCCTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATT TTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATTT CCGATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTTCTTGTTCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGC TGAACATGTTGTTTGTTGTCGTCGGCGCAGAATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATATCGGCTCGAAAATGCCTCTGCCTAAATTAC ATGTTGGCGTTGTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGC TAAAATATATTTGAAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAA AGGTAGTCTCTCAGACCTATGATTTTGATAAATTCACTATTGACTCTTCCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATTCTAAGGGAAAATTA AATTITGTTTCTTGATGTTTGTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAATC AGGCGAATCCGTTATTGTTTCTCCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTCTGTTTTAC GTGCAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGATAATCAGG AATATGATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGATTTAATA CGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATATTTTA GATAACCTTCCTCAATTCCTTTCAACTGTTGATTTGCCAACTGACCAGATATTGATGAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTT TCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGACTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTA GGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGG GATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAAACACTTCTCAGG ATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAA TACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCA CGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACCTCAACCCTATCTCGGGCTATTCTTTGATTTATAGGGATTTTGCCGATTTCGGAACCAC CATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTGCTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCC GTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGGCGCTTGGCCGATTCATTGATGCAGCTGGCACGACAGGT TCAAGGCCCCCTATATTCGTGCCCACCGACGAGTTGCTTACAGATGGCAGGGCCGCACTGTCGGTATCATAGAGTCACTCCAGGGCGAGCGTAAATAGAT TAGAAGCGGGGTTATTTTGGCGGGACATTGTCATAAGGTTGACAATTCAGCACTAAGGACACTTAAGTCGTGCGCATGAATTCACAACCACTTAGAAGAA CATCCACCCTGGCTTCTCCTGAGAA

Helper strands for p425 preparation Helper_p425-1 GTAAGAATACGTGGCACAGA Helper_p425-2 TGACGAGCACGTATAACGTG

Cy5-DNA: ACACACACACACA-Cy5 Alexa488-DNA: ACACACACACACA-Alexa488

DNA Strands of Small Tetrahedron (ST)

Name	Sequence	Note
ST-Fluo-1	TGTGTGTGTGTGT GTCTGAAATGGATTATTAATATCCAGAACAAT TGTGTGTGTGTGTG	Fluo handle
ST-Fluo-2	TGTGTGTGTGTGT TCATGGAAATACCTACATTTTGAGATAGAACCCTTCTGACCT TGTGTGTGTGTGT	Fluo handle
ST-Fluo-3	TGTGTGTGTGTGT TCTGGCCAACAGACGCTCAATC TGTGTGTGTGTGTGT	Fluo handle
ST-Fluo-4	TGTGTGTGTGTGT ATTACCGCCAGTTGATTAGTAA TGTGTGTGTGTGTGT	Fluo handle
ST-Fluo-5	TGTGTGTGTGTGT AACCGTTGTAGCAATACTTCTCCATTGCAACAGGAAAAACGCTGTGTGTG	Fluo handle
ST-Fluo-6	TGTGTGTGTGTGT CTATCGGCCTTGCTGGTTACATTGGCAGATTC TGTGTGTGTGTGTGT	Fluo handle
ST-Fluo-7	TGTGTGTGTGTGT CCTGAGAAGTGTTTTTAGTAGAAGAACTCAAA TGTGTGTGTGTGT	Fluo handle
ST-Fluo-8	TGTGTGTGTGTGT ACCAGTCACACGACCAAACGGTACGCCAGAAT TGTGTGTGTGTGT	Fluo handle
ST-Fluo-9	TGTGTGTGTGTGT AGGGATTTTAGACAGGGTAATAAAAGGGACAT TGTGTGTGTGTGT	Fluo handle
ST-Fluo-10	TGTGTGTGTGTGTCCAAAAGAGTCTGTCCAAATACACAGGAGGCCGATTAA TGTGTGTGTGTGTGT	Fluo handle
ST-Fluo-11	TGTGTGTGTGTGT GAAAGCGTAAGTCACGCAAATT TGTGTGTGTGTGTGT	Fluo handle
ST-Fluo-12	TGTGTGTGTGTGT TAACATCACTTGCCTGATAATCAGTGAGGCCA TGTGTGTGTGTGT	Fluo handle

DNA Strands of Small Tetrahedron Control (ST-CONT)

Name	Sequence	Note
ST-CONT-Fluo-1	TGTGTGTGTGTGT ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA	Fluo handle
ST-CONT-Fluo-2	TGTGTGTGTGTGT ATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCA ATAC	Fluo handle
ST-CONT-Fluo-3	TGTGTGTGTGTGT TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTACTATGGCGGCTCTTC	Fluo handle
ST-CONT-Fluo-4	TGTGTGTGTGTGT TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCGTTTGTATTGGACCCTCGCAT	Fluo handle

DNA Strands of Small Rod (SR)

Name	Sequence	Note
SR-Fluo-1	TGTGTGTGTGTGT ACTTGCCTTTGCTGGTGACCTGAAAGCGTAAG TGTGTGTGTGTGT	Fluo handle
SR-Fluo-2	TGTGTGTGTGTGT GTAGCAATAGCCATTGGACATTCTGGCCAACA TGTGTGTGTGTGT	Fluo handle
SR-Fluo-3	TGTGTGTGTGTGT AAAGAGTCTACCTACAGATTCACCAGTCACAC TGTGTGTGTGTGTGT	Fluo handle
SR-Fluo-4	TGTGTGTGTGTGT TACGCCAGAATCCTGACATTGGCATTTTGACGCTCAATCG TGTGTGTGTGTGT	Fluo handle
SR-Fluo-5	TGTGTGTGTGTGT CCTCGTTAGAATCAGAACCCTTCTAATATCCA TGTGTGTGTGTGTGT	Fluo handle
SR-Fluo-6	TGTGTGTGTGTGT AGGCCGATTAAAGGGAATAAAAGGCAACAGGA TGTGTGTGTGTGT	Fluo handle
SR-Fluo-7	TGTGTGTGTGTGT GTGAGGCCACCGAGTA TGTGTGTGTGTGT	Fluo handle
SR-Fluo-8	TGTGTGTGTGTGT TATCGGCCGAGTAGAA TGTGTGTGTGTGT	Fluo handle
SR-Fluo-9	TGTGTGTGTGTGT GAGATAGAGCGGGAGCGATTAGTAATAACATC TGTGTGTGTGTGT	Fluo handle
SR-Fluo-10	TGTGTGTGTGTGT GACCAGTATTTTAGACACGCAAATTAACCGTT TGTGTGTGTGTGTGT	Fluo handle
SR-Fluo-11	TGTGTGTGTGTGT AAAACGCTCATGGAAATGTCCATCAGGAACGG TGTGTGTGTGTGT	Fluo handle
SR-Fluo-12	TGTGTGTGTGTGT ATTATTTAGAAGTGTT TGTGTGTGT	Fluo handle
SR-Fluo-13	TGTGTGTGTGTGT CGTGCTTT TGTGTGTGTGTGT	Fluo handle
SR-Fluo-14	TGTGTGTGTGTGT GAACAATATTACCGCCACTTCTTTTAAACAGG TGTGTGTGTGTGTGT	Fluo handle

DNA Strands of Large Rod (LR)

