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Supplementary Information

Supplementary Introduction

Obesity and MC4R pathway LoF variants

Obesity, characterized by an excessive accumulation of body fat has lacked effective
pharmacotherapies, due principally to poor efficacy and/or corollary side-effects (1-3). Obesity
significantly increases the risk of type 2 diabetes, cardiovascular disease, hypertension, and
certain cancers, and is associated with elevated morbidity and mortality (4). As such, obesity
has become an increasingly significant public health concern. Obesity prevalence varies among
ethnicities with significantly higher rates in non-Hispanic blacks and Hispanics than non-
Hispanic whites or non-Hispanic Asians (5). The hypothalamic MC4R-pathway plays a critical
role in controlling food intake through brain-periphery axes, with the hypothalamus receiving,
and responding to, signals from peripheral tissues including adipose tissue (e.g. leptin),
pancreas (e.g. insulin) and gastrointestinal tract (e.g. ghrelin) (6,7). Genetic studies of several
monogenic forms of early-onset obesity have revealed the significance of loss of function (LoF)
mutations within the MC4R pathway, including leptin (LEP), the leptin receptor (LEPR), pro-
opiomelanocortin (POMC), prohormone convertase 1 (PCSK1) and the melanocortin 4 receptor
(MC4R) gene (8-11). The main goal of this research is to thoroughly investigate several genes
responsible for monogenic forms of extreme obesity that are upstream of MC4R, where
individuals suffering from deficiency in these gene may be responsive to treatment with an
MCA4R agonist. We begin by selecting 3 candidate genes: LEPR, POMC and PCSK1 genes, and
categorize variants in these genes by likely functional impact and population frequency. We
evaluate whether these variants are likely to impact phenotype by (1) doing extensive research
into previous studies, (2) using tools to predict whether a variant is likely to affect protein
functions, and (3) looking at the association of a variant with the phenotype. Once we collect
this information, we attempt to estimate the likely number of individuals with monogenic forms
of obesity for these 3 genes as a baseline count for existing individuals that can potentially

benefit from treatment from an MC4R agonist. We also search a biobank for potential



candidates for treatment in a clinical trial to test the effect of setmelanotide on individuals
harboring specific variants. This also gives us a sense of the yield we might expect to find by
using existing biobanks to find individuals that can benefit from treatment. We then investigate
other more common variants which may affect phenotype as these individuals may still benefit
from treatment with an MC4R agonist. The long term goal is to identify additional genes and
variants where individuals suffering from morbid obesity are likely to greatly benefit from
treatment with an MC4R agonist where other treatments such as bariatric surgery, attempts at
lifestyle changes in diet or exercise, or other obesity drugs have failed. The hope is that one day
personalized medicine will allow these individuals to be identified by their genetics before they
undergo suboptimal treatments that may place unnecessary harm on or cause discouragement

in the patient.

To accomplish these goals, we first compiled and curated a comprehensive list of LoF variants in
the LEPR, POMC and PCSK1 genes, including variants reported in the literature, obesity
pathogenic variants in human mutation databases, and computationally identified LoF variants
based on predicted functional impact. Leveraging this list against the Genome Aggregation
(gnomAD) database we estimate the prevalence of homozygous and compound heterozygous
carriers, across the United States (USA). To further expand understanding of the genotype-
phenotype correlation we next interrogated several large genotyped and sequence datasets
with BMI measurements to assess the association of these LoFs variants (and other variants in
these genes) with BMI and obesity, and carried out an allele burden test to evaluate if the
cumulative number of affected alleles in these three genes is associated with a risk for
increased BMI. Based on these findings we then queried the Mount Sinai (MtSH) BioMe
Biobank (12) for novel, informative MC4R-pathway variant carriers aimed at initiating phase-2

proof of concept clinical studies with setmelanotide.

Supplementary Materials and Methods

Genetic datasets



Below is a summary of the datasets used in the analyses.

Supplementary Table 4. The analyzed datasets.

