
Additional Results And Figures

Simulation

Since in a real dataset the true data-generating model is unknown and is likely more complex than
what can be captured with a dimensionality reducing matrix decomposition, we use a simulation
to evaluate the operating characteristics of our method. We hypothesize that our method is able
to more accurately recover the “correct” LVs by rotating the matrix decomposition to align with
prior knowledge.

We simulate data with 5000 genes, 300 samples, and 30 latent variable according to the NMF
model.

Y = ZB + E. (1)
With both Z and B > 0. Each row of B is drawn from Beta distribution with a mean drawn
uniformly at random and a variance of 0.1. Each column of B is normalized to sum to one. The
columns of Z are drawn from Gamma distribution Γ(5, 1). The matrix E ∈ N (0, 1) represents
random noise. We also generate a prior knowledge matrix C. For each column of Z, we randomly
pick up a threshold value on the percentage of genes which belong to a hypothetical prior knowledge
geneset. The threshold value varies from 0.01 to 0.1 with a step size 0.01, which is in consistent
with that of real biological genesets. With the threshold value, we select the corresponding fraction
of genes which come with top values in the column of Z to construct the prior knowledge geneset.
Also we generate additional uninformative genesets by randomly picking genes. For the purpose of
applying PLIER and SPC, the final data is z-scored.

Our basic evaluation strategy is based on computing the maximal correlations between simu-
lated and recovered latent variables, and for the purpose of comparisons with other methods we use
the absolute value so as to allow factors with reversed sign. Fig. 1 depicts the results of multiple
simulation runs processed with four decomposition methods: PLIER, PLIER with no prior infor-
mation (which can be accomplished by setting λ3 to a high value), NMF [Brunet et al., 2004] and
SPC [Witten et al., 2009]. NMF is a popular decomposition method that is free of hyperparameters
(though different matrix norms can be used), however it requires positive data as input. SPC is
another popular method that can enforce sparsity and positivity, it has one hyperparameter that
we set by cross-validation for each component as described in the original paper [Witten et al.,
2009]. Among these methods only PLIER is able to reliably produce high correlations with the
simulated latent variables and only when using prior information. Importantly, we emphasize that
the simulation is not based on a PLIER model where we assume that loadings of genes in the path-
way and outside the pathway differ by a constant factor but is rather based on the NMF model.
Nevertheless the PLIER approach is effective even in the case where the model design differs from
the underlying assumptions.

We also investigate how adding noise to the prior information affects performance, hypothesizing
that as more irrelevant geneset are included in our prior knowledge matrix C, the advantage of
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Figure 1: Boxplot of the correlation between simulated LVs and those recovered by various decomposition methods. We compare
PLIER against two other methods, NMF [Brunet et al., 2004] and SPC [Witten et al., 2009], as well as PLIER run without using
any prior information. In this simulation we provide PLIER with 1000 pathways of which only 30 are correct and vary the size of
the prior-information pathways provided to PLIER. We find that the best performance is achieved by PLIER specifically when
prior information is used with a notable improvement when prior-information pathways are larger. Statistics were computed
using Pearson correlation across 300 samples. Boxplot displays the 25th, 50th and 75th percentiles, with whiskers extending to
1.5x the interquartile range or the range of the data whichever is smallest.

using prior information will be reduced. Repeating the experiment above with varying sets of
non-informative pathways we find that the performance indeed drops off as the total number of
pathways is increased to 10,000. Though even at that level of prior-information noise, PLIER
outperforms other methods (Fig. 2).

Pathway recovery significance

We estimate the significance of LV-pathway association by removing a random 1/5 of the genes
annotated to each pathway prior to running PLIER. For each LV-pathway correspondence repre-
sented as a positive value in U , we compute the AUC and p-value (Wilcoxon rank-sum test) for the
recovery of that pathway in the loadings of Z using the held-out set of genes as positive labels and
genes not annotated to this pathway as negative labels. We verify that this procedure produces
correct estimates by running PLIER with the geneset collection used for the DGN dataset but
randomly permuted gene labels. Gene-level permutation preserves the pathway size distribution
and dependency structure but should not have any non-random associations with the structure of
the gene expression dataset. We find that in the permuted setting our cross-validation procedure
produces uniformly distributed p-values (Fig. 3).
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Figure 2: Data is simulated as in Fig. 1 except that the number of genes per pathway is kept at 300 and the number of
uninformative pathways is varied. As the prior information gets noisy, PLIER’s performance approaches those of others.
Statistics were computed using Pearson correlation across 300 samples. Boxplot displays the 25th, 50th and 75th percentiles,
with whiskers extending to 1.5x the interquartile range or the range of the data whichever is smallest.