Name	Sequence	Note
LR-Fluo-1	CCAGACGAGGAATCATGCTGTCTTAAGAGCAA	core
LR-Fluo-2	CGACAAAACATCGGGAGACGCTGAGAAGAGTC	core
LR-Fluo-3	GCGCATACTATTTGCATATACAGTTCTTACCG	core
LR-Fluo-4	TTATGAATTGCTTATGATCCTTGAAAACATAG	core
LR-Fluo-5	ATTAGTCTCGTGTATTGGTCAAGAAGATAGCC	core
LR-Fluo-6	CACAGACACGCCATTAGTTGTAGCAATACTTC	core
LR-Fluo-7	ATACGTGGCTGAGAGCACCACCAGGAGGAAAC	core

I R-Fluo-8	ACGCGCGGGTTGCGCTGTAAAAGAGTCTGTCC
L R-Eluo-9	
LR-FIU0-10	
LR-FIUO-11	
LR-FIU0-12	
LR-Fluo-13	CTITCATCAGCTITCCAACCGTGCAAGGTGGC
LR-Fluo-14	CGCGTCTGTTCGAGCTAAAGATTCAAAAGGGT
LR-Fluo-15	ATATAATTCCCTCAAAGACTTCAAACCACGGA
LR-Fluo-16	GATGGCTTAACTCCAATTTTAAATGCAATGCC
LR-Fluo-17	TTTTTGCGGAATGACCTTGCATCATAGAAAAT
LR-Fluo-18	AGCGCTCCTAATTGATGCAAGGATAAAAATTT
LR-Fluo-19	TGACCCCCCTTACTTCATGTGACACAAAAGG
LR-Fluo-20	AGAATACAAACGGAGACTTAAACAGCTTGATA
LR-Fluo-21	GAGGCAAAAATCATAATGATAAATGGAAGGTA
LR-Fluo-22	GATAAGTGTGCCCCCTTCGGTTTATCAGCTTG
LR-Fluo-23	ACCAGGCGTCATTAAAGGGGTCAGAAGGTGAA
LR-Fluo-24	AGGATTAGGAAACATGAAAAAAGGCTCCAAAA
LR-Fluo-25	AGGCTTATCTACAATTTCTTACCAACGCTAAC
LR-Fluo-26	GATATAGAGTAATAAGCAATTTAGGCCTGAAT
LR-Fluo-27	TTAGAACCAATATAATCGGAATTATCATCATA
LR-Fluo-28	TGGAAGGGCATTTCAAAAAAGAAGGAATTACC
LR-Fluo-29	TATCAAACTATCTGGTTAGGAGCACTAACAAC
LR-Fluo-30	ACCTCAAAAGAGATAGATTCACCAACATTTTG
LR-Fluo-31	AAATCTAAGGACTGGTACCTCATTGAGGAAGG
LR-Fluo-32	TGGTCGAACGTATTGGAGTTGCAGACGCTGGT
LR-Fluo-33	GTACCGAGAAGCTACGGCATTTCACATAAATC
LR-Fluo-34	ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG
LR-Fluo-35	GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC
LR-Fluo-36	ACTGTTGGTTTTTGTTATATTTAATGTCAATC
LR-Fluo-37	GCCATTCGGGGATGTGATTAAGTTGGGTAACG
LR-Fluo-38	GGCAAAGCAGGAACGCAAACCCCCAAAAAGTGG
LR-Fluo-39	GTCATAAAACCAGACGGGAATTACGAGGCATA
LR-Fluo-40	GCGGAATCACATGTTTTAGATTTATCATTTGG
LR-Fluo-41	TTAGACTGGGCTTTTGCATTCAACTAATGCAG
LR-Fluo-42	TAAAATGTTCTGGAAGTATAACAGAATTCTAC
LR-Fluo-43	CAGACCAGTGGCTGACAACAAAGCTGCTCATT
LR-Fluo-44	ACGGTGTAAATGCCACAAAGACTTCAGCATCG
LR-Fluo-45	CCAACTTTGAAGAACCCACCGCCGGATATTCA
LR-Fluo-46	TCACATGAGATATAAGCCCAATAGACCGTAAC
LR-Fluo-47	AGGTCAGAAGAACCGCTTCATAATCAAAATCA
LR-Fluo-48	GTTGAGGCCGTACTCAGAGCCACCCTACAACG
LR-Fluo-49	TGTGTGTGTGTGT AATAGTGACAAGACAAAATTCTGTTCGAGCCA
LR-Fluo-50	TGTGTGTGTGTGT CGATAGCTATCGTCGCACAAAATCGAATTATT
LR-Fluo-51	TGTGTGTGTGTGT TTTGATTACACTTGCCGAATGGCTTGGCCAAC
LR-Fluo-52	TGTGTGTGTGTGT ATCACGCAGCCTTGCTGGTTAAGAAAGCGTTG
LR-Fluo-53	TGTGTGTGTGTGT AACCGTCTAGAGTCCAATTAATGATCTTTTCA
LR-Fluo-54	TGTGTGTGTGTGT ATATGATACTAGCTGAGAGTAACAGCATTAAA
LR-Fluo-55	TGTGTGTGTGTGT GAGAAAGGTATTTTTGGTAGCCAGTAACCAAT
LR-Fluo-56	TGTGTGTGTGTGT TGAGTAATTCGGTTGTATTGCTGAGTAGCTCA
LR-Fluo-57	TGTGTGTGTGTGT TTAGAACCTACTTTTGAGAGGTCAGTACGGTG
LR-Fluo-58	TGTGTGTGTGTGT CCGATAGTATGACAACCTCATCTTAAATACGT
LR-Fluo-59	TGTGTGTGTGTGT CTTTCGAGATATTCGGAGGCGAAATAAAAGTT
LR-Fluo-60	TGTGTGTGTGTGT GGAGCCTTAGCGGAGTTGCTCAGTTGTATCAC
LR-Fluo-61	TGTGTGTGTGTGT TCCAATCGATTTATCAAATTTACG
LR-Fluo-62	TGTGTGTGTGTGT TTCTGTAATAGATTAAGAAACAAT
LR-Fluo-63	TGTGTGTGTGTGT CTTAACATGTAATAGACGCGAACT
LR-Fluo-64	TGTGTGTGTGTGT AACTATCGAATTAACCAAAATACC
LR-Fluo-65	TGTGTGTGTGTGT TTGGAACAATCACCGACACTGCCC
LR-Fluo-66	TGTGTGTGTGTGT ACTCCGTTTTCAACCACCGTGGGA
LR-Fluo-67	TGTGTGTGTGTGT AGGGTAGCCCGGAGACGGATAGGT
LR-Fluo-68	TGTGTGTGTGTGT AAGCTAAAGTGTAGGTTCAAAGCG
LR-Fluo-69	TGTGTGTGTGTGT CCCTGTAACTCATATACAGGTCAG
LR-Fluo-70	TGTGTGTGTGTGT TTCCGACATGCGCAACTATACCAA
LR-Fluo-71	TGTGTGTGTGTGT TAACCGATGTGAATTTTTTGTATC