Name (Abbreviation) Number of Type of Individual | Used in Ethnicity
Individuals Data Level BMI
data analysis
gnomAD ~120K (WES) | WGS/WES no no Mixed
~15.5K (WGS)
1000 genomes 2500 WGS yes no Mixed
UK10K Twins (UK10K) 1600 WGS yes yes British Females
UK Biobank (UKBB) 150K Genotype yes yes Only British
array + analyzed
imputation
MtSH 11K Genotype yes yes Mixed
(BB) Array +
Imputation
(BM) 5K Targeted yes yes Mixed
Sequencing
gnomAD

The publicly available gnomAD database (http://gnomad.broadinstitute.org/about) entails a

compilation of datasets, from a variety of large-scale sequencing projects. The database

contains information about variant frequencies in various race/ethnicity groups.
1000 genomes

The 1000 genome project (13,14), has individual whole genome sequencing data for 2504
individuals from 26 populations. In this analysis, we used the 1000 genomes to find allele

frequencies in various ethnic populations.




MtSH Biobank

The Mount Sinai Hospital (MtSH) Biobank currently has collected DNA samples from more than
30,000 enrolled participants. Genotyping (BB) data has been generated for more than 14,000
patient samples using lllumina OmniExpressExome-8 v1.1 BeadChip that covers approximately
one million genetic markers. Available clinical information for all the participants such as
disease diagnosis, laboratory test results and medication history were obtained from Mount
Sinai electronic medical record (EMR) databases. Individuals with discordant sex, call rates
below 98%, or out-lying heterozygosity were removed. SNPs with call rates below 95% or with
deviation from Hardy-Weinberg equilibrium (HWE) with p-value<5e-5 were also excluded. The
genotype dataset was prephased using SHAPEITv2 (15) and imputation was performed with
IMPUTE2 (16) using the 1000 genomes phase Il integrated variant set as the haplotype
reference panel. Imputed data and phenotype information was available for 11,091 individuals.
Related individuals were also removed by randomly choosing one individual from approximate
first or second-degree relatives (PI_HAT>0.25 in PLINK --genome analysis). BMI was recorded as
the maximum reading for each individual. Unrealistic readings were excluded. Individuals with
large shifts in BMI were examined and likely incorrect readings or elevated readings due to
pregnancy were excluded. Principle components (PCs) we computed to estimate genetic
ethnicity and clustering. We were left with 10,338 individuals with genotype, PC, and
phenotype information for association analysis. Imputed variants were represented as
estimated alternate allele count determined by the imputed genotype posterior probabilities.
The Mount Sinai sequencing data includes (BM) 5543 individuals with sequencing data from a
gene panel that included the POMC, PCSK1, and LEPR genes. As this is not WGS data, we are
missing the information for the up/downstream variants. PCs were computed using a set of
ancestry informative markers included in the gene panel. Children under the age of 18 and
those missing reported ancestry were removed from any association analysis. For both
datasets, ethnicity was estimated using reported race, reported ethnicity, country of birth, and
genetic clustering. Individuals that did not have ancestry information or did not cluster with
their reported ancestry in PC analysis were also removed from any ancestry informed analysis.

There were enough individuals and information to do analysis for 6 ethnic groups: 1) Caucasians



of European descent (EA), 2) Caucasians of Jewish descent (EA_AJ), 2) Hispanic from Central or
South American not identifying as white (HA_LAT), 3) Hispanic from the Dominican Republic
(HA_DOM), 4) Hispanic from Puerto Rico (HA_PUR), 5) Black or African American from the USA
(AA), and 6) Black or African American not from the USA with high African ancestry (AFR). Each
of these groups has very distinct genetics, diets, and rates of obesity confounding analyses,
which is why we chose to analyze them separately. For example, for those identifying as Black
or African American, individuals born in the USA have morbid obesity rates around 14%, while
those not claiming to be born in the USA have morbid obesity rates in the 6-9% range. Among
Hispanic Latinos, individuals from Puerto Rico have a morbid obesity rate close to 10%, while

