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Figure S1. Analysis of the TME in H2030-BrM, related to Figure 1. (A) Macroscopic images of BLI signal of a 
representative H2030-BrM bearing mouse and the corresponding photograph of the brain. (B) H&E stainings of 
brain sections with small (left) or large (right) H2030-BrMs. Scale bar depicts 1 mm. (C) Representative 
immunofluorescence image of proliferating cells within and adjacent to H2030-BrM lesions. Sections were stained 
for Iba1 to visualize microglia/macrophages (red) and the proliferation marker Ki67 (green). Scale bar; 50 μm. (D) 
Representative gating strategy for flow cytometry and cell sorting for (BrM-bearing) brain (i) and blood monocytes 
(N-Mono) isolated from peripheral blood (ii). (E) Quantification of RNA-Seq data showing expression levels of 
distinct cell-type specific genes to validate the purity of sorted cell populations. (F) PCA plot of BrM-associated 
cells in small vs. large BrM. TA = tumor-associated. n=4 for TA-Mono and TA-Granu from small BrM and n=5 for all 
other groups.
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A functional annotation
of common DEGs
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Figure S2. Tumor education signatures in TAMs,  related to Figure 2. (A) Selected up- (red) or down (blue) 
regulated common genes in tumor-associated myeloid populations compared to normal controls and plot of the 
top 5 corresponding functional pathways. (B-D) Validation of candidate genes by qRT-PCR. Gene expression of 
selected genes that show differential expression in (A) TAM-MG relative to N-MG (B) TAM-MDM relative to N-
Mono and (C) TA-Mono relative to N-Mono. n=2 for all conditions and analyzed genes apart from Apoe in TAM-
Mono with n=1. Data are represented as mean of RQ values ± RQ min and max. 



A B

TAM-MG (small)
TAM-MG (large)

N-MG

re
la

tiv
e 

ex
pr

es
si

on
 (v

st
)TAM-MDM (small)

TAM-MDM (large)

N-Mono
DAM Marker

B2m Ccl6 Csf1 Cst7

0

5

10

15

20

Apoe Axl Cd9 CtsbClec7a

*** ** *** *** ***** *** ******

Fth1 Itgax Timp2 Trem2Ctsd Ctsl Lpl TyrobpLyz2
0

5

10

15

20
*** *** *** ****** *** ns*** ns

re
la

tiv
e 

ex
pr

es
si

on
 (v

st
)

Tmem119Cx3cr1 P2ry12
5

10

15

20

Tmem119Cx3cr1 P2ry12

**ns ns *** *** ***

Homeostatic Microglia Marker

re
la

tiv
e 

ex
pr

es
si

on
 (v

st
)

Figure S3. TAM-MG display similarities to DAMs, related to Figure 3. (A)  Expression of homeostatic 
microglia marker in TAM-MG and TAM-MDM. (B) Expression of typical disease-associated microglia marker 
(derived from Keren-Shaul et al., 2017) in TAM-MG; for A and B: Values are derived from variance-stabilized 
data (vst (≈ log2)) of RNA-Seq data from the comparison control (N-MG or N-MONO, each n = 4) vs. TAM-
MG/TAM-MDM (each in total n = 10). Significance based on padj values, with *P<0.05, **P<0.01 and 
***P<0.001, ns = not significant. 
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Figure S4. H2030 Tumor cells upregulate CD47 in vicinity to Iba1 positive cells, related to Figure 3. (A)  
Representative immunofluorescence images of H2030-BrM in vitro and H2030-BrM lesions in vivo stained for 
Iba1 (white) to visualize microglia/macrophages and CD47 (red). Tumor cells are stained for GFP (green). 
Arrows indicate CD47+ tumor cells in close vicinity to Iba1+ TAMs. Scale bar depicts 50 µm. (B) Quantification 
of relative expression levels of Tnf in comparison to CTRL cells (N-MG or N-Mono) vs. BrM-associated cells 
(small and large) (TA-Mono, TAM-MDMs, or TAM-MGs) based on values of variance-stabilized data (vst (≈ 
log2)) of RNA-Seq data. N-Mono: n=4, N-MG: n=4, small BrM-associated TA-Mono: n=4, all other groups: 
n=5. P values are based on padj, ***P<0.001
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Figure S5. Transcriptomic profiles of irradiated TAM-MG and TAM-MDM, related to Figure 5. (A)  
Heatmap (left) and list (right) of the 66 differentially expressed “Slc“-family members in N-MG (n=4) vs. TAM-
MG (small and large stage BrM, n=5 for each condition), cutoff: BM >20, adj. p<0.05. (B) Venn diagram 
displaying the number of DEGs (cutoff: BM >20) of RNA-Seq data comparisons between controls (N-Mono or 
N-MG, n=4) with either large stage TAM-MDM or TAM-MGs (n=5), or samples ten days after WBRT (n=3). (C-
D) Venn diagrams of (C) TAM-MG and (D) TAM-MDM. Comparison of RNA-Seq data of large stage (n=5) BrM 
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Table S3. List of antibodies, Related to Figure 1, Figure 3, Figure 4, Figure S1, Figure S4 
Antibodies used for histology 