core Face-1 Fluo handle Face-1 Fluo handle

core core core

LR-Fluo-72	TGTGTGTGTGTGT ACAGTTTCTAATTGTAGCCTATTT
LR-Fluo-73	TGTGTGTGTGTGT TATTTTAGTAGAAAAATATCATAT
LR-Fluo-74	TGTGTGTGTGTGT ATATGTGATTTCATTTATGATGAA
LR-Fluo-75	TGTGTGTGTGTGT CAGGAAAAAATACCTGTCACACG
LR-Fluo-76	TGTGTGTGTGTGT ATCCAGAAAATGGTCCCAAGCGGA
LR-Fluo-77	TGTGTGTGTGTGT ATCAAAAGAAATCCTGCCCTTCAC
LR-Fluo-78	TGTGTGTGTGTGT GATGAACGAACTAGCAATTGTAAA
LR-Fluo-79	TGTGTGTGTGTGT TTGCCTGAATAATCAGAAAACAGG
LR-Fluo-80	TGTGTGTGTGTGT AGCAATAACTATATTTGTTTGACC
LR-Fluo-81	TGTGTGTGTGTGT CATACAGGGTGGCATCTTGATTCC
LR-Fluo-82	TGTGTGTGTGTGT GGATCGTCGCGAAAGATTTCATGA
LR-Fluo-83	TGTGTGTGTGTGT AGGCTTGCGGCCATGTGAACCTAC
LR-Fluo-84	TGTGTGTGTGTGT GTAAATGAAGTACAAAACCCTCAT
LR-Fluo-85	CCGGAATCATAATTACTTAATTTCAGGCATTT
LR-Fluo-86	TAATTACATTTAACAAGTGAATAAAAGGAGGC
LR-Fluo-87	TTTTTTAATGGCATGGACGCTAAAGGACATTC
LR-Fluo-88	ACGCTCAATCGTCTGACAATATTATGACCTGA
LR-Fluo-89	TTGCCCCAGCAGGCGAAATAGCCCGTGGTTTT
LR-Fluo-90	TGGTTCCGAAACGTAAGTAATTCGTAAAATTC
LR-Fluo-91	ATATGTACCCCGGTTGGAGTCTGGTCATTTTT
LR-Fluo-92	TCAATAACCTGTTTAGAGCCTCAGATAATGCT
LR-Fluo-93	GGCGCGAGCTGAAAAGCAAGGCAACAACTAAA
LR-Fluo-94	TAATAGTAGTACAGCAACCCTGCAAACGGGTA
LR-Fluo-95	GAACGAGGGTAGCAACAGGGAGTTCACCAACC
LR-Fluo-96	ACTGAGTTTCGTCACCATTTTCTGGGAATAGG
LR-Fluo-97	GCGTTATAGCACCCAGCCGGTATTCGTCAAAAGACGGGAG
LR-Fluo-98	ACAAACATAATTCATCTACCATATAGACATTAAGTAAATA
LR-Fluo-99	ACCAGTAAATAATCAACCTCACTTATTAGAGCTTTGCCCG
LR-Fluo-100	TTATTTACAGTTGAAAAGCATCACATTTAGAATTACAAAC
LR-Fluo-101	CGCCTGGCCAGGGCTTCTCGAATTCTCGTCGGAGTGACTC
LR-Fluo-102	CGTTAATAGATTGCGGATCGGAAACAGTGCCACCCCGCTT
LR-Fluo-103	AAGATTGTGCGAAAGGCCATTCAGGGATGTTCGTCAACCT
LR-Fluo-104	ATTAGATACCTCGTTTTATTCATTGCATAATATACGTCGA
LR-Fluo-105	CAATTCTGTAGCGAGAGATAGCGTTTACAGGTTTATACCA
LR-Fluo-106	GGAAGTTTAGATAGGCGCGCAGGGGATAAGGCTAATTACCT
LR-Fluo-107	AGAGGCIICIIGACAAGAAAGAGGGAGIAGIAGAGAIGGI
LR-Fluo-108	
LR-Fluo-109	
LR-Fluo-110	
LR-FIU0-111	
LR-FIU0-112	
LR-FIU0-113	
LR-FIUO-114	
LR-FIUO-115	
LR-FIUO-110	
LR-Fluo-117	
LR-FIU0-110	
LR-Fluo-120	GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC
R-Fluo-121	GAGCGTCTTTGTTTAACTAAGAACTCATCGTA
LR-Fluo-122	
LR-Fluo-123	
LR-Fluo-124	TTATCTAAATTTGAGGCTTGCTGAGTGCCACG
LR-Fluo-125	
I R-Fluo-126	GACTGAATGGCCTGGCGACGGACGAGGATTCCACA
LR-Fluo-127	CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC
LR-Fluo-128	GTAAGAGCATTCATGCGAAAACCACCGGATCC
LR-Fluo-129	ATACATAACAACATTACCAATACTGAAAACGA
LR-Fluo-130	CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC
LR-Fluo-131	TTACCCAAACCAGAACACAGATGAAGACGGTC
LR-Fluo-132	CCGGAACCTAGCGACACTTGATATATAAATCC
LD Eluo 122	
LK-FI00-133	AGCAGCCTTATCTGAATTATCCAG

Face-1 Fluo handle Face-2 core Face-3 core

LD Elue 125		Face 2 core
LR-FIU0-135		
LR-FIUO-136		Face-3 core
LR-FIUO-137		Face-3 core
LR-FIU0-138		Face-3 core
LR-FIUO-139		Face-3 core
LR-FIU0-140		Face-3 core
LR-Fluo-141		Face-3 core
LR-Fluo-142	CGAGAAACATCAACGTCTTCATCA	Face-3 core
LR-Fluo-143	GTAATCAGAGAGCCACGCCTCCCT	Face-3 core
LR-Fluo-144	TAGCGTCAGCCATCTTCACCCTCA	Face-3 core
LR-Fluo-145	AATTAACTCCAATAATTCCTTATC	Face-3 core
LR-Fluo-146	ACATAAAAAATAGCTAAACAGTAC	Face-3 core
LR-Fluo-147	AACGTTATAAGTAAGCTTTTCAGG	Face-3 core
LR-Fluo-148	AATTCGACAGGAAACCCAGAAGAT	Face-3 core
LR-Fluo-149	TATGATACACCCAAAAGTGCCTAA	Face-3 core
LR-Fluo-150	CTAATCTAATTACGCAACGAGCCG	Face-3 core
LR-Fluo-151	TATGACAACATACATAATCTGCCA	Face-3 core
LR-Fluo-152	CTTAAGTGGCAAAGACATATCGCG	Face-3 core
LR-Fluo-153	GTCAGGACACAATCAAAAAAGATT	Face-3 core
LR-Fluo-154	TATGCGATCGCCAAAGTATTATAG	Face-3 core
LR-Fluo-155	TTAATTTCTGAGGGAGTGTGTCGA	Face-3 core
LR-Fluo-156	TGAAACCAATTCATTATGCCTTGA	Face-3 core
LR-Fluo-157	AGCATGTAAATAATCGTACCGCGCGCGCATTAATGAAAAT	Face-4 core
LR-Fluo-158	AACGGATTCAGATGAACGTAAAACAAAGTTTGTCATTTTG	Face-4 core
LR-Fluo-159	GATAGCCCGGTGAGGCAACACCGCTTAAATCCCGTCAATA	Face-4 core
LR-Fluo-160	GAATCACACTAACCGACAGCAGCACGGAGACTGTATTCCC	Face-4 core
LR-Fluo-161	GCTTTCCAAAGTGTAATTGTTATCCGCCCTGGTGGGCACG	Face-4 core
LR-Fluo-162	ACAAACGGGGACGACGCCTCAGGACAAAATAAAGCTTTCT	Face-4 core
LR-Fluo-163	CACGTTGGCGCATCGTGGCACCGCGCTGAATTTTCTAAGT	Face-4 core
LR-Fluo-164	AACCAGACGCCCGAAATGCTTTAAGAAAAATCAAACGAAC	Face-4 core
L R-Fluo-165	GATTAGAGAAAGCGGAATAAATCACTGGCTCAAGAAAGAT	Face-4 core
LR-Fluo-166	GCGCGAAAACCTGCTCAGCCGGAATCATTGTGTGCCCTGA	Face-4 core
LR-Fluo-167	ATCTATAAGCCCGGGCCGGGAACCGAGCGGCTTAATTGACC	Face-4 core
LR-Fluo-168	CGGAACCTGTTTTAACGCCAGAATCCGGAAACTTTGCCTT	Face-4 core
I R-Fluo-169	CTTCAATCGAAACTTAGGTAAAGTAGAACGCGTTCAAATA	Face-4 core
LR-Fluo-170	TTTAACGTCGCCTGATACCAAGTTTATTAATTAAATCAAT	Face-4 core
LR-Fluo-171	ΔΑΔΑΓΑGATAΔΑΔΑCATATATTTTTTGAGTAGACATTGCΔΑ	Face-4 core
LR-Fluo-172	TGAGTGAGTTAATTGCGGAGAGGCGGTGTGTGTTGTTGAAAT	Face-4 core
LR-Fluo-173	GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA	Face-4 core
LR-Fluo-174	GTTTGAGGCGGATTGAATGTGAGCTAAATTAAAGAGAATC	Face-4 core
LR-Fluo-175		Face 4 core
LR-Fluo-176		Face 4 core
LR-Fluo-170		
LR-Fluo-170		
LR-Fluo-179		Face-4 core
LR-FIUO-180		Face-4 core
LR-FIU0-181		Face-4 core
LR-FIU0-182		Face-4 core
LR-FIUO-183		Face-4 core
LR-Fluo-184		⊢ace-4 core
LR-FIU0-185		⊢ace-4 core
LR-Fluo-186	GUAAAUG IAGAAAAIAI GI CCCGCAGAI CGCA	⊢ace-4 core
LR-Fluo-187	AACATATAAAAGAAACTCCTTAGTTTCTGGTG	⊢ace-4 core
LR-Fluo-188		⊢ace-4 core
LR-Fluo-189		Face-4 core
LR-Fluo-190	GCGACALICAACCGATAACTTTAACGAGGCGC	Face-4 core
LR-Fluo-191		⊢ace-4 core
LR-Fluo-192	ITATCACCGTCACCGATAGCAAGGGGAAAGCGCAGTCTCT	Face-4 core

