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Supplementary methods  
 
Scripts 
All code used to run MGT analysis is available at https://github.com/LanLab/MGT. 
Additional information including data submission and QC is available at https://mgt-
docs.readthedocs.io/en/latest/. 
 
Data submission and QC 
 
Data submission is available through the mgtdb.unsw.edu.au site once an account has been 
set up and the user has logged in. Both publicly visible and private isolate modes are 
available. QC is handled by an automated pipeline with genome assembly filters specific for 
each database. The details of the pipeline are available at https://mgt-
docs.readthedocs.io/en/latest/analysis_pipeline.html#reads-to-alleles. Briefly, kraken is used 
to verify that the reads belong to the correct species and that no minor contamination exists 
[1]. The shovill genome assembly pipeline (http://github.com/tseemann/shovill) is then used 
with SKESA as the assembler [2]. Shovill includes several read quality and correction steps. 
The completed assembly is then compared to species specific genome quality filters 
mentioned above. Finally SISTR is used to verify the serovar of the Salmonella isolate [3]. 
Further details of the entire MGT calling pipeline are available at https://mgt-
docs.readthedocs.io/en/latest/analysis_pipeline.html#. To facilitate rapid data upload part of 
this pipeline can be carried out locally and the resulting fasta file uploaded instead of the 
larger fastq raw read files. The partial pipeline and installation instructions can be found at 
https://github.com/LanLab/MGT_reads2alleles. 
 
 
Scheme definition 
 
Scheme size selection using mutation rates 
 
In order to define sizes of schemes so that they will describe timeframes that are relevant to 
epidemiological studies the sizes of schemes 2 to 7 were determined using the average 
mutation rate for STM. The estimated STM mutation rate from multiple studies were 
averaged to produce the rate of 1.03E-06 mutations per site per year [4-9] which corresponds 
to approximately 4.62 mutations per genome per year. This rate was used to estimate what 
proportion of the genome would be required for a given scheme to gain one mutation every X 
years. For example for MGT7 this timeframe was 1 year. One mutation per year is equivalent 
to a rate 1/4.62 as fast as the genome as a whole and therefore the scheme was selected to be 
1/4.62 the length of the genome. The LT2 STM genome is 4,857,450bp long therefore the 
MGT7 scheme size target was 1,051,647bp. This process was repeated for MGT6, 5, 4, 3 and 
2 with age targets of 2, 5, 10, 20 and 100 years respectively. 
 
Assignment of loci to MGT levels based on locus characteristics and relative genome 
position 
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Multiple characteristics of each locus were examined in order to identify which loci should 
go into which scheme. The overriding goal of this process was to ensure that the smaller 
schemes reflected the overall characteristics of the genome as closely as possible, which 
would ensure that the overall mutation rate of these schemes would be likely to maintain the 
mutation rate per position of the genome as a whole. In smaller schemes if one locus is 
evolving very quickly due to selective pressure this will distort the rate of ST formation for 
the whole level. However in larger schemes the volume of loci means that the impact of any 
one locus is reduced. The DnDs value for each locus was examined using data from a 
previous study [10] and loci between the first and third quartiles was initially used in MGT2 
followed by loci from the 5th to 95th percentiles for MGT 3-7. The reliability of intact allele 
calling was also taken into account to ensure that smaller schemes were assigned the most 
reliable loci. 9799 genomes were processed, and a locus was included in MGT2,3 and 4 if it 
was never called as missing or partially missing, this was reduced to allow a maximum of 5 
for each type for MGT5 and 6 and subsequently further reduced to 25 for MGT7. It should be 
noted that even at 25 genomes allowed missing or partially missing loci this amounts to 
0.025% of genomes missing in the most unreliable loci. An Enterobacteriaceae core was 
defined using 20 species (supplementary table 6) using roary ([11], v3.12.0) with sequence 
identity of 70% and presence proportion of 100% and included 1540 loci. Only loci from this 
core were included in MGT2 and MGT3. TMHMM, signalP, biocyc and psort were used to 
classify loci into their subcellular locations and loci encoding transmembrane, cell surface, 
cell wall or secreted proteins were excluded from MGT2, 3 and 4. Loci were also excluded 
from MGT2-6 when they matched any of the following criteria: phage encoded genes (as 
predicted by PHASTER [12]); loci containing homopolymers longer than 8bp; loci 
containing tandem repeats (defined by tandem repeat finder [13]). 
 