those from the Dominican Republic have rates closer to 4%.
The UK Biobank

The UK Biobank (https://www.ukbiobank.ac.uk/about-biobank-uk/) is a national and

international database, aimed at improving the prevention, diagnosis and treatment of life-
threatening illnesses. The UK Biobank recruited 500,000 people (between 40-69 years of age in
2006-2010) from across the U.K. The first release of the UK BioBank consists of around 150K
individuals with extensive phenotyping. The largest ethnic group consists of around 120K white
British individuals with BMI information with genotyping information including selected coding
variants. The UK Biobank was genotyped on two very similar arrays, the Biobank (BB) array and
the BIiLEVE (BL) array. PCs and genetic outliers were pre-computed (excludes those with a
genotype missing rate >0.05 and heterozygosity >0.196) and an unrelated set of individuals was
selected for analysis. Those without PC information or with missing genetic ethnicity were not
analyzed. Many variants that were not genotyped have been imputed using a large reference
panel of sequencing data. In this analysis, only the imputed variants that have high information
scores (>0.7) are taken into account due to the inherent inaccuracy in using such analysis for

rare variants. A high score implies they were reasonably well imputed.

The UK10K



Other data sets examined include the UK10K sequencing control data sets, including the TWINS
1692 female individuals and ALSPAC children. We did not analyze the ALSPAC data since the
obesity rate was low and it is more difficult to examine BMI in children. Relateds (PI_HAT>0.2

in PLINK --genome analysis) and heterozygosity outliers were excluded from analyses.

Selection of variants

We first compiled and curated a comprehensive list of LoF variants in the LEPR, POMC and
PCSK1 genes, including variants reported in the literature, obesity pathogenic variants in human
mutation databases such HGMD (17) and ClinVar (downloaded March 2017) (18) and
computationally identified LoF variants based on the predicted functional impact. Group 1
variants consist of manually evaluated published variants based on the LoF criteria described in
the main text. Group 1 also includes additional variants observed in the above data sets that
are predicted to be nonsense, frameshift or splice site mutations. Group 2 variants consist of
additional likely impactful missense variants seen in the above data sets, as determined by the
criteria described in the main text. Only the UniProt canonical transcript was used for each gene

to determine variant mutation type.

DeepCODE Methods for classifying Group 2 variants

We used a novel deep artificial neural network to predict functional relevance of missense
variants in LEPR, POMC and PCSK1. This deepCODE deep learning algorithm was developed
using high-confidence pathogenic variants curated by Clinvar (18), and another independent set
of variants from the Exome Sequencing Project, ESP6500 (https://esp.gs.washington.edu/c)
predicted to be likely benign based on their high allele frequency. Classification performance of

the DeepCODE algorithm was near perfect (Supplementary Figure 1. AUC = 0.9933).



Fisher’s Exact tests were then used to assess whether highly relevant (=0.9) DeepCODE scores
are more likely to occur in functional domains of these proteins. Domain annotations were
obtained from NCBI for each of the three proteins, limited to domains with official designations
(e.g. PFAM identifier) and strong literature evidence (see Supplementary Table 6). All observed
rare variants with a maximum allele frequency of less than or equal to 1% (1089 variants
collected from allele frequency databases including 1000 Genomes, ESP/EVS, Genomes of the
Netherlands, DeCODE Iceland, gnomAD, and Kyoto Japanese) were mapped to protein
positions. Variants with high (=0.9) DeepCODE scores are significantly enriched in functional
domains (p = 1.3e-03, 6.8e-07 and 1.9e-06 for LEPR, PCSK1 and POMC, respectively, when all
functional domains are pooled for each protein), indicating that variants with a predicted
functional impact are more likely to occur in functionally annotated protein domains. We also
assessed whether variants with high DeepCODE scores were enriched or depleted in each of 20
individual domains across the three genes; there were five individual domains with a significant
association between the score and domain location. With the exception of the signal peptide
domain of PCSK1, all domains are enriched with DeepCODE high-scoring variants

(Supplementary Table 5).

Supplementary Table 5. Enrichment of variants with high DeepCODE scores in protein domains.

Protein region

Protein Domain (amino acids) p-value BH adj. p-value
LEPR Leptin Receptor/Ig-like C2-type 333-420 0.000652 0.000652
PCSK1 Peptidase S8/Subtilase family 158-432 1.30e-14 6.5e-14
PCSK1 Signal peptide 1-27 6.85 e-06 1.71 e-05*
POMC Corticotrophin, ACTH, 136-176 0.00104 0.00519

Melanotropin

POMC Melanotropin gamma 77-87 0.01381 0.03451

*Statistically significant depletion of high-scoring variants in the signal peptide region as

compared with the rest of the protein



DeepCODE variant-scoring model development

Two classification models were built for predicting the pathogenicity of human missense single-
nucleotide variants (SNVs) across the genome (Yang et al., 2017, Manuscript in Preparation).
Prediction scores from the deep artificial neural network and the Least Absolute Shrinkage and
Selection Operator (LASSO) models are designated DeepCODE and lassoCODE, respectively.