DNA Strands of Large Rod (LR) for AuNP Cellular Internalization Study

	- , , ,	-
Name	Sequence	Note
LR-Au-1	CCAGACGAGGAATCATGCTGTCTTAAGAGCAA	core
LR-Au-2	CGACAAAACATCGGGAGACGCTGAGAAGAGTC	core

LR-Au-3	GCGCATACTATTTGCATATACAGTTCTTACCG
LR-Au-4	TTATGAATTGCTTATGATCCTTGAAAACATAG
LR-Au-5	ATTAGTCTCGTGTATTGGTCAAGAAGATAGCC
LR-Au-6	CACAGACACGCCATTAGTTGTAGCAATACTTC
LR-Au-7	ATACGTGGCTGAGAGCACCACCAGGAGGAAAC
LR-Au-8	ACGCGCGGGTTGCGCTGTAAAAGAGTCTGTCC
LR-Au-9	ATCGGCCAGTGTGAAAAGCCTGGGGAACTGGC
LR-Au-10	GATTCGTGACCTGTCTACGTCAAAGGGCGAAA
LR-Au-11	ACCCGTCGCAAATCGGACAGTCATGTATGTTA
LR-Au-12	AACATTAACCGTAATGAGTCAAATCACCATCA
LR-Au-13	CTTTCATCAGCTTTCCAACCGTGCAAGGTGGC
LR-Au-14	CGCGTCTGTTCGAGCTAAAGATTCAAAAGGGT
I R-Au-15	ATATAATTCCCTCAAAGACTTCAAACCACGGA
I R-Au-16	GATGGCTTAACTCCAATTTTAAATGCAATGCC
LR-Au-17	TTTTTGCGGAATGACCTTGCATCATAGAAAAT
I R-Au-18	AGCGCTCCTAATTGATGCAAGGATAAAAATTT
I R-Au-19	TGACCCCCCCTTACTTCATGTGACACAAAAGG
LR-Au-20	
LR-Au-21	GAGGCAAAAATCATAATGATAAATGGAAGGTA
LR-Au-22	GATAAGTGTGCCCCCTTCGGTTTATCAGCTTG
LR-Au-22	
LR-Au-29	
LR-Au-30	
LR-Au-31	
LR-Au-32	
LR-Au-33	
LR-Au-34	
LR-Au-35	
LR-Au-36	
LR-Au-37	
LR-Au-38	
LR-Au-39	
LR-Au-40	
LR-Au-41	
LR-Au-42	
LR-Au-43	
LR-Au-44	
LR-Au-45	
LR-Au-46	
LR-Au-47	
LR-Au-48	GTTGAGGCCGTACTCAGAGCCACCCTACAACG
L D A., 40	
LR-Au-49	
LR-Au-50	
LR-Au-51	
LR-Au-52	AAAAAAAAAAAAAAAAAAAAAAAAAAAATCACGCAGCCTTGCTGGTTAAGAAAGCGTTG
LR-Au-53	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-54	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-55	AAAAAAAAAAAAAAAAAAAA GAGAAAGGIAIIIIIGGIAGCCAGIAACCAAI
LR-Au-56	AAAAAAAAAAAAAAAAAAA IGAGTAATICGGTIGTATIGCTGAGTAGCTCA
LR-Au-57	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-58	AAAAAAAAAAAAAAAAAAAAAACCGATAGTATGACAACCTCATCTTAAATACGT
LR-Au-59	AAAAAAAAAAAAAAAAAAAAAA CTTTCGAGATATTCGGAGGCGAAATAAAAGTT
LR-Au-60	AAAAAAAAAAAAAAAAAAAAAAGGAGCCTTAGCGGAGTTGCTCAGTTGTATCAC
LR-Au-61	AAAAAAAAAAAAAAAAAAAAA TCCAATCGATTTATCAAATTTACG
LR-Au-62	AAAAAAAAAAAAAAAAAAAA TTCTGTAATAGATTAAGAAACAAT
LR-Au-63	AAAAAAAAAAAAAAAAAAAA CTTAACATGTAATAGACGCGAACT
LR-Au-64	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTATCGAATTAACCAAAATACC
LR-Au-65	AAAAAAAAAAAAAAAAAAAA TTGGAACAATCACCGACACTGCCC
LR-Au-66	AAAAAAAAAAAAAAAAAAAAAAAACTCCGTTTTCAACCACCGTGGGA