Parameter robustness

The PLIER framework contains 4 free parameters. While we have a procedure for selecting these
parameters automatically, it is natural to ask to what extent these effect the results. Using our
becnhmarking dataset we systematically evaluate the robustness of LVs recovered at different pa-
rameter settings. Our evaluations is two fold: Firstly, we evaluate how well we recover the known
cell-type proportions (LV vs. ground truth) for the LVs that are associated with proportion vari-
ables. Secondly we evaluate the stability of the LVs themselves with different parameter settings.
The results are depicted in Fig. 4A.

We find that many LVs are recovered with near-perfect correlation across a wide range of
parameters. However, even in cases where the LVs themselves are variable (as is the case with the
Dendritic cell LV), the actual correlation with known proportions is quite stable. While the results
are stable across a parameter range around the default values, we find that increasing the L1 and
L2 parameters beyond the stable range drastically alters the result (Fig. 4A, left panel, bottom
rows) and produces non-informative LVs (Fig. 4A, right panel, bottom rows).

The PLIER problem is not convex and thus different initializations will produce different results.
While the default initialization is to use SVD, we investigate to what extent the same LV structure
can be robustly recovered using random intializations (Fig. 4B).

Overall we find that almost all LVs with credible prior information association (FDR<0.05,
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Figure 3: Histogram comparisons of pathway association p-values produced with real genesets and a single run with gene-label
permuted genesets. Statistics were calculated the held-out set of genes and genes which are not annotated to the pathway.
P-values are calculated with a two-sided Wilcoxon rank-sum test. Uncorrected p-values are plotted in the histogram.

red boxes) were recovered consistently. In particular LVs correlated with the known cell-type
measurements (indicated by *) are highly consistent. LVs that are not linked with prior information
(LVs with zero U coefficients) are less likely to be consistently recovered.

We can also test how much the final LVs depend on the pathway input by randomizing gene-
pathway assignments. The results of this randomization are plotted in Fig. 5. We find that as
expected randomizing pathways indeed has a greater effect on the results than randomizing the
starting point, indicating that the prior information provides a considerable constraint.

Technical variation invariance

A key motivation for PLIER is to tease apart technical and biological variation. Specifically, the
hypothesis is that LVs that use prior information are indeed of biological origin. If that is the
case, we expect that PLIER results are relatively insensitive to normalization for technical factors
and we test this hypothesis by applying PLIER to differently normalized versions of data. The
DGN datasets [Battle et al., 2014] used in this study has been normalized for technical variables
which reflected information about data collection and RNAseq quality control. We can also apply
PLIER to the “naive-normalized” version of the same data represented by log-transformed counts
normalized by quantile normalization. Obtaining two different decompositions, we find that many
LVs can be matched in one-to-one correspondence based on rank correlations of the loadings.
Correlations for top matched pairs are show in Supplementary Fig. 1. Moreover, the matching LVs
use prior information genesets that are either the same or closely related (see row/column names
in Supplementary Fig. 1).
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Figure 4: (A) Robustness of LVs with respect to different parameter choices. Row labels indicate the parameter settings and
the number of significant pathway associations. The L1 and L2 parameters are reported relative to the default. (Left panel)
Maximum rank correlation of LVs with the ground truth cell-proportion measurements at different parameter settings. Statistics
were computed across 35 subjects. (Right panel) Each column corresponds to one of the 30 LVs recovered at the default setting.
The heatmap colors indicate the best correlation between the default LVs and those extracted from other parameter settings.
First eight columns correspond to LVs that are related to cell type based on correlation with the ground truth. Statistics were
computed across 35 subjects. (B) Robustness of LVs with respect to random initialization. Statistics were computed using
Spearman rank correlation across 35 subjects.
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Figure 5: Robustness of LVs with respect to pathway randomization compared to robustness of LVs with respect to random
initialization. Statistics were computed using Spearman rank correlation across 35 subjects.

