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Table S1: A list of climatic and land cover data included in the boosted regression tree 

models. We also extracted identical variables for the following projected regional 

climatic models: CanRCM4-CanESM2, CRCM5-CanESM2, CRCM5-MPI-ESM-LR, and 

HIRHAM5-EC-EARTH. The vegetation index variable was not included in the list of 

projected climatic variables as it dropped out during the model simplification process. 

Variable name Unit Source Reference 

Mean daily temperature* °C MOD11C2 (Wan et al. 2015) 

Minimum daily temperature °C MOD11C2 (Wan et al. 2015) 

Maximum daily temperature °C MOD11C2 (Wan et al. 2015) 

Number of days ≥10°C °C MOD11C2 (Wan et al. 2015) 

Number of days ≥20°C °C MOD11C2 (Wan et al. 2015) 

Average total monthly precipitation mm/month MERRA2 ((GMAO) 2015) 

Enhanced vegetation index - MOD13C2 (Didan 2015) 

Urban land cover - GRUMPv1 (Center for International Earth

Science Information Network 

(CIESIN) et al. 2017) 



Table S2.  A brief outline of the Regional Climate Models (RCMs) in reference to the Coupled Global Climate Models 

(CGCMs). The simulations include three Regional Climate Models (RCMs) driven by three CGCMs under two 

representative concentration pathways (RCP4.5 and RCP8.5), and one RCM used two different boundary conditions 

from two CGCMs. 

No. 
simulation 

Regional Climate Model Coupled General Circulation Model 

Name 
Responsible 

institution Reference Name 
Responsible 

institution Reference 

1 Canadian 
Regional Climate 
Model (CRCM5) 

Université du Québec 
à Montréal, Canada 

Martynov et al. 
(2013), Šeparović 
et al. (2013) 

Second generation 
Canadian Earth 
System Model 
(CanESM2) 

Canadian Centre for 
Climate Modelling 
and Analysis 
(CCCma) of 
Environment and 
Climate Change 
Canada (ECCC), 
Canada 

http://climate-
modelling.canada.ca/ 

2 Canadian 
Regional Climate 
Model (CRCM5) 

Université du Québec 
à Montréal, Canada 

Martynov et al. 
(2013), Šeparović 
et al. (2013) 

Fifth version of 
Max Planck 
Institute Earth 
System Model 
(ECHAM5/MPI-
M&MPI-ESM-LR) 

Max Planck Institute 
for Meteorology, 
Germany 

https://www. 
mpimet.mpg.de/ 

3 Canadian 
Regional Climate 
Model (CanRCM4) 

CCCma of ECCC, 
Canada  

Scinocca et al. 
(2016) 

CanESM2 CCCma of ECCC, 
Canada 

http://climate-
modelling.canada.ca/ 

4 High Resolution 
Limited Area 
Model (HIRHAM5) 

Danish Meteorological 
Institute, Denmark & 
Alfred Wegener 
Institute Foundation 
for Polar and Marine 
Research, Germany 

Bøssing 
Christensen et al. 
(2007) 

European Earth 
System Model 
(EC-EARTH;) 

Irish Centre for High 
End Computing 
(ICHEC), Ireland 

Hazeleger et al. (2010) 



Figure S1. Reported distribution of Ae. aegypti and Ae. albopictus mosquitoes 

in Canada and the United States, 2001-2016. The orange dots represent the 

geographic location of mosquito occurrences referred in Excel table S1 and S2. 



Figure S2.  The relationship between the primary risk factors and the ecological niche of 

Aedes aegypti resulted from the model utilizing currently observed (2001-2016) climatic 

conditions. Results from the three primary contributing factors mean minimum daily 

temperature, mean maximum daily temperature and mean daily temperature in January 

are presented here. These results are from 120 bootstraps. The grey lines represent 

the predicted line for each bootstrap, the dashed black line represents the upper and 

lower boundary of the 95% confidence intervals, and the red continuous line 

represented the average of the bootstraps.



Figure S3. The relationship between the primary risk factors and the ecological niche of 

Aedes albopictus resulted from the model utilizing currently observed (2001-2016) 

climatic conditions. Results from the two primary contributing factors mean minimum 

daily temperature, number of days above 10C are presented here. These results are 

from 120 bootstraps. The grey lines represent the predicted line for each bootstrap, the 

dashed black line represents the upper and lower boundary of the 95% confidence 

intervals, and the red continuous line represented the average of the bootstraps.  