core core core core Face-1 AuNP handle Face-1 AuNP handle

core core

I R-Au-67	
LR-Au-69	
LR-AU-70	
LR-Au-71	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-72	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-73	AAAAAAAAAAAAAAAAAAAA TATTTTAGTAGAAAAAATATCATAT
LR-Au-74	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-75	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-76	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-77	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-78	AAAAAAAAAAAAAAAAAAA GATGAACGAACTAGCAATTGTAAA
LR-Au-79	AAAAAAAAAAAAAAAAAAAA TTGCCTGAATAATCAGAAAACAGG
LR-Au-80	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LR-Au-81	AAAAAAAAAAAAAAAAAAAA CATACAGGGTGGCATCTTGATTCC
LR-Au-82	AAAAAAAAAAAAAAAAAAAA GGATCGTCGCGAAAGATTTCATGA
LR-Au-83	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
I R-Au-84	
LR-Au-85	CCGGAATCATAATTACTTAATTTCAGGCATTT
LR-Au-86	ΤΔΑΤΤΔΟΑΤΤΤΔΑΟΔΑGTGΔΑΤΔΔΔΔGGGGGG
LR-Au-o/	
LR-Au-88	
LR-Au-89	
LR-Au-90	IGGIICCGAAACGIAAGIAAIICGIAAAAIIC
LR-Au-91	AIAIGIACCCCGGIIGGAGICIGGICAIIIII
LR-Au-92	TCAATAACCTGTTTAGAGCCTCAGATAATGCT
LR-Au-93	GGCGCGAGCTGAAAAGCAAGGCAACAACTAAA
LR-Au-94	TAATAGTAGTACAGCAACCCTGCAAACGGGTA
LR-Au-95	GAACGAGGGTAGCAACAGGGAGTTCACCAACC
LR-Au-96	ACTGAGTTTCGTCACCATTTTCTGGGAATAGG
LR-Au-97	GCGTTATAGCACCCAGCCGGTATTCGTCAAAAGACGGGAG
LR-Au-98	ACAAACATAATTCATCTACCATATAGACATTAAGTAAATA
LR-Au-99	ACCAGTAAATAATCAACCTCACTTATTAGAGCTTTGCCCG
LR-Au-100	TTATTTACAGTTGAAAAGCATCACATTTAGAATTACAAAC
LR-Au-101	CGCCTGGCCAGGGCTTCTCGAATTCTCGTCGGAGTGACTC
LR-Au-102	CGTTAATAGATTGCGGATCGGAAACAGTGCCACCCCGCTT
LR-Au-103	AAGATTGTGCGAAAGGCCATTCAGGGATGTTCGTCAACCT
LR-Au-104	ATTAGATACCTCGTTTTATTCATTGCATAATATACGTCGA
LR-Au-105	CAATTCTGTAGCGAGAGATAGCGTTTACAGGTTTATACCA
LR-Au-106	GGAAGTTTAGATAGGCGCGCAGGGATAAGGCTAATTACCT
LR-Au-107	AGAGGCTTCTTGACAAGAAGAGGGGAGTAGTAGAGATGGT
LR-Au-108	TTTCAGGGCCACCCTCCGATTGGCGAATCAAGGTCACCAA
I R-Au-109	ATGATGGCCAAGAAAAAGAATATACCTACTTTAGAAATGC
I R-Au-110	TTTGGATTTAATGAGCTTACCAAGCAGTACATAATTTTCC
LR-Au-111	
LR-Au-112	
LR-Au-113	
LR-Au-114	
LR-Au-115	
LR-AU-116	
LR-Au-117	
LR-Au-118	AGAGIAAIIGAGGACIIACGAAGGAAAGGCCGCCCACGCA
LR-Au-119	CAGAGCCGATAGCAAGTATAGCCCTATGGGATAACTTTCA
LR-Au-120	GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC
LR-Au-121	GAGCGTCTTTGTTTAACTAAGAACTCATCGTA
LR-Au-122	TTCCTGATTTACAGAGCAAAATCAAAGCAAAT
LR-Au-123	TAACCACCAGAAATAGCTGAATAAAGAAATTG
LR-Au-124	TTATCTAAATTTGAGGCTTGCTGAGTGCCACG
LR-Au-125	ATTTCTCCGTAAGCAACGTAATCATGTTTCCT
LR-Au-126	GACTGAATGGCCTGGCGACGGAGGATTCCACA
LR-Au-127	CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC
LR-Au-128	GTAAGAGCATTCATGCGAAAACCACCGGATCC
LR-Au-129	ATACATAACAACATTACCAATACTGAAAACGA

Face-1 AuNP handle Face-2 core Face-3 core

Face-3 core

LR-Au-130	CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC
LR-Au-131	TTACCCAAACCAGAACACAGATGAAGACGGTC
LR-Au-132	CCGGAACCTAGCGACACTTGATATATAAATCC
LR-Au-133	AGCAGCCTTATCTGAATTATCCAG
LR-Au-134	CGGAACAAAGAAGGAGCCTGATTG
LR-Au-135	GATAATACAATATCTTCAGTTGGC
LR-Au-136	TGCCATCTGAACTCTGTGGTGTAA
LR-Au-137	AATATAGGCGGCTGACTGGTGCTT
LR-Au-138	CAGGAGAATTCCCAGTGCTATTAC
LR-Au-139	GGTTGTGAAACAGGCGCTGCAACT
LR-Au-140	TAACGGAACGCCAAAAACGATAAA
LR-Au-141	TCATCAGTGAATACCACAAAAGAA
LR-Au-142	CGAGAAACATCAACGTCTTCATCA
LR-Au-143	GTAATCAGAGAGCCACGCCTCCCT
LR-Au-144	TAGCGTCAGCCATCTTCACCCTCA
LR-Au-145	AATTAACTCCAATAATTCCTTATC
LR-Au-146	ACATAAAAAATAGCTAAACAGTAC
LR-Au-147	AACGTTATAAGTAAGCTTTTCAGG
LR-Au-148	AATTCGACAGGAAACCCAGAAGAT
LR-Au-149	TATGATACACCCAAAAGTGCCTAA
LR-Au-150	CTAATCTAATTACGCAACGAGCCG
LR-Au-151	TATGACAACATACATAATCTGCCA
LR-Au-152	CTTAAGTGGCAAAGACATATCGCG
LR-Au-153	GTCAGGACACAATCAAAAAAGATT
LR-Au-154	TATGCGATCGCCAAAGTATTATAG
LR-Au-155	TTAATTTCTGAGGGAGTGTGTCGA
LR-Au-156	TGAAACCAATTCATTATGCCTTGA
LR-Au-157	AGCATGTAAATAATCGTACCGCGCGCGCATTAATGAAAAT
LR-Au-158	AACGGATTCAGATGAACGTAAAACAAAGTTTGTCATTTTG
LR-Au-159	GATAGCCCGGTGAGGCAACACCGCTTAAATCCCGTCAATA
LR-Au-160	GAATCACACTAACCGACAGCAGCACGGAGACTGTATTCCC
LR-Au-161	GCTTTCCAAAGTGTAATTGTTATCCGCCCTGGTGGGCACG
LR-Au-162	ACAAACGGGGACGACGCCTCAGGACAAAATAAAGCTTTCT
LR-Au-163	CACGTTGGCGCATCGTGGCACCGCGCTGAATTTTCTAAGT
LR-Au-164	AACCAGACGCCCGAAATGCTTTAAGAAAAATCAAACGAAC
LR-Au-165	GATTAGAGAAAGCGGAATAAATCACTGGCTCAAGAAAGAT
LR-Au-166	GCGCGAAAACCTGCTCAGCCGGAATCATTGTGTGCCCTGA
LR-Au-167	ATCTATAAGCCCGGCCGGGAACCGAGCGGCTTAATTGACC
LR-Au-168	CGGAACCTGTTTTAACGCCAGAATCCGGAAACTTTGCCTT
LR-Au-169	CTTCAATCGAAACTTAGGTAAAGTAGAACGCGTTCAAATA
LR-Au-170	TTTAACGTCGCCTGATACCAAGTTTATTAATTAAATCAAT
LR-Au-171	AAAACAGATAAAACATATATTTTTTGAGTAGACATTGCAA
LR-Au-172	TGAGTGAGTTAATTGCGGAGAGGCGGTGTGTTGTTGAAAT
LR-Au-173	GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA
LR-Au-174	GTTTGAGGCGGATTGAATGTGAGCTAAATTAAAGAGAATC
LR-Au-175	TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA
LR-Au-176	AAGAGGAACGGAAGCAAGAGCTTAACCAAAAACAAAATTA
LR-Au-177	TCAGAAGCAGTACCTTTTTTGATACGGGAGAACAATAAAT
LR-Au-178	AATCCGCGCAAAGTACCTAAAACAAACCATCGCTTTTGCG
LR-Au-179	GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG
LR-Au-180	GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA
LR-Au-181	GAAACAATGAAATAGCACAGGGAACCAATAGC
LR-Au-182	AAGCCCTTTTTAAGAATAATTTTAAGAAATAA
LR-Au-183	GAACAAAGTTACCAGAAACTCGTACTGCAACA
LR-Au-184	GCAATAATAACGGAATCGACAGTGAATATAGC
LR-Au-185	ATGATTAAGACTCCTTTTTACGCTCGCTCACA
LR-Au-186	GCAAACGTAGAAAATATGTCCCGCAGATCGCA
LR-Au-187	AACATATAAAAGAAACTCCTTAGTTTCTGGTG
LR-Au-188	ATAAGTTTATTTTGTCGTTGGGAAACAGTTCA
LR-Au-189	TCATATGGTTTACCAGTTTAAGAAAAAATCAG
LR-Au-190	GCGACATTCAACCGATAACTTTAACGAGGCGC
LR-Au-191	AATATTGACGGAAATTTCGATAGCAACAACAA