Here we only use the proposed DeepCODE model.

A deep neural network, “DeepCODE”, was trained as described below to predict functional

relevance of human missense single-nucleotide variants (SNVs). The algorithm was built using a
non-linear deep neural network of 310 features derived from 59 of the 115 annotation columns
from a published annotation resource, the Combined Annotation Dependent Depletion data set

(CADD: http://cadd.gs.washington.edu/home; 19). Data sources for CADD (version 1.3) include

ENSEMBL (v.75), variant-effect predictor (VEP, v.76), regulatory data from Encode, and
missense prediction scores from Polyphen and SIFT. CADD C-scores for functional prediction
were not used for training the DeepCODE DANN model. The model was trained with non-
synonymous missense variants derived from the intersection of two data sources: (1) whole
genome variants obtained from CADD, and (2) exonic coordinate regions for hg19 obtained
from the UCSC genome browser. This classification scheme was trained and tested with a total
of 2100 missense variants: 1050 missense variants from ClinVar (annotated by multiple labs as
pathogenic), and 1050 common missense variants with allelic frequencies of 5 to 10%,
randomly selected from the Exome Sequencing Project, ESP6500
(https://esp.gs.washington.edu/). The Clinvar “pathogenic” missense variants submitted by
multiple labs served as “true values” for functional missense variants in the DeepCODE model.
Similarly, the 1050 ESP6500 variants served as “true values” for neutral missense variants. For
model training purposes, 80% of the 2100 total variants were used. The model was tested by

predicting functional relevance for the remaining 20% of the total 2100 variants. The



DeepCODE model was evaluated with ROC curves and AUC metrics; the model had AUCs

greater than 0.99 for both training and testing sets (Supplementary Figure 1).

The non-linear DeepCODE model was trained with a deep neural network in a CUDA-enabled
GPU computing platform. The “lasagna” and “nolearn” python modules were used to construct
the deep learning model with the “Theano” compiler. The neural network was initialized with
an input layer, three hidden layers using the Rectify non-linear activation function for artificial

neurons:
o (x) = max(0,x)
and an output layer using the Softmax activation function:

eXi

P(X); =K o

where K is the total number of neurons in the layer. Stochastic Gradient Descent (SGD) was
performed for parameter updates with Nesterov momentum (22) under the categorical cross-

entropy loss function:
L =—- Z t; jlog (pi;)
J
where t is the target giving the correct class index per data point and p is the softmax output of
the neural network with class probabilities. A dropout technique was applied to prevent neural
networks from overfitting, as previously described (23). Model parameters such as the update

learning rate, number of units, dropout rate and max epoch number were optimized by cross-

validated grid-search over the parameter grid.

Variants in LEPR, POMC and PCSK1
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Variants in LEPR, POMC and PCSK1 from population allele frequency databases (including 1000
Genomes, ESP/EVS, Genomes of the Netherlands, DeCODE Iceland, gnomAD, and Kyoto
Japanese) harmonized and maintained in GORdb (48) were obtained via Sequence Miner, a
JAVA-based interface (WuXi NextCODE). These were cross-referenced to DeepCODE scores for
all the missense variants. Variants were also mapped to protein domains. Domain information
for the three proteins was obtained from GenPept records hosted at the NCBI

(https://www.ncbi.nlm.nih.gov/protein/; LEPR - NP_002294.2; POMC — NP_000930.1; PCSK1 —

NP_002294.2); overlapping domains were merged into one segment. Protein domain/segment
boundaries were mapped to genomic locations using Alamut Visual (v 2.7.2) (Supplementary

Table 6).

Supplementary Table 6. Protein Functional Domains.