Antigen Host Clonality / Clone Dilution Vendor Cat No 
C1q rat monoclonal / 7H8 1:100 abcam ab11861 
C3/C3a chicken polyclonal 1:200 abcam ab48581 
C3ar1 rat monoclonal / 14D4 1:1,000 Hycult Biotech HM1123 
CD47 rat monoclonal / miap301 1:200 Thermo Fisher Scientific 50-126-11
Collagen-IV rabbit polyclonal 1:200 Merck AB756P 
Factor H sheep polyclonal 1:500 abcam Ab8842 
Gfap goat polyclonal 1:1,000 abcam ab53554 
GFP chicken polyclonal 1:1,000 abcam ab13970 
Iba1 rabbit polyclonal 1:1,000 Wako Chemicals 019-19741
Ki67 rat monoclonal / SolA15 1:500 Thermo Fisher Scientific 50-245-563
Ly6G rat monoclonal / RB6-8C5 1:200 abcam ab25377 
NeuN rabbit monoclonal / EPR12763 1:10,000 abcam ab177487 
Tmem119 guinea pig polyclonal 1:1,000 sysy 400004 

Antibodies used for flow cytometry 
Antigen Host Clone Fluorochrome Dilution Vendor Cat No 
CD11b rat M1-70 BV605 1:1,000 BD 563015 
CD45 rat 30-F11 A700 1:500 Biolegend 103128 
CD49d rat R1-2 Pe-Cy7 1:500 Biolegend 103618 
Ly6C rat HK1.4 PerCP-Cy5.5 1:250 Biolegend 128012 
Ly6G rat 1A8 BV421 1:500 BD 562737 



TRANSPARENT METHODS 
 

Mice 

All animal studies were approved by the government committee (Regierungspräsidium 

Darmstadt, Germany) and were conducted in accordance with the requirements of the German 

Animal Welfare Act. Athymic/nude mice (CAnN.Cg-Foxn1nu/Crl) were purchased from Charles 

River Laboratories or bred within the GSH animal facilities. Six to eight-week old females were 

used for experiments with brain metastatic mice and RNAseq analysis. For qRT-PCR validation 

female and male mice were used.  

Cell lines 

Brain metastatic (BrM) variants of the human lung cancer cell line H2030 (here denoted as H2030-

BrM) were provided by Dr. Joan Massagué, MSKCC, and labeled with a triple-imaging vector 

(TK-GFP-Luc; TGL) to allow for non-invasive in vivo imaging of tumor growth over time. H2030-

BrM cells were cultured in RPMI 1640 medium supplemented with 10 % FBS, 2mM L-Glutamine 

and 100 units/ml penicillin-streptomycin.  

Secretome Analysis of H2030 

Secreted factors present in H2030 supernatant were determined using a human multiplex 

cytokine assay (BioRad, Ca, USA) according to the manufacturer’s instructions and analyzed on a 

Bioplex200 (BioRad). Complete RPMI media was used as reference control. The Bioplex-Manager 

software (v. 6.1) was used for acquisition of raw data. Data were obtained from three biological 

replicates. 

Generation of experimental brain metastasis and in vivo BLI measurements 

Generation of experimentally induced BrM was performed as previously described (Bos et al., 

2009). Mice were anesthetized with ketamine / xylazine and 5x104 cells in 100 µl 1x PBS were 

inoculated into the left ventricle of 6 to 8-week old Athy/nu mice (intra-cardiac injection = i.c.). 

Starting 3 weeks after i.c. injection, BrM progression was monitored weekly via bioluminescence 

imaging (BLI) (Caliper Life Sciences, Ivis Lumina II), following subcutaneous injection of 100 µl 

luciferin (15 mg/ml). Mice were anesthetized with isoflurane (2%) during the measurement. For 



further experiments, animals were stratified into groups based on BLI-values (radiance = 

p/s/cm2/sr) showing an BLI output range of 5x105 to 7.5x107 for small, or 1x108 to 5.3x108 photons 

x sec-1 for large BrM lesions, respectively. 