In addition to these filters a minimum distance between each locus included in a given 
scheme was defined to reduce any potential impact from recombination. These minimum 
distances are listed in supplementary table 8. Importantly these distances are also relative to 
loci included in previous levels. For example, if a locus is assigned in MGT4 it will be a 
minimum of 4Kb from any locus included in MGT2, 3 or 4.  
 
Missing Data 
 
Alleles 
 
Each MGT level sequence type is defined by an allele profile which is in turn made up of 
allele calls for individual loci. If a locus matches an existing allele exactly or is new but has 
no missing data it can be assigned a positive allele (i.e. 6) indicating that it is intact and there 
is no uncertainty about its identity. If a locus is missing more than 20% of its sequence it is 
assigned a 0 allele (missing) and no inference about its relationships to other alleles is 
attempted. Alleles that have no genetic differences from an intact allele but are missing less 
than 20% of their sequence are termed ‘negative alleles’. For example, when a new allele is 
missing 5% of its length the remaining 95% is compared to other intact alleles of that locus. 
If there is another intact allele with no SNP differences from the new allele, the new allele is 
assigned as a negative version of the positive allele (i.e. intact allele 4 vs partially missing 
negative allele -4_1). In this way as much genetic information as possible is retained within 
the negative allele. One intact allele (e.g. 4) can have multiple negative alleles which differ 
from each other only in the location of the missing data they contain (e.g. -4_1 and -4_2). A 
negative allele can only be assigned to a locus with missing data if an intact, matching allele 
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exists. If no intact allele exists, then the negative allele is called as a 0. In cases where a new 
negative allele matches to more than one positive allele the frequency of the positive alleles 
in the database subset (see database subsetting section) are examined and the allele is 
assigned to the most frequently occurring positive allele in the subset. Importantly a negative 
allele will not cause a new ST to be assigned if it is the only difference between an existing 
allele profile (locusX allele of 4) and a new allele profile (locusX allele of -4_2). 
 
Sequence types 
 
For each MGT level the allele profile of the new isolate is compared to existing profiles. If all 
loci in an allele profile match then the new isolate is assigned the corresponding ST at that 
level. If there is a difference in one or more loci to all existing profiles that is not due to 
missing data then a new ST is assigned. If an allele profile is defined with missing data 
(either zero or negative allele calls) it is assigned a degenerate sequence type (dST) this dST 
is combined with the ST to produce an ST assignment that communicates both the known 
genetic information and also the fact that there is some uncertainty involved. A single ST 
(e.g. MGT8 ST234) can have multiple dSTs that differ by having missing data in different 
loci. For example MGT8 ST234.1 and MGT8 ST234.2 have the same allele assignments but 
differ by having negative alleles at different loci. Because these dSTs can have missing loci 
there is a small chance that two intact STs will match to the same dST. In this situation the 
dST is assigned to the ST that is most prevalent in the database subset (see database 
subsetting section). If more than a given threshold of loci have zero alleles (for Salmonella 
Typhimurium this was 2%) the ST will not be called and a blank will be entered into the 
database. 
 
Database subsetting 
 
During processing STs and CCs are identified for one scheme before moving on to the next 
largest scheme (i.e. MGT2 ST and CC are assigned before allele calling for MGT3 starts). 
This allows results from smaller schemes to restrict the search space for larger schemes. This 
is done by only searching allele profiles found in isolates that share a CC with the strain 
being analysed. For example a new strain has been assigned MGT2 CC3 and MGT3 CC23. 
When the analysis gets to MGT6, alleles found in other isolates that are in those same MGT2 
and 3 CCs will be compared to the new strain. This subsetting of the possible MGT6 alleles 
and STs significantly reduces running time for larger schemes. Additionally, because this 
method groups related isolates together we can use the occurrence of alleles and STs within 
the subset as a tiebreak for uncertain allele and ST calls. 
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