Furthermore, when we compare the entire distribution of best matched correlations for LVs
with- and without- prior information, as expected, LVs with prior information (LVs with non-zero
U coefficients) produce best matches with higher correlations supporting the hypothesis that these
captured biological variations are therefore relatively normalization invariant (Supplementary Fig.
1, Inset).

Distributions of PLIER loadings

We plot loading statistics from our analysis of the DGN dataset in Fig. 6. The PLIER model
doesn’t assume pathway-level sparsity but rather that the loading values for pathway-associated
genes are higher than those of others. Consequently, PLIER doesn’t produce strict pathway-level
sparsity but rather loadings with many values close to 0 and a long tail (panel B). We found that
for this already regularized model including additional group-level of gene-level sparsity was not
helpful when validated against known ground truth. Thus, genes not associated with the pathways
can still get non-zero loadings, however we view this as a feature because it can provide useful
“pathway-completion” information. We exploit this fact to compute properly calibrated p-values
for LV-pathway associations using cross-validation (see “Pathway recovery significance”)
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Figure 6: (A) The distribution of number of LV-associated pathways per LV. (B) The boxplot of loading value corresponding to
20 random LVs. Boxplot displays the 25th, 50th and 75th percentiles, with whiskers extending to 1.5x the interquartile range
or the range of the data whichever is smallest. (C) The distribution of number of genes with loading values above 0.1.

LV interpretation and naming

The top genes contributing to each genotype-associated LV are depicted in Supplementary Fig. 6.
In many cases the identity of the genes and the corresponding PLIER pathway utilization (see U
matrix visualized in the main text, Fig. 2) points to a clear cell-type effect (LV44, LV133, LV56)
or a canonical pathway (LV21, LV40, LV97, LV120). In these cases the LVs can be interpreted as
estimating the specific cell-type proportion or pathway-level effect and are named accordingly.

In some cases the pathway utilization did not allow for unambiguous interpretations. For
example, the top pathway for LV16 is ”NKA1”, which is a NK-cell marker gene list. However the
top genes in the LV loadings do not correspond to ”canonical” NK-cell markers. This pattern is
instead observed for LV30 which also makes use of NK pathways. Thus, LV16 cannot be interpreted
as NK cell proportion though its pathway utilization suggests some relationship to NK cell biology.
We also note that two of the LVs that have some of the strongest genotype associations do not
use any pathway information. We hypothesize that collectively these LVs most likely represent
transcription pathways that are not well annotated in our prior information though they may
correlate with some prior information genesets.

Nevertheless, these transcriptional pathway potentially have some cell-type origin and we in-
vestigate this by checking the bias in cell-type expression in a large independent dataset of immune
cell types, ImmGen [Heng et al., 2008]. The results are visualized in Supplementary Fig. 6. We find
that the top genes for LV16 are biased towards higher expression in myeloid and ILC cells which
is consistent with being related to NK-type expression signature. LVs 17, 42 and 56 are likewise
biased towards myeloid cell types. This is highly consistent with the effects of the putative cis
drivers (NEK6, PLAGL1 and IKZF1 respectively, see main text, Table 1) on proportions of various
myeloid cell types as determined in a large GWAS study of blood cell-type composition [Astle et al.,
2016]. LV55 has no identifiable signature in ImmGen data, however it is biased for genes expressed
in the erythroid lineage based on DMAP (Differentiation Map) dataset [Novershtern et al., 2011].
Top genes include HGB1 (rank 5) and HGB2 (rank 16) – fetal hemoglobins that are expressed
but not made into protein. Moreover the putative cis driver for LV55 eQTL is NFE2 which is a
transcription factor known to be involved in erythrocyte and megakaryocyte development.
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Comparison of methods for pathway-level eQTL discovery