Chrom | Genomic Genomic Gene Domain Domain start Domain end
Start Pos End Pos (aa position) (aa position)
chrl 66031249 66036176 LEPR signal peptide 1 21
chrl 66062136 66064481 LEPR FN3 (Fibronectin type 3 237 330
domain)
chrl 66067077 66067338 LEPR "Lep_receptor_lIg"/"Ig-like | 333 420
C2-type domain;
pfam06328
chrl 66067639 66070767 LEPR Leptin-binding 467 484
chrl 66074441 66075756 LEPR FN3 (Fibronectin type 3 537 627
domain)
chrl 66083655 66085649 LEPR Fibronectin type Il 741 812
domain; pfam00041
chrl 66087062 66087128 LEPR transmembrane region 840 862
chrl 66088602 66088626 LEPR Box 1 motif 871 879
chrl 66101877 66101892 LEPR Required for JAK2 893 898
activation
chrl 66101892 66101916 LEPR Required for STAT3 898 906
phosphorylation
chr2 25383955 25384219 POMC Lipotropin beta, 179 267
melanocyte SF, ACTH,
beta-endorphin,
Op_neuropeptide, Met-
enkephalin
chr2 25384228 25384348 POMC Corticotropin, ACTH, 136 176
melanotropin
chr2 25384495 25384525 POMC Melanotropin gamma 77 87
chr2 25384546 25387560 POMC NPP; Pro- 28 70
opiomelanocortin, N-
terminal region;
pfam0838

11



chr2 25387566 25387641 POMC Signal peptide 1 26

chr5 95728716 95728824 PCSK1 Proho_convert; 715 751
Prohormone convertase
enzyme; pfam12177

chr5 95730681 95734661 PCSK1 P_proprotein; Proprotein 504 591
convertase P-domain;
pfam01483

chr5 95735793 95759088 PCSK1 Peptidase_S8; Subtilase 158 432
family; pfam00082

chr5 95761592 95768647 PCSK1 S8 pro-domain; Peptidase | 34 110
S8 pro-domain;
pfam16470

chr5 95768668 95768746 PCSK1 Signal peptide 1 27

Prevalence Estimation

Leveraging the list of Group 1 and 2 variants against the Genome Aggregation (gnomAD)
database, we estimate the prevalence of homozygous and compound heterozygous carriers,
and across the United States. 40% of the first release of the gnomAD data of 60K individuals,
known as the Exome Aggregation Consortium (ExAc) data are derived from US population and
have similar estimated ancestry composition to US Census results (Supplementary Figure 3A).
Similarly, for the full gnomAD database we have shown excellent concordance with the US
Census results (Supplementary Figure 3B). Note however, while race/ethnic distribution in the
gnomAD database appears representative of the US census, heterogeneity within race/ethnic
groups has not been studied and may skew results obtained for a race/ethnic representation.
We assume no negative selection of LoF variants even though there is evidence that loss of
function in these genes may be associated with early lethality. In addition, new mutations or
recurrent mutations will continue to arise in each generation which we do not account for. We
assume random mating between obese and non-obese populations and between different
races/ethnicities; however, non-random mating in these populations may increase the LoF
frequencies within the obese population or in some races/ethnicities. Furthermore, because
most of the variants are rare with MAF < 0.1%, we assume the mutations originally occurred on
separate haplotype backgrounds. As the variants are in close proximity and it is rare for them to
occur in the same individual, we also assume that recombination has not occurred between

them since the original mutation event. The estimated number of homozygotes for a particular
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variant is simply N*p?, where N is the population size and p is the frequency of the allele of
interest for the variant. The estimated number of compound heterozygotes for 2 variants is
2*N*p1*p,, where p; is the frequency of the allele of interest for the first variant, p, for the
second variant, and the multiple of 2 from the fact that the first variant can be from either the
mother or father and vice versa. The confidence intervals for each individual genotype can be
approximated using formula for variance in Chakraborty et al (24). We roughly approximated

the total variance as the sum of the variances.