Face-3 core Face-4 core

	DNA Strands of Large Tetrahedron (LT)	
Name	Sequence	Note
LT-Fluo-1	GCAAGAGTCTGGAGCAATAATGCCGCCTACAAATACCC	Core
LT-Fluo-2	GCGAAGAATACGTGGCATGGCCAAACGACCACTTGCTG	Core
LT-Fluo-3	GATGTGCTTTCCTCGTTGATTAAATTGCCTG	Core
LT-Fluo-4	ATAGCTTTGACGAGCACGAACGGTTTTGATTAGTAATACCAG	Core
LT-Fluo-5	AACAGGTGAGAAAGGCCCAACCGTCGTCTGAAACAGGA	Core
LT-Fluo-6	ACAGTCAAATCAACCTGAAAGCGTCGAACTGATAGCCCCACCAGTTGCCCCAGTGCTTG	Core
LT-Fluo-7	TCAGCTTCTAATCTATTCACATAAAAGATCGGGACGACGAGA	Core
LT-Fluo-8	CGGAAGCATAAAGTGTAGGGAGAGGCGGTCAAGGCGATTCGC	Core
LT-Fluo-9	CTGCGCTCACAATTCCAAATGAGTTGGTGGTGCTCAATTCTA	Core
LT-Fluo-10	CTATTCCTGTGTGAAATCTACGTGGCAGGCGTATTTACATCA	Core
LT-Fluo-11	GAAATTAAATGTGAGCGAGTAAAATGTTTGGATTATACCGGTGCGGCCAGCTCGGCTGA	Core
LT-Fluo-12	GAGGCTGATTATCAGATGATGTGCTCGGCAACTCCTGG	Core
LT-Fluo-13	CTGATTCATCAATATAATACGCCACCTCAGGATCATTT	Core
LT-Fluo-14	AGTGCCCTGGAGTGACTCTTGAATTTCCGGCCGTGCATTTCT	Core
LT-Fluo-15	TTCTAAGTGGTTGTGAACCGACAGTGCGGCCC	Core
LT-Fluo-16	TTCCCATTAGTAATCATACCCAAACTGACCTTCATCAACTTA	Core
LT-Fluo-17	CGTTCGTAACACCGCTTTTGGGAAGGCCAGTGCCAAGCTTTCTCAGG	Core
LT-Fluo-18	CAATTTGAGGCACTCCAGGCCTCTGTCACGACGTTGTACTTA	Core
LT-Fluo-19	ACAGTTCAAACTCCAACAGCCCTCGTTTCTCAAATTAAA	Core
LT-Fluo-20	AAATTGAGGCAGCCGCCAAAGCTAAATCGGTATTCATTTGTGAATCACTACG	Core
LT-Fluo-21	CTAGGCATCAATTCTGATCGCAAAAGTACGG	Core
LT-Fluo-22	AGCGGAATTACGAGGCAACTAACGTAGG	Core
LT-Fluo-23	GGGTGGGAACCATCAACTAATGGAAGGGTTAGAACCTA	Core
LT-Fluo-24	TCAACCAACCCGTCGGACTGCCAGGAGTCCA	Core
LT-Fluo-25	GTAGTTTCAGGCATTCCAACGTTAGTCCAAAAAAAGGCTCCAAAAGG	Core
LT-Fluo-26	ATTGGAGACATCGCCATTAAAAATCGCCAGGTGTTTGAAAACAGG	Core
LT-Fluo-27	GCTTACAGGGCGCGTACAGAAGTGTAACCGTTGTAGCACCAT	Core
LT-Fluo-28	CTAACACCAGTCAGGACAAACAAAGCTTTAA	Core
LT-Fluo-29	TCTCGCTGCGCGTAACCGGAACCCTCGAGGTGCCGTAAGGTT	Core
LT-Fluo-30	TTCGAACGAGTGCGATTTGCAAGAACCGGATTGTA	Core
LT-Fluo-31	CCGCGCTGGCAAGTGTAGATTTAGCCCAAATCAAGTTTGGAA	Core
LT-Fluo-32	CTGTAGCCAGCTTTAAACGGCGGATTGACC	Core
LT-Fluo-33	GGTGTAGATGGGCGCAGGACTCCAACGTCAAA	Core
LT-Fluo-34	TAATGGTCAAGAGATGGCTGCTCACAGACCAGGCGCATACGG	Core
LT-Fluo-35	TATTCCTGATAGGCTATCAGGTCATTTTTGAGACAGTATGTTGTT	Core
LT-Fluo-36	ATCGGAACGCCCTCATAG	Core
LT-Fluo-37	TCAGGCTGCGCAACTGCTGGTGCACGAATA	Core
LT-Fluo-38	ATGGTCAGATAAAGGGTCCACCAGTCACCAGA	Core
LT-Fluo-39	TTTTCACCAGCCATGTAAGCCAGATTCATTGAATCCCCACCA	Core
LT-Fluo-40	GACAATCCCTTATAAGGGCTGGCGGGTAACGCCAGGGTATTG	Core
LT-Fluo-41	TCGGTGGGCCGGAAACCA	Core
LT-Fluo-42	AACGATTCACGCTGGTTGAGACGGCGTGCCAGCTGCATTGAG	Core
LT-Fluo-43	TGCAATGGATAAAATCCGTGGTTTTCGGCCAACGCGCGAAGC	Core
LT-Fluo-44	CAAGCGCAAAGAATTGGGCTTTAACCTGAAAA	Core
LT-Fluo-45	ATTATTGCTTTCAAACTAAAGGAATTGCGCGCCGAATATATTCGGTCGCAGAC	Core
LT-Fluo-46	TTTGTCGTCTTTCCAGCAGACAGAGGGTAG	Core
LT-Fluo-47	GAGCCACCCTCATAAAGATTCATCAGTTG	Core
LT-Fluo-48	AGCGAAAGGAGCGGGCAGCCGGCGGCCCACTACGTGAAGAA	Core
LT-Fluo-49	AACTACAAACGTATGGGAATTTTTTCACGTTAACA	Core
LT-Fluo-50	TTTACGATTGGAGAATGACCATAAAAAGCGAGCTCCTTTTGATAAAAGT	Core
LT-Fluo-51	TCCGAATTTAGTTAAATCAGCTCATAAACAAAGTTTCGTTCATGA	Core
LT-Fluo-52	TGAGTCATACAAAAATTCGCATTAAGCGGAGTTAAGAAAACGGGT	Core
LT-Fluo-53	AGGATCAGGTCTTTACCTCGCGTTTTTTTGCGGATGGCCAAC	Core
LT-Fluo-54	GGTTTATAGTCAGAAGCAAGCCCGTTAATTG	Core
LT-Fluo-55	AGAGGGTTGATATACCCTCAGAACCGCCAC	Core
LT-Fluo-56	TAGAATAATTCGCGTCTGGCCTTC	Core
LT-Fluo-57	AAACCCGGAATAGGTGTATCACGGACCAATAGGAACGCATTTTCTTACAACGGCTTTGA	Core
LT-Fluo-58	TTTAAAAGCGCAGTCTCTTCATTAACCGTAACCGTTAAT	Core
LT-Fluo-59	TTTCCGTTCCAGTAAGCTATTCACGTTCTGCCCAATTG	Core
LT-Fluo-60	CCAAGAACCACCACCAGAGGTCAGAGTTTGAATTCCAT	Core
LT-Fluo-61	CATGCCAGCATTACTAATAGTAGTAGCAATAAAGCCTCAACAAAGTTTAATTAA	Core
LT-Fluo-62	TTAAGCATTAACATCCACGAGCTGTTTAGCTATGTTTT	Core