We compared PLIER to other methods in its ability to recover pathway-level eQTLs. PLIER
pathway-level eQTLs are deemed significant at Benjamini-Hochberg FDR < 0.05 (correcting for
the total number of tests). The same raw p-value threshold is used for all other methods (even
though the FDR at this threshold for alternative methods is higher). We consider only the best
SNP for each latent variable and display the results of all eQTLs discovered as well as those filtered
for gene-level support (see Methods). We find that PLIER indeed is able to find more associations
while PLIER (no prior) and SPC perform comparably. NMF performed worse than SVD on this
datasets and is thus omitted. For this analysis, rather than using cross validation the SPC sparsity
parameter was explicitly optimized to maximize the the eQTL discovery objective.
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Figure 7: Comparison of eQTL discovery results from different decomposition methods.
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Analysis of single-cell RNA sequencing dataset
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Figure 8: (A) The subset of the U matrix with the highest-confidence (AUC>0.75, FDR<0.01) pathway associations. Spearman
rank correlations with cell types (139, 169, 81 and 233 for NF, NP, PEP, and TH respectively) defined in the original paper
are displayed above. While many of the LVs are correlated with cell-type identity, we find some pathways that are not strongly
associated with cell types, such as LV10 (highlighted in grey). (B) Gene-expression z-scores for the top 40 genes in LV10 across
all cells are displayed in a heatmap with red indicating high expression. Pathway membership of individual genes is indicated
with row annotations (black indicated annotation to the pathway) and cell types are indicated with column annotations. We
find that when viewed in raw data space the top genes associated with LV10 show several patterns of expression and cluster
according to cell type. (C) Same data as in B corrected for all LVs except for LV10. The genes now show a single consistent
pattern and no longer cluster by cell types.

While our approach doesn’t specifically address the unique features of scRNA-seq data, it can
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already be applied out-of-the-box to single-cell data. We have applied PLIER to scRNA-seq data
from mouse sensory neurons [Usoskin et al., 2015]. Despite the fact that the prior information
database does not contain any genesets derived from sensory neuron sub-types, we find several
latent variables that are associated with prior genesets with high confidence. Consistent with
expectation, the pathways involved are related to neurological tissues and cell-type identity (Fig.
8A). Moreover, our approach also finds pathways that are independent of the major cell types (such
as LV10). Because cell type is the dominant signal in the dataset, this pathway level-effect is not
easily observed in raw gene expression data (Fig. 8B) but stands out clearly when correcting for
other sources of variation (Fig. 8C). Thus, PLIER is able to both reveal additional heterogeneity
in this complex dataset and associate it with prior information in a single computational step.

PLIER models are transferable across datasets and can be used to improve con-
cordance

One key feature of PLIER is that it extracts latent variables that correlate with prior information
(LVs with non-zero U coefficients). PLIER LVs are thus less likely to depend on individual gene
measurement and are more likely to reflect effects that are common across different studies. To
illustrate this property, we have compared PLIER decompositions of the DGN dataset with that
of the NESDA dataset. The NESDA dataset is also whole-blood but uses the Affymetrix platform
and has considerably lower signal to noise ratio. Nevertheless, we find that applying PLIER de-
compositions to the two datasets yields surprisingly consistent results. In particular, many LVs can
be matched across datasets based on gene-loading correlation and this matching is often one-to-one
(Fig. 9A and B). Moreover, the matched LVs often use either the same or highly related prior
information (Fig. 9B). Considering LVs that are best reciprocal hits as matched pathway-level
estimates, we find that differential expression with respect to three demographic variables is more
concordant in LV space than gene space (Fig. 9C).
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Figure 9: LV-based meta-analysis increases cross-dataset concordance Two whole blood datasets DGN (RNAseq) and
NESDA (array) were independently decomposed using PLIER. We assessed the correspondence between the resulting LVs by
comparing their loadings on the common set of genes. (A) All pairwise loading correlations (across 10,550 common genes)
among LVs that have at least one cross-dataset match with a correlation >0.5. We observe a strong “sparse” pattern with few
LV pairs achieving a high correlation. Statistics were computed using Spearman rank correlation. (B) Pairs of LVs that have
a correlation of >0.3 are depicted as a bipartite graph. Each LV is automatically named by the top pathway that supports
it. The LV order corresponds to panel A (top to bottom for DGN and left to right for NESDA). We note that many LVs are
in one-to-one correspondence though some LVs that are distinct in one dataset collapse to a single related LV in the other.
For example, naive and memory B cells are resolved in DGN but correspond to a single B cell LV in NESDA. This is also
the case with the two platelet-related pathways (MEGA2 and RAGHAVACHARI PLATELET SPECIFIC GENES). Overall,
while the two datasets are decomposed independently, the resulting decompositions align well and the aligned LVs often have
either identical or highly related top pathways. (C) We define a one-to-one LV mapping by only using pairs in B that are
best reciprocal hits. This allows us to align the two datasets in LV space analogously to alignment by gene identity. Given
aligned representations we investigate the differential expression concordance with respect to three demographic variables. Each
sub-panel depicts a scatter-plot of gene or LV T-statistics (922 and 1,848 indidividuals for DGN and NESDA respectively) for
the variable of interest. We find that the concordance of differential expression (as measured by Pearson correlation of the
T-statistic) is dramatically increased in LV space.