We also computed the frequency and prevalence for non-random mating within each ancestry
group assuming mating is restricted to individuals within the same race/ethnicity and use these
frequencies to predict prevalence for non-random mating (NRM) across the whole population
given the relative proportions of race/ethnic group. For the non-random mating within
ethnicity calculations in Figure 3, we assumed the following proportion of individual ancestry
from the gnomAD in the US (roughly estimated from a 2010-2014 censuses): African 12%,
Ashkenazi Jewish 1.4%, East Asian 4%, Finnish 0.2%, European (not Finnish) 60%, Latino 16%,
South Asian 3%, and Other/Unknown 3.4%. We report the prevalence for the different
race/ethnicity groups as the prevalence per 100K individuals as some of these groups only
comprise a small proportion of the population and would be not be visible in a bar plot if
absolute numbers were used. This allows one to see which populations are enriched for

carriers.

Association in Known, Novel Variants, and Genes

To further expand understanding of the genotype-phenotype correlation, we interrogated
several large genotyped and sequence datasets with BMI measurements to assess the
association of the Group 1 and 2 variants (along with other variants in these genes) with BMI
and obesity, and carried out an allele burden test to evaluate if the cumulative number of

affected alleles in these three genes is associated with a risk for increased BMI. Association of
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variants with BMI was done by regressing BMI on age, age squared, gender, and 6 genetic
principle components which help control for BMI and variant frequency differences in
populations with substructures (for example, there may be differences between BMI and
variant frequencies for those from the South versus those from the Northern UK) which can
lead to false positive or false negative associations. When the two UK Biobank arrays were
analyzed together, we also included a covariate for the array (Biobank array versus BiLEVE array
which may have subtle differences in genotyping error or missing rates). For the UK Biobank,
we computed obesity odds ratios by dichotomizing cases and controls to morbidly obese cases
with BMI>40 and normal controls with BMI<25. Logistic regression was used to analyze the
common variants while firth regression was used for rare variants. BMI is influenced by many
environment and genetic variants. Due to confounding (reported race/ethnicity associated with
trait, genetic burden associated with genetic race/ethnicity, and genetic PCs associated with
trait and reported race/ethnicity, trait associated with sex differently in different
races/ethnicities, etc.), we analyzed each reported race/ethnicity individually and combined
results. We did not log transform BMI to retain the original scale. (The ENGAGE study
performed in inverse normal transformation of BMI, Supplementary Table 11). The meta-
analyses and forest plots were done in the R package metaphor using a random-effects

weighted model (Wolfgang Viechtbauer, 2010 36:3. Jstatsoft:

https://www.jstatsoft.org/article/view/v036i03). The forest plots represent the estimated
effect sizes and confidence intervals for each data set and subgroup. Each dataset is assigned a
weight based on the inverse of the variance in the estimate and thus larger or more
homogenous data sets tend to have larger weights. The overall effect size and p-value are a
weighted average of these studies. A test of heterogeneity is also performed to determine if
the different studies have significantly different estimated effects (the I? statistic describes the
percentage of variation across studies that is due to heterogeneity rather than chance). Beta
reflects the BMI shift for the carriers of the variant set. For imputed variants (genotypes for
unsequenced variants estimated from a reference set of individuals), only variants with an
IMPUTE information score >0.7 were analyzed. For testing for a heterozygote carrier, an

individual was required to have an allele dosage >0.9. For tests for carriers of two or variants or
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homozygotes, and individual needed an allele dosage sum >1.8. An individual was only
considered a non-carrier (WT) when the sum of their allele dosages over all variants tested was
<0.5. For all rare variants, a missing variant was considered as homozygote for the major allele
for any burden test. For tests involving PCSK1 N221D or S690T, any missing genotypes were

imputed.

For the association analyses, we only analyzed the 120K British individuals from the UK Biobank,
as this was the largest ethnic population. This analysis has several limitations: First working in a
selected ethnicity can obscure BMI association signals due to the presence of interacting alleles,
prevalent in this population. Secondly, due to population specific prevalence distributions,
many alleles will not be represented. In line with these considerations, we noted that most of
the Group 1 and Group 2 variants were too rare to test for association with BMI even for the

heterozygotes.

To determine if the common variants reported in literature were true associations and/or the
possible causal locus, when available, we also looked at the reports of association of the known
variants in two European genome-wide meta-analyses consortia: GIANT (25) and ENGAGE (26)

(http://diagram-consortium.org/2015 ENGAGE_1KG/) and in the UK Biobank cohort (27). The

GIANT data set consists of around 124K genotyped individuals imputed with the HapMap data,
while the ENGAGE data set is comprised of around 87K genotyped individuals imputed on the
1000g phase I.