LT-Fluo-63	GGATTTTGACTCCGAAATGTTGCGTATTGGGACCG	Core
LT-Fluo-64	GAGTCATCAAAAGAATAGGAGAGGCCGCCGC	Core
LT-Fluo-65	TATCAGCTTGCTTTCGTTTGCGGGATCGTCAC	Core
LT-Fluo-66	GCTTGCAGGGAGTTAAATACAGAGCCTGTAGGATA	Core
LT-Fluo-67	CCTGCTCCATGTTAGAGTAATCTTGAAGAATAGAAATCGCGA	Core
LT-Fluo-68	GCCATCGCCTGATAAATGTAATGCTACCTTATAGA	Core
LT-Fluo-69	TCAAGTACAACGGAGATCAACCTATCAACTTATACATTCAGG	Core
LT-Fluo-70	GCTTAATGAGGCCACCGAGCACTAAATCACCACACGTAGCTATTGC	Core
LT-Fluo-71	CAGGGCGATGAACGTGGC	Core
LT-Fluo-72	AACAGAACCCTTCTGCCATTGGCAAATATTA	Core
LT-Fluo-73	GTTTAGACTGGATAGCAAAGAAGTGCAGATACATAACCAG	Core
LT-Fluo-74	ATAATCGTACTCAGGAGAGCCCAAGAACAAC	Core
LT-Fluo-75	TTCAACTAATTTTGCCAG	Core
LT-Fluo-76	AACAAAGTCAGAGGGTGCGCATTAATAAACAGCCATACTTA	Core
LT-Fluo-77	AACGAATTGCGTAGATTTTGAATAATTTTAT	Core
LT-Fluo-78	AAGAGCATGTTAGCAAACGCAA	Core
LT-Fluo-79	ACATTATCTATTAGACTAAAGTAT	Core
LT-Fluo-80	TCTGTTGAAATATCTGGATTTTCGGTCATAGGGGTATTAAGAACGCAGTATA	Core
LT-Fluo-81	AGAAAAACGTCACCAAAACCATTTGGGCGACA	Core
LT-Fluo-82	AACTCCCAATCCAAATAAGCTACACCAAGTTAATT	Core
LT-Fluo-83	AGCATTTTTTGTTTAACATTA	Core
LT-Fluo-84	AAATGATTAAGCCGCACTAAACATTTGTCCTCAA	Core
LT-Fluo-85	CAGTTACAAAGACGGGAG	Core
LT-Fluo-86	CCATTCGCCTTGATGAACCTTTTTAGACGCTGAGAAGAGTCAATAGT	Core
LI-Fluo-87	GACAGCAACACIAICAIAAAI	Core
LI-Fluo-88	GCAGTITAGTACTGCGGAATCGTCAAAT	Core
LI-Fluo-89		Core
LT-Fluo-90		Core
LT-Fluo-91	GAUCATIAAATTTAGUTUUAATUUAAGAAUUUUU	Core
LT-Fluo-92		Core
LT-Fluo-93		Core
LT-Fluo-94		Core
LT-Fluo-96		Core
LT-Fluo-97	GTGATAAATTCAAGAAAA	Core
LT-Fluo-98	GAGAAGGTGTGAGTGAATTATAAAAAGC	Core
LT-Fluo-99		Core
LT-Fluo-100	TAGTCATTTCACAAAATTAGATTACCACAAGAATTGAGAAAT	Core
LT-Fluo-101	GCCAGTAATAAGAGAATCGCTCAATTATCCGACTTGAGATCA	Core
LT-Fluo-102	TGTACCGACAAAAGGTATTCTTACCGAGGCGGGTG	Core
LT-Fluo-103	TTCATATTTACTTAATCAATAAAAACAACACATT	
		Core
LI-Fluo-104	TCTGAGAGACTACCTTTCTGACCTAAATTTAA	Core Core
LT-Fluo-104 LT-Fluo-105	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC	Core Core Core
LT-Fluo-104 LT-Fluo-105 LT-Fluo-106	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG	Core Core Core Core
LT-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC	Core Core Core Core Core
LI-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT	Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109	TCTGAGAGACTACCTTTCTGACCTAAATTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT	Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT	Core Core Core Core Core Core Core Core
L1-FIU0-104 LT-FIU0-105 LT-FIU0-106 LT-FIU0-107 LT-FIU0-108 LT-FIU0-109 LT-FIU0-110 LT-FIU0-111	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-112	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAATGGAGCCAGAGGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-111 LT-Fluo-111 LT-Fluo-113	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCATAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-111 LT-Fluo-111 LT-Fluo-113 LT-Fluo-114	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAGATAGCCAGAGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-111 LT-Fluo-111 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGAGCCAAAGAGAT GGCATTTTGAGAATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-111 LT-Fluo-111 LT-Fluo-112 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGAGCCAAAGAGAT GGCATTTTGAGAATAGCGAATGGCCAAAGGGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-111 LT-Fluo-112 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGAGCCAAAGAGAT GGCATTTTGAGAATAGCGAATGGCCAAAGGGGC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-111 LT-Fluo-112 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117 LT-Fluo-118	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGAGCCAAAGAGAT GGCATTTTGAGAATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117 LT-Fluo-118 LT-Fluo-119	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGAGCCAAAGAGAGT ACCCATAAATACATAGCGATAGCTTAGG GCGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-109 LT-Fluo-110 LT-Fluo-111 LT-Fluo-112 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117 LT-Fluo-118 LT-Fluo-119 LT-Fluo-120	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGACCAAAGAGAGA ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-113 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117 LT-Fluo-118 LT-Fluo-119 LT-Fluo-120 LT-Fluo-121	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGACCAAAGAGACT ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117 LT-Fluo-118 LT-Fluo-119 LT-Fluo-120 LT-Fluo-121 LT-Fluo-122	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGACCAAAGAGAGA ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117 LT-Fluo-118 LT-Fluo-119 LT-Fluo-120 LT-Fluo-121 LT-Fluo-122 LT-Fluo-123	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGACCAAAAGAGAGA ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAACGAATGAATGACGCAGACGACAATAAAG GCCTTTCCTTATGTCGCTATTCACAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-113 LT-Fluo-114 LT-Fluo-114 LT-Fluo-115 LT-Fluo-117 LT-Fluo-118 LT-Fluo-119 LT-Fluo-120 LT-Fluo-121 LT-Fluo-123 LT-Fluo-124	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGACCAAAGAGAGA ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAACGAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-109 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-113 LT-Fluo-113 LT-Fluo-114 LT-Fluo-114 LT-Fluo-115 LT-Fluo-117 LT-Fluo-118 LT-Fluo-120 LT-Fluo-121 LT-Fluo-121 LT-Fluo-123 LT-Fluo-124 LT-Fluo-125	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGACCAAAGAGAGA ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core
L1-Fluo-104 LT-Fluo-105 LT-Fluo-106 LT-Fluo-107 LT-Fluo-108 LT-Fluo-108 LT-Fluo-110 LT-Fluo-110 LT-Fluo-111 LT-Fluo-113 LT-Fluo-113 LT-Fluo-114 LT-Fluo-115 LT-Fluo-116 LT-Fluo-117 LT-Fluo-118 LT-Fluo-120 LT-Fluo-121 LT-Fluo-121 LT-Fluo-123 LT-Fluo-124 LT-Fluo-126 LT-Fluo-126	TCTGAGAGACTACCTTTCTGACCTAAATTTAA GGCATTTTGAGAATAGCAAATGGACCAGAAGAGAC ACCCATAAATACATAGCGATAGCTTAGG GCGGGGCGAATAACTTTCCCTTAGAATCATGTAAACGCGAGAAAACTTTTTAC AATTTCATTTGAATTAACAAACAAAGGCGT GAGAAACAATAACGGAACGCTAACGAGCGTCT GCTTTCAGGTCGCTAATATCAGAGGAAT AATAGGAAGGATGAAATAACGAATCAAGAGAGAT GTCTTTCCTTATGTCGCTATTCACAGAGGAAT AATAGGAAGGATGAAATAGCAATAAAGACTCACATATAAAAGAAAG	Core Core Core Core Core Core Core Core

