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Supplemental Figure S1. Identification of RNA editing sites in miRNA-ATSs.

(A) Relationship between the FDR of A-to-I RNA editing site identification and
minimum editing levels.

(B) Metaprofiles of the secondary structure of the pre-miRNAs or the regions of
miRNA-ATs that are opposite to the pre-miRNAs and the flanking regions. Sequences
were folded with the RNAfold tool in ViennaRNA Package. Position 0 of a
miRNA/miRNA-AT is defined as the central position of the loop region of a pre-
miRNA. The negative value, the distance between an upstream position and the
central position; the positive value, the distance between a downstream position and

the central position. The percentage of paired bases at each position was calculated.
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Supplemental Figure S2. Comparison of editing frequency between sense-
antisense miRNA pairs.

For a given miRNA locus, editing frequency of the miRNA was defined as the
number of reads with at least one G in the editing positions divided by the total
number of reads covered in this locus. Similarly, editing frequency of the miRNA-AT
was defined as the number of reads with at least one C in the antisense editing
positions divided by the total number of reads covered in this locus. Only miRNA loci

with coverage > 30 in miR-mmPCR-seq data were used in this analysis.
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(A) Sanger validation of A-to-I RNA editing sites in miRNA-ATs. Solid circle,

Supplemental Figure S3. Validation of ed

from miR-mmPCR-seq.



(B) Nucleotide composition in positions immediately upstream and downstream of the
edited sites in miRNAs and miRNA-ATs. The top 500 editing sites with high editing
levels were selected for analysis.

(C) Comparison of editing level of sites identified in miRNAs and miRNA-ATs
between wild-type and ADARI knockout HEK293 and HelLa cells. For HEK293 cells,
stranded mRNA-seq libraries constructed in this study were analyzed. For HeLa cells,
rRNA-depleted stranded RNA-seq data from a previous study were analyzed (Pfaller
et al. 2018). A-to-I editing sites with coverage > 5 in both samples and with editing
level > 0.02 in wild-type cells were used in this analysis.

(D-E) The percentage of A-to-G and T-to-C mismatch types among the all 12
mismatch types in miRNA loci (D) or mRNA loci (E) in human breast normal and
tumor samples. Sites with editing level >2% were used for analysis. The miRNA
editing and mRNA editing profiles of 10 pairs of matched breast normal and tumor
samples, which were used to identify tumor relevant editing events (Chen et al.
unpublished data), were used for analysis.

(F) The percentage of A-to-G and T-to-C mismatch types among the all 12 mismatch
types in mRNA editing loci in multiple types of human tissues and cells. The
mmPCR-seq data was obtained from our previous study (SRP039090). The reads
from replicates of the same tissue/cell type were merged for analysis. Sites with
editing level >2% were used for analysis.

(G) The percentage of A-to-G and T-to-C mismatch types among the all 12 mismatch
types in mRNA 3’UTR A4/u regions without antisense transcription. Stranded mRNA-
seq data of 7 cell lines were obtained from the ENCODE Project. Sites with editing

level >2% were used for analysis.
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Heart diseased
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Heart fetal
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1] Brain,occipital pole

[ Brain,paracentral gyrus
Brain,parietal cortex
Brain,parietal lobe
Brain,parietal lobe fetal

¥ Lung,right lower lobe

¥ Lymph node

I Muscle, skeletal muscle

[ Muscle,skeletal muscle,fetal

I Muscle,skeletal muscle,soleus muscle

] Muscle,smooth muscle

O
Brain,parietal lobe,newborn = p;:geas
Brain,pineal gland [ Parotid gland
Brain, pituitary gland W Penis
Brain,pons W Placenta
Brain,postcentral gyrus W Prostate
Brain,putamen M Rectum

Brain,putamen,newborn
Brain,substantia nigra
Brain,substantia nigra,newborn
Brain,temporal lobe
Brain,temporal lobe, fetal
Brain,thalamus

[ Salivary gland

W seminal vesicle

W skin

[ Skin,fetal

W Small intestine

W Small intestine, fetal

Brain,thalamus,newborn [ Spleen
Brain,whole I Spleen fetal
Brain, whole fetal ] Stomach.fetal
Eye.optic nerve | | SuhmaX|IIary gland
. M Testis

Eye.retina M Throat
Offactory region M Throat fetal
Spinal cord B Th mu!s
Spinal cord fetal ] Th;mus fetal
Spinal cord,newborn M Thyroid '
23';;!9; tendon M Thyroid fetal

M Tongue
Adrenal gland | | Tongue.epidermis
Appendix [ Tongue fetal
Bladder M Tonsil
Blood M Trachea
Blood vessel,aorta M Trachea, fetal
Blood vessel,artery M Umbilical cord, fetal
Blood vessel,vein M Urethra
Bone marrow M Uterus
Breast M Uterus fetal
Cervix M Vagina
Colon M Total

Supplemental Figure S4. The expression dynamics of miRNA-ATSs profiled using
FANTOMS CAGE data.

The dendrogram was drawn based on the distance metric computed by all miRNA-
ATs. cpm, counts per million. The FANTOMS annotation was used to define the pri-
miRNAs and miRNA-ATs. The FANTOMS CAGE data was used to quantify their

expressions.
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log,(FPKM+1), antisense transcript
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Supplemental Figure S5. Comparison of expression levels between sense-
antisense miRNA pairs.