We then hypothesized, that an aggregation of known rare (or both rare and common) variants
in these genes within an individual would result an elevated BMI. Previous studies have looked
at the effect of the overall burden of BMI associated variants common in obesity related traits
(28) and in the GIANT study with the identified risk alleles (25). A combined analysis of common
SNPs along with copy number variation was also found to be significantly associated with BMI
(29). In addition to published variants, we determine which group of variants best correlate
with BMI and obesity from available datasets and identify carriers of these variants as potential

patients for a clinical trial.
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LoF Carriers in Mount Sinai BioMe Biobank

Based on these findings we then queried the Mount Sinai (MtSH) BioMe Biobank (12) which has
a high percentage of obese (39% with BMI>30) and morbidly obese (8% with BMI>40) patients,
for informative MC4R-pathway variant carriers with the future goal to initiate a phase-2 proof
of concept clinical studies with setmelanotide in selected MC4R-pathway deficient patients. As
LoF/LoF are very rare, we are also particularly interested in those carrying LoF/PLoF variants,
especially those that are homozygous or compound heterozygous within a gene, or those that
are what we will call composite, i.e. compound heterozygotes across genes. However, it may be
that some heterozygotes or individuals carrying common variants will have increased response

to treatment as well.

Supplementary Results

For POMC, PCSK1, and LEPR we identified 30, 31, and 22 potential variants in the literature,
respectively (Supplementary Tables 1A, 2A and 3A). For references where only the amino acid
change position was reported, we searched the available cohorts for each possible change
(Supplementary Tables 1-3). We were unable to identify a handful of the variants from the
literature with the given notation. In total, we found 587 known and predicted LoFs, including
135, 231, and 221 in POMC, PCSK1 and LEPR respectively (Supplementary Table 1-3, Table 1).
These include 166 Group 1 variants and 421 Group 2 variants. There were 104 Group 1 and 392
Group 2 variants in the gnomAD data set. There were 43 Group 1 and 67 Group 2 variants in the
datasets analyzed for BMI. 121 of the Group 1 variants were observed in any data set analyzed.

(These counts do not include T640A).

Prevalence Estimation

The cumulative allele frequencies for the Group 1 and Group 2 variants are presented in

Supplementary Figure 4.
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Impact of Ethnicity

The mating preference considerations do not greatly impact the overall U.S. prevalence
estimates (maximum absolute change roughly 25%), and the true prevalence and mating
preferences likely lie between the random mating and non-random mating values. Due to
several variants with modest prevalence in only one or several ethnicities, the prevalence of
homozygous and compound heterozygous carriers is predicted to differ significantly among

ethnicities and may help identify target populations.

For example, while POMC has high frequency of LoF carriers and predicted homozygous
deficient populations (Supplementary Figure 4A) of European, African, and Ashkenazi Jewish
ancestry, the number of carriers in East and South Asians approaches zero. By contrast, the
South Asian population has the highest prevalence of homozygous and compound
heterozygous carriers of LoFs in PCSK1 (Supplementary Figure 4B). Some of these differences
can be attributed to a few specific variants. For example, in POMC, the Ashkenazi population
has higher frequencies of both R236G (Group 1, MAF=0.8%) and H143Y (Group 2, MAF=0.3%)
than many of the other populations. The Group 1 R80Q variant in PCSK1 has a frequency of

2.8% in East Asians, but is rare in other populations with MAF < 0.1%.