LT-Fluo-128	AACCACCAGCAGAAGATAAAAAGCGGAATTATCATCATATTC
LT-Fluo-129	TACAAACAATTCGACAACTCGCTTGCTGAACCTCAAATATCA
LT-Fluo-130	CAGAGGTGAGGCGGTCAGTATATGAAAAATCTAAAGCATCAC
LT-Fluo-131	TATTAAATCCTTTGCCCGAACAACAAAGAAACCACCAGAAGG
LT-Fluo-132	TGTGTGTGTGTGT CCAGTTTTTTGGGGTAAAGGGAGCCCCCGCGG
LT-Fluo-133	TGTGTGTGTGTGT TTACCTCTAGCTGTACTCACATTAATTGAACCTGTGCAACAGTAAT
LT-Fluo-134	TGTGTGTGTGTGT CGCATTTTACGCTCGTCCTTAGTGCTGATTTCCCATCGC
LT-Fluo-135	TGTGTGTGTGTGT TAGGGGCCTATGATATTCATGCGCACGAAAACGACGGGCGATTTCT
LT-Fluo-136	TGTGTGTGTGTGT GTAATATACATCACGGGATTTTAGACAGGTAT
LT-Fluo-137	TGTGTGTGTGTGT CCGCCAGATACTTCACGCCAGAATCCTGTATGGTTTGAT
LT-Fluo-138	TGTGTGTGTGTGT GCTTAAGTGTTATCGGGTGCCTAATGAGTAATGAATTCTTTTTAAA
LT-Fluo-139	TGTGTGTGTGTGT GAGATAGAGTAAAAGAGTCTGTCCATCATCAT
LT-Fluo-140	TGTGTGTGTGTGT AAAACGCCGCAAATTTTTTATAATCAGTGCGCCGCGATAAATACAA
LT-Fluo-141	TGTGTGTGTGTGTTTGGTGTCACAACATACGACCGCCAAAACTCT
LT-Fluo-142	TGTGTGTGTGTGT CTCCGAATAACCCCACCTTATGACAATGTAAGTTGAAAGGGGGGATG
LT-Fluo-143	TGTGTGTGTGTGT CTATTAAACCATCAAGCTTGACGGGGAAGCTA
LT-Fluo-144	TGTGTGTGTGTGT GGAAGTTATAACCGCAATGACAACAACCAGGAACACAGTTTCAATT
LT-Fluo-145	TGTGTGTGTGTGT AAAACGATAGTAAGGACGATAAAAACCAATAA
LT-Fluo-146	TGTGTGTGTGTGT AGAGGCAGAAACAAATCATAAGGGAACCCGGTGTATTCAGTGAAAA
LT-Fluo-147	TGTGTGTGTGTGT ATTATTAGCCAAAAGAGAGGGCTTTTGCAGTCCAATACCGCCAAGTA
LT-Fluo-148	TGTGTGTGTGTGT AAGGCACTTGTATCGGAACGAGGCGCAGAGGCTGGTCAACGTAGAG
LT-Fluo-149	TGTGTGTGTGTGT ATAACAGTTTAATTACCAGACCGGAAGCAGAAAACGCCT
LT-Fluo-150	TGTGTGTGTGTGT AAAATACTGTGTCGAAATCCGCCCACGCTCCATTACTGGCTC
LT-Fluo-151	TGTGTGTGTGTGT TGTCTGGGAGGTCATTAATTCGAGCTTCATCA
LT-Fluo-152	TGTGTGTGTGTGT AAATATGTTAGAGCAAAGACTTCAAATACTGA
LT-Fluo-153	TGTGTGTGTGTGT CAACGGCGGCCGCTAGGTGAATTTCTTAGAAAATCTAAATGACATC
LT-Fluo-154	TGTGTGTGTGTGT GGAAGAAAGTCAGGATTAGAGAGTACCTTGA
LT-Fluo-155	TGTGTGTGTGTGT GGACTAATGAGGCTTGATACCGATAGTTGAATAATATTTTGCTTT
LT-Fluo-156	TGTGTGTGTGTGT TGCACCCAGAAACGAGCCTTTACAGAGAAGAT
LT-Fluo-157	TGTGTGTGTGTGT CCTGAATTTATTTAATAAAAACAGGGAAAATTGAGTTAACGTTTTG
LT-Fluo-158	TGTGTGTGTGTGT AGGTAAAGGTGGCACTTATTACGCAGTAAGAA
LT-Fluo-159	TGTGTGTGTGTGT TTCAACCCGCAAAGGAACTGGCATGATTGCTA
LT-Fluo-160	TGTGTGTGTGTGT AATCAAGGTTAGAAAATACATACATAAATATT
LT-Fluo-161	TGTGTGTGTGTGT TAAATAATTCATCTTTTAACCTCCGGCTTAGATTATAATGGACTCA
LT-Fluo-162	TGTGTGTGTGTGT ATCATAATTCAAATGGTTATATAACTATCTTG
LT-Fluo-163	TGTGTGTGTGTGT GCCAAAGGTTTATTATAATAACGGAATATTA
LT-Fluo-164	TGTGTGTGTGTGT GCTTAATTCGAGCCTGTTTATCAACAATATCCTAAAGCAAGC
LT-Fluo-165	TGTGTGTGTGTGT AAGCCAAATAAAGTTCAGCTAATGCAGA
LT-Fluo-166	TGTGTGTGTGTGT CTGTTTACAAAGAATGCTGATGCAAATCAATTAATCTTGCTTCTGA
LT-Fluo-167	TGTGTGTGTGTGT ATACAAAAGTAATTCTGTATCGCAAGAGTATCATCCGACTT

Fluo handle Fluo handle

Core Core Core Core