Stranded mRNA-seq data of nuclear RNA from 7 cell lines of the ENCODE Project
were analyzed. Each dot represents a sense-antisense miRNA pair. Protein-coding

genes and their paired antisense transcripts were plotted as background (blue shade).
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Supplemental Figure S6. Comparison of miRNA-AT expression levels between
nuclear and cytosolic fractions of the cells.
Stranded mRNA-seq data of nuclear and cytoplasmic RNAs from 7 cell lines of the

ENCODE Project were used for analysis.
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(A) The editing level of miRNA-215-AT in the tissues we profiled. The site with the
opposite to pre-miRNA-215 is in the intron of a protein-coding gene IARS2.
(C) The editing level of miRNA-517b-AT in the tissues we profiled. The site with the

(B) The UCSC Genome Browser shows that the region of miRNA-215

Supplemental Figure S7. Examples of miRNA-ATs.
highest editing level in this miRNA-AT was shown.
highest editing level in this miRNA-AT was shown.



(D) The UCSC Genome Browser shows that the region of miRNA-517b-AT that is

opposite to pre-miRNA-517b is in the intergenic region.
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Supplemental Figure S8. DROSHA expression levels in control and knockdown
cells.
Error bars, s.d. based on three biological replicates. P values were calculated using

student’s #-test.
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Supplemental Figure S9. The locations of primers used for miRNA-AT

quantification upon DROSHA knockdown.
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Supplemental Figure S10. CLASH data identified the interaction between

transcripts identified from Ago-CLASH data.
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Supplemental Figure S11. RNA editing alters the secondary structure.

Predicted RNA secondary structure of unedited and edited forms of miRNA-ATs
selected for reporter assay. The “A” or “G” nucleotide at the editing site is highlighted
in red. Light blue and yellow sequences correspond to the regions opposite to the

sense mature miRNA 5p and 3p, respectively.
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Supplemental Figure S12. Various genomic and chromatin features of sense-

antisense miRNA pairs selected for CRISPRa experiments.

Various genomic and chromatin features of a sense-antisense miRNA pair were shown

from top to bottom: 1) the positions of the 4 gRNAs used for miRNA-AT activation;

2) the location of the primer pair used to measure miRNA-AT expression; 3) the

annotation of the full-length miRNA-AT from FANTOMS; 4) the annotation of the

miRNA transcript from previous studies; 5) transcription levels assayed by RNA-seq

on 9 Cell Lines from ENCODE; 6) three histone marks associated with regulatory

elements and promoter from the ENCODE.
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Supplemental Figure S13. Comparison of sense mature miR-135b-5p expression

between miRNA-135b-AT overexpressed cells and control cells.

(A) Melting curve analysis of the real-time PCR assay. We found that the cells with

miRNA-135b-AT overexpressed showed multiple peaks, which is likely due to the

low expression level of miR-135b-5p. We therefore chose to use gel electrophoresis to

quantify the expression of miR-135b-5p instead.

(B) Gel electrophoresis of the real-time PCR products using Qsep1 Portable DNA

Analyzer. The red arrow indicates the PCR products. M, marker; OE, cells with

miRNA-135b-AT overexpressed; NC, control cells. Three biological replicates were

analyzed.
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Supplemental Figure S14. Sense-antisense miRNA pairs selected for miRNA-AT

overexpression experiments.

(A) Annotations of sense-antisense miRNA pairs were shown from top to bottom: 1)

the full-length miRNA-AT from FANTOMS; 2) the pri-miRNA transcript from



previous studies; 3) the miRNA-AT fragment cloned for overexpression; 4) sense
mature miRNA.

(B) RNA expression of miRNA-ATs in HEK293T cells transfected with expression
vectors harboring individual miRNA-ATs. Control cells were transfected with the

empty expression vectors. Error bars, s.d. based on three biological replicates.
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Supplemental Figure S15. miRNA-27a-AT negatively regulates miR-27a
expression and affects cell proliferation.

(A) RNA expression of miRNA-ATs in HEK293T cells transfected simultaneously
with four gRNAs targeting the indicated miRNA-ATs along with the dCas9-repressor
construct. Control cells were transfected with the indicated guide RNAs alone. Error
bars, s.d. based on three biological replicates. P values were calculated using student’s
t-test.

(B) RNA expression of mature miR-27a in HEK293T cells transfected simultaneously
with four gRNAs targeting miRNA-27a-AT along with the dCas9-repressor construct.
Control cells were transfected with the indicated guide RNAs alone. Error bars, s.d.
based on three biological replicates. P values were calculated using Student’s #-test.
(C-D) Comparison of the number of cells in different time points between control
cells and cells with decreased transcription of miRNA-27a-AT (C) or between cells
transfected with a scramble inhibitor and cells transfected with miR-27a inhibitor (D).
Data are presented as Mean = SEM (n = 4). The p values were determined using

Student's #-test. *, p<0.05; *** p<0.001.
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Supplemental Figure S16. Examples of miRNA-ATs in imprinted loci.

(A) The locations of miRNA-ATs in two known imprinted loci. The diagram of
imprinted loci is adapted from Michael Girardot et al (Epigenetics. 2012).

(B) Dual-luciferase reporter assays to detect the effect of sense miRNAs on miRNA-
AT expression. The experiments were performed as described in Fig. 3B. Four
miRNA-ATs from the chr14 imprinted locus were randomly selected and 3 out of 4

were downregulated by the sense miRNAs.