RNA isolation, cDNA synthesis and quantitative real-time PCR 

RNA from bulk sorted cell populations was isolated with Trizol LS, resuspended in DEPC-treated 

water, and 0.5 - 1 μg of RNA was used for cDNA synthesis. The following Taqman assays were 

used for qRT-PCR: Axl Mm00437221_m1, Apoe Mm01307193_g1, C3 Mm01232779_m1, C3ar1 

Mm02620006_s1, Ctsb Mm01310506_m1, Hif1a Mm00468869_m1, Il1b Mm00434228_m1, Irf7 

Mm00516793_g1, Nlrp3 Mm00840904_m1, P2rx4 Mm00501787_m1, P2ry12 Mm01950543_s1, 

Vegfa Mm00437306_m1, Zbp1 Mm01247052_m1. Assays have been run in triplicate and 

expression was normalized to Ubiquitin C (Ubc Mm02525934_g1) for each sample.  

Whole Brain Radiotherapy 

For Whole Brain Radiotherapy, mice were stratified into different groups based on BLI output. 

Radiotherapy was applied on d0 with the Small Animal Radiation Research Platform (SARRP, X-

Strahl Ltd, Camberley, UK) (Wong et al., 2008) as previously described (Chae et al., 2019). The 

SARRP is equipped with an on-board Cone Beam CT (CBCT) system for diagnostic imaging and 

radiation treatment planning. The integrated Muriplan software allows contouring, image-guided 

treatment design, dose calculation and application of radiation. Mice were anesthetized with 

isoflurane (2.5 %), stabilized in the prone position and imaged by performing a CBCT operating 

at 60 kV and 0.8 mA. CBCT images were next transferred to the Murislice software and individual 

isocenters were selected for radiotherapy. Irradiation was applied as WBRT as fractionated doses 

with 2 Gy on 5 consecutive days or with a single dose of 10 Gy using a 10x10 mm collimator as 

1 arc operating at 220 kV and 13 mA with 5.2 cGy sec-1. 

Tissue preparation and immunostaining 

Tissue for frozen histology was fixed in 4% PFA overnight and subsequently transferred into 30% 

sucrose until the tissue was fully equilibrated. Tissues were then embedded in OCT (Tissue-Tek) 

and 5 μm cryostat tissue sections were used for subsequent analyses. Hematoxylin and eosin 

(H&E) staining was performed on an automated staining device (Leica Autostainer XL) in the 



histology core facility of the GSH. For immunofluorescence, frozen sections were thawed and 

dried at room temperature and rehydrated. For standard staining protocols, tissue sections were 

blocked in 3% BSA + 0.1% Triton-X100 in PBS for 1 h at room temperature, followed by 

incubation with primary antibodies in 1.5% BSA overnight at 4°C or 2 h at room temperature. 

Primary antibody information and dilutions are listed in Table S3. Fluorophor-conjugated 

secondary antibodies were used at a dilution of 1:500 in 1.5% BSA in PBS for 1h at room 

temperature. DAPI was used as nuclear counterstain. 

For histology on thick tissue sections, PFA-fixed brain samples were sliced in 350 μm thick 

sections using a Vibratome VT1200S (Leica). Brain slices were cleared using the X-Clarity tissue 

clearing system (Logos Biosystem). Tissue clearing was performed at 0.6 A for 3 h using the X-

Clarity electrophoretic tissue clearing solution. Afterwards, unspecific protein binding was 

blocked with 3% BSA in PBS containing 0.1% Triton-X100 followed by incubation with primary 

antibodies (Table S3) for 24 h at room temperature and fluorophor-conjugated secondary 

antibodies (Jackson ImmunoResearch) were used at a dilution of 1:500 in 1.5% BSA in PBS 

overnight at room temperature. DAPI was used as nuclear counterstain. 

Microscopy and image analysis 

Thin-section immunofluorescence stainings were imaged using a Zeiss Axio Imager. M2 

Fluorescence Microscope (Zeiss, Germany) using a 10, 20, or 40x objective. Immunofluorescence 

staining on cleared thick sections was visualized using the Yokogawa CQ1 confocal microscope 

(Yokogawa, Musashino, Japan) using a 10, or 20x objective.  

