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Appendix E1 

Supplemental Materials and Methods 

Neural Network Training Data 
From 400 short-axis examinations, we used 37,700 1.5T images + 32,380 3.0T images for 
training, 10,720 1.5T images + 32,380 3.0T images for validation, and 5,167 1.5T images + 
4,740 3.0T images for testing. All reported statistical analyses are based on performance on the 
test set. 

Recovery of Fourier Data from DICOM Files 
To recover measured k-space data from source Digital Imaging and Communications in 
Medicine (DICOM) files, we first queried the Acquisition Matrix (0018,1310) field to determine 
the extent of Fourier zero-padding used by the manufacturer. We effectively reversed this zero-
padding by transforming the DICOM pixel data to k-space and removing interpolated data 
beyond the acquisition matrix geometry. 

Fourier Downsampling of Multiframe Data 
To generate synthetic multiframe training data, we performed the same downsampling strategy at 
the time frame of interest and adjacent flanking time frames. The three downsampled frames 
were stacked as a single volume to provide an input for the multiframe variants of the neural 
networks. 

Hybrid Loss Function 
We used the Tensorflow implementation of multiscale structural similarity index (MS-SSIM) 
and its default settings for filter size = 11, filter sigma = 1.5, k1 = 0.01, and k2 = 0.03. Due to 
relatively small 128 × 128 matrix size for training data, we only used the first four default MS-
SSIM power factors and renormalized them resulting in the weights 
[0.0517,0.3295,0.3462,0.2726]. For multiframe experiments, we added the 3D L1-loss to the 
mean of the MS-SSIM losses calculated for each of the three adjacent timeframes. 

Other Training Parameters 
We used the hyperbolic tangent as the final activation function for all cognitive neural networks 
(CNNs). Additionally, we used the Adam optimizer with a learning rate of 1e-4. We performed 
training with early-stopping for a maximum of 25 epochs. We trained a unique set of UNets and 
SRNets for multiple degrees of upsampling, from 2× to 64×. 

Super-Resolution of Low-Resolution Images 
To predict a high-resolution image from low-resolution inputs, we z-padded outer k-space of the 
low-resolution acquisitions, transformed them to the image domain, retained the central 128 × 
128, and scaled pixel values to [0,1] prior to CNN inference. 
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Super-Resolution of Full-Resolution Images 
To further super-resolve full-resolution acquisitions, we divided each full-resolution image into 
tiles, transformed the tiles into k-space, z-padded them to 128 × 128, converted them to image 
space, and scaled pixel values to [0,1] prior to CNN inference. We then concatenated the super-
resolved tiles to form a higher resolution image. 

As an example, to super-resolve a 128 × 128 image by a factor of 4 (2× along the row 
direction and 2× along the column direction), we first subdivide the source image into 4 64 × 64 
tiles. We then transform each tile to k-space and z-pad them to 128 × 128. We then convert each 
tile back to image space, scale the pixel values to [0,1], and use k-UNet to super-resolve each 
tile. Following super-resolution, we have 4 128 × 128 tiles which, in this case, correspond to the 
four quadrants of our input image. We then concatenate the tiles relative to their original position 
in the source image to generate a final 256 × 256 super-resolved image. 
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