Discussion

On the use of PLIER for mixture proportion estimation

We show that PLIER is competitive with the best available reference-based method (Cibersort) on
mixture proportion estimation. Cibersort relies on known quantitative cell-type signatures. While
SVM-based framework is robust to outliers and discrepancies, it is likely that the hard-coded
Cibersort signature is not a good fit for our dataset. Even though the cell-type marker genesets
used by PLIER are in part produced from the same source data [Abbas et al., 2009, Novershtern
et al., 2011], there are two important distinctions. PLIER is considerably more tolerant of errors in
marker genes since the the model simply stipulates that we wish to find latent variables such that
the loading values corresponding to the marker genes are higher on-average than the background,
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without specifying a target value. Moreover, since PLIER automatically selects a few relevant
pathways out of hundreds or thousands of available ones, it can be supplied with multiple and
possibly discordant marker sets for the same cell type.

It is important to note that the purpose of PLIER is general pathway-activity estimation. We
do not expect that PLIER will substitute reference-based methods for the explicit task of mixture
component inference where reference-based methods have several conceptual advantages. For ex-
ample, PLIER operates best on z-scored data and thus by default discards valuable information
about total transcript abundance. Moreover, PLIER is only applicable to relatively large datasets.
In particular the number of major variance components, that can not be greater than the num-
ber of samples (and is typically much less), must be at least the number of mixture components
we would like to estimate. Thus, PLIER cannot be applied for mixture component estimation in
datasets with just a few samples, where reference-based methods should have a clear advantage.
Importantly, performance of reference-based methods is highly dependent on the basis signatures
(pure cell expression states) which may vary according to assay platform and processing pipeline.
A basis signature optimized for a particular data acquisition framework will provide the optimal
performance.

Alternative approaches

There are several methods that can take prior information about genesets into account in order to
learn a biologically meaningful low-dimensional representation, for example, Bayesian Factor Anal-
ysis [Bunte et al., 2016] that extracts pathway-level latent variables and our previously proposed
method CellCODE [Chikina et al., 2015] that estimates cell-proportion variation from cell-type
marker genesets. However, these methods require that the genesets are specified a priori and
that genes can be partitioned into these sets (though some overlap is allowed). In contrast, in
our method the pathways themselves are subject to optimization and our method is designed to
effectively choose just a few relevant genesets from thousands of available ones.

As our goal is to force gene loading to be represented by biologically coherent genesets, it is
natural to seek a solution based on group lasso regularization, which can perform variable selection
at the group level. However, given that the biological genesets are highly redundant and overlapping,
group lasso, which requires non-overlapping groups, is unsuitable. While it is possible to define
more complex norms that accommodate group overlaps, there are some drawbacks. For example, a
related method termed structured sparse PCA [Jenatton et al., 2009] has been developed for image
analysis. This method implements a direct optimization of the column support, but can only
constrain the support to be the complement of a union of predefined groups, which corresponds
to rectangle-bounded regions for images, but is not interpretable for genesets. Another related
method that considers biological genesets explicitly is the Overlap Group Lasso which employs an
alternative norm that enforces the biologically desirable union-of-groups support [Obozinski et al.,
2011]. However, the implementation is computationally expensive on large numbers of groups and
its native form does not explicitly deal with the issue of geneset/pathway incompleteness.

Future developments

Despite the promising results there are a number of areas for potential improvement and our fu-
ture work will center on improving the recovery of LVs with only a few supporting genes as well
as improving performance on very large geneset collections. For example, even on simulated data
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we find that increasing the amount of irrelevant prior information degrades the method’s perfor-
mance. On the other hand, the available prior information represented in geneset databases such
as mSigDB is constantly increasing which makes robustness to large prior information collections
a top development priority.
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