Flow cytometry and fluorescence activated cell sorting (FACS) 

For flow cytometry and cell sorting, mice were anesthetized with Ketamine/Xylazine. Blood was 

collected by cardiac puncture and animals were transcardially perfused with PBS. Brain 

metastases were macrodissected based on ex vivo BLI signal and dissociated using the Brain 

Tumor Dissociation Kit (Miltenyi). A single cell suspension was generated using the gentleMACS 

Octo dissociator. For non-tumor bearing controls, whole brain samples were dissociated. Cell 

suspensions were filtered through a 70 µm mesh filter followed by red blood cell lysis. Normal 

brain and brain metastases samples were incubated with Myelin Removal Beads (Miltenyi). Cell 



suspensions were incubated for 5-10 min at 4°C with FC block followed by incubation with 

directly conjugated antibodies panels as well as eFluor-780 (live/dead-discrimination) for 15 min 

at 4°C. Antibodies for the flow panel can be found in the Table S3. All flow cytometry analyses 

were performed on a BD Fortessa device and FACS sorting was performed on a BD FACS Aria 

Fusion. Cells were sorted into 100 µl cold PBS. Samples were kept on ice until Trizol LS was 

added. Samples were frozen at -80°C for analyses of bulk populations. For single cell RNAseq, 

cells were sorted into pre-labelled 384 well plates and snap frozen on dry ice. Plates were stored 

at -80°C until further processing.  

RNA sequencing, gene expression analysis and data presentation  

RNA was isolated by chloroform extraction and isopropanol precipitation using a glycogen 

carrier. RNA-sequencing libraries were generated with the SMART-Seq preparation kit 

(CloneTech) and fragmented with the Nextera XT kit (illumina). Paired end, 150 base pair, 

sequencing was performed with an Illumina HiSeq2500. All steps were performed by Genewiz 

(New Jersey, USA). The following steps were performed as previously described (Michels et al., 

2019). Pre-processing of fastq-files of bulk sequenced samples including filtering for quality 

scores, poly-A trimming, removal of N containing reads, artifact removal and clearing of rRNA 

contamination was achieved using a pipeline in the HUSAR platform, provided by DKFZ 

(Heidelberg, Germany). Transcriptomes were mapped to the mouse genome using the genecode 

annotations (release M12) and TopHat2 (v. 2.0.14) (Kim et al., 2013). The number of reads per 

gene was determined by HTSeq count. Overlaps were considered as unique. Further analysis was 

performed within R (v. 3.4.3), operating in RStudio (v. 1.1.453) with BioMart package (v. 2.34.1) 

and DESeq2 (v. 1.18.1) (Love et al., 2014). If not indicated otherwise, data for heatmaps and PCA-

clustering were generated of variance-stabilized transformed data (which equals log2 

transformation), respecting a BaseMean >20 and an adjusted p-value of 0.05 (= FDR 5 %). Data 

shown consist of 3 to 5 biological replicates per condition. 

Original Euler plots were created with eulerr (v. 6.0.0). Venn-diagrams of selected data were 

created with Venny (v. 2.1; www.bioinfogp.cnb.csic.es/tools/venny/index.html) (Oliveros, 2015), 

and functional annotation of selected (top-) genes was done using Metascape 

(www.metascape.org) (Zhou et al., 2019). Un-/ and semi-supervised clustering and generation of 



heatmaps was performed via manual selection of significant DEGs (base-mean >20 and padj 

<0.05 unless indicated otherwise), or TOP-X DEGs of variance- stabilized data. Heatmaps were 

processed in Heatmapper (http://www1.heatmapper.ca/expression) (Babicki et al., 2016) with 

default parameters, including Complete Linkage Clustering and Spearman Rank Correlation for 

distance measurement.  

Single Cell RNAseq  

RNA isolation, processing, reverse transcription, library preparation, and sequencing were 

performed based on the SORT-Seq protocol as previously described (Muraro et al., 2016). Quality 

control and data analysis was done with RaceID (Grun et al., 2016). Single cell RNA sequencing, 

quality control, raw data processing and analysis was performed by Single Cell Discoveries (SCD, 

Utrecht, Netherlands). Downstream analysis contained Poisson-corrected, UMI corrected raw 

mapped reads. For any further analysis, cells with an UMI >800 were used. 

Quantification and statistical analysis 

Summary data are presented as mean ± standard deviation, floating bars with lines indicating 

min, max and median or Tukey’s box plots using GraphPad Prism software v7. Numerical data 

was analyzed using the statistical tests noted with the corresponding sections of the manuscript. 

Statistical analyses were performed with GraphPad Prism software v7 and R (version 3.4.3) 

performing tests as indicated and were considered statistically significant, with *P<0.05, **P<0.01 

and ***P<0.001. 
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