Table S3: Determining the presence/absence threshold cut-offs for the current (2001-

2016 observed climatic data) and simulated climatic models (2006-2016). We 

considered the multiple recursive partitioning pathways (RCPs) leading to moderate 

(RCP 4.5) and high (RCP 8.5) greenhouse gas emission scenarios. The table shows 

the presence/absence threshold cut-offs determined by True Skill Statistics (TSS), 

threshold where maximum Kappa and the maximum percentages of the observations 

correctly classified (MaxPCC). 

Optimal Threshold for Aedes Presence/Absence Niche 

Model period Species Model RCPs TSS Kappa MaxPCC 

Observed climate (2001-2016) 

Ae. albopictus N/A 0.80 0.80 0.90 

A. aegypti N/A 0.69 0.69 0.84 

Simulated climate (2006-2016) 

Ae. albopictus 4.5* 0.65 0.65 0.65 

A. aegypti 4.5* 0.53 0.53 0.53 

*Greenhouse gas concentration are be similar for this short time window close to the current

period and both RCPs (4.5 and 8.5) will have similar outcome. 



Table S4: Accuracy measures for the boosted regression tree models developed using 

simulated climatic data for the time period 2006-2016. The area under the receiver 

operating characteristic curve (AUC) are presented as accuracy measures. 

Projected climatic model 
Boosted Regression Tree Model Accuracy 

Aedes albopictus (AUC*) Ae. Aegypti (AUC*) 

CanRCM4-CanESM2 0.962 0.976 

CRCM5-CanESM2 0.965 0.934 

CRCM5-MPI-ESM-LR 0.964 0.949 

HIRHAM5-EC-EARTH 0.961 0.980 

*The AUC values are rounded to three decimal digits.



Figure S4. The most influential variables identified in the Aedes aegypti and Ae. albopictus ecological niche models 

developed using simulated climatic data for the time period 2006-2016 and a single boosted regression trees model run. 

The figure represents the relationship between the most influential factors and Aedes ecological niche for each model and 

the black line represents a single iteration. The most influential covariates varied from one Regional Climatic Model 

(RCM) to another. This includes mean minimum temperature (“tmin”, mean January temperature (“tjan”), mean daily 

temperature (“avgtmp”) and average number of days ≥10o C (“ncdays10”).



S9. R codes and additional information‟s on boosted regression trees model 

R codes for the boosted regression trees model 

brt.model.name<- gbm.step(data=training.data.sebset, 

       gbm.x = c(3:4, 6:9, 11), # The predictor variables in dataset 

       gbm.y = 2, # The outcome variables in dataset 

       family = "bernoulli", 

       tree.complexity = 8, #defines the complexity of individual trees 

       learning.rate = 0.01, #defines the weight applied to the individual trees 

       bag.fraction = 0.5, # the proportion of observations used in selecting variables 

n.folds=10) # number of folds

Introduction of some degree of randomness into a boosted regression trees model often 

increases its accuracy, run-time and reduces overfitting (Friedman 2002). This process 

also introduces variance in the fitted values and predictive outcomes between each 

model run (Elith et al. 2008). In this model, stochasticity was introduced through a „bag 

function‟ that specified the proportion of data to be randomly selected for each step.  

R-codes for model simplification

Simplified.brt.model<- gbm.simplify(model.name, n.folds=10, n.drop="auto", 

prev.stratify = TRUE, eval.data = NULL, plot = TRUE) 

A detailed description of the model simplification theories and procedure are illustrated 

in the „dismo‟ package available for R (Hijmans et al. 2017). In brief, the model 

simplification is done through dropping the least-informative predictors from the model, 

followed by re-fitting, and successively repeating the process until some stopping 

criteria is achieved (Elith et al. 2008). The simplifications begin with primary cross-

validation (CV) and then initializes the assessment procedure for removing predictors 

using k-fold CV; the process progressively simplifies the model fit to each fold, and 

utilizes the CV error to assess the number of variables to be removed from the primary 

model without affective the predictive performance (Elith et al. 2008).     
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