Rare Variant Analysis

We use the 120K British individuals from the UK Biobank to analyze the impact of variants
within these 3 genes on BMI. However, because the UK Biobank is not nucleotide sequencing
data but genotyping data (direct identification of predefined single nucleotide polymorphisms),
it will be missing many important rare variants and indels (MAF <0.1%). The sheer size of the
data set allows us to test for evidence of associations to BMI for variants in the 0.1-0.5% MAF
range where there are several hundred heterozygous individuals. For each analysis, we report
(1) the average increase in BMI (effect size or B) and (2) the odds ratio (OR) for BMI<25 vs
BMI>40 for the heterozygous (or homozygous) individuals versus those who are wildtype (WT),

i.e. do not have the variant. Of the Group 1 and 2 variants, none stand out as statistically
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significant at the a=0.05 level, except the well-studied PCSK1 N221D variant (Supplementary
Figure 5B, 6A, 6B), though some variants are correlated with an increase in BMI (a summary of
the effects sizes and ORs for the Group 1 and 2, and other rare variants, see Supplementary
Figure 5). Analysis of additional rare missense variants found a potentially novel LoF variant in
PCSK1, T640A (MAF 0.3%) significantly associated with BMI (Supplementary Figures 5B and 6C).
Since the effect sizes for N221D and the newly identified T640A variant were consistent across
other populations as well and the overall effect was strongly statistically significant
(Supplementary Figures 5B and 6), these variants are included in relevant MC4R-pathway allele

burden tests.

PCSK1 T640A

There was only one homozygote, a non-British individual with a BMI just over 40. The effect of
this variant does not seem to be caused by nearby significant genotyped SNPs and based on the
observed genotype frequencies, the variant does not appear to be on the N221D or
S690T/Q665E haplotype. The frequency of PCSK1 T640A variant is 0.3% in the UK Biobank
British individuals but higher in Puerto Ricans where the MAF is closer to 1-2% in the MtSH

Biobank, and is also higher for some of the South American 1000 genomes populations
PCSK1 R80Q

The variant that is driving the high prevalence in PSCK1 in East Asians (EAS) discussed above,
R80Q (30), (Group 1 variant) has frequency 2.8% in EAS in gnomAD (mostly seen in Chinese and
Vietnamese individuals in the 1000 genomes (see Materials and Methods)) and is rare in other
populations (<0.1% in the gnomAD data). A functional study saw a 30-40% reduction of enzyme
activity due to this variant (30). In the UK Biobank Chinese population, an association test
supports an increase in BMI, with an average BMlI increase (effect size) of 2.91 with p-value
0.015. Of course, this is a small sample size and this abundant variant in this ethnic group is
based on imputed data with information score just below our cutoff, but it is reassuring that

this variant might impact the BMI phenotype.

POMC B-MSH, including R236G
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Some POMC B-MSH alleles have been correlated with obesity in prior studies, including 2
studies in human and a study in obese Labrador dogs (31-33). We identified several §-MSH
variants, including R236G (a weak partial MC4R agonist), Y221C (imputed) and E206X, but in our
analysis, could not confirm an association with obesity in the UK Biobank (Supplementary
Figure 5A). If these variants are indeed LoF, with a causative role in severe obesity, our lack of
detection may be due to limited sample size and a less obese UK Biobank population
(Supplementary Figure 12). None of the 7 identified R236G homozygotes have BMI> 40.
However, these individuals are not available for resequencing to confirm these results.
Considering the biochemical evidence supporting the reduced functionality of the R236G
variant (34) we are currently testing whether R236G allele carriers respond uniquely to
setmelanotide, in order to determine their functional relevance in the MC4R-pathway. In
addition, based on evaluation of biobanks with > 1400 severely obese and hyperphagic children
(data not shown), we have identified several severely obese R236G homozygous deficient
patients. Their analysis is ongoing. Several rare POMC alleles in heterozygous form (E105X and
E206X) were correlated with increased BMI (Supplementary Figure 5A). Overall the effect size
of heterozygous POMC deficiency for the other alleles identified, could not be associated with

obesity in this cohort.

In the UK Biobank data, the R236G frequency differs regionally within the UK, as does BMI. The
allele frequency reaches as high as 0.82% in the northwest of England and as low as 0.43% in
the southwest. However, the variant is still not associated with increased BMI when we analyze
these regions separately. R236G appears to be on the same haplotype as rs934778 in the UK

Biobank, a common allele very significantly associated with BMI (Supplementary Figure 7A).

Compound Heterozygotes

We also analyzed the Group 1 and 2 potential compound heterozygotes for each of the three
genes. We evaluated effect size and odds ratio (OR) in UK Biobank of individual either
homozygous or compound heterozygotes for Group 1 plus Group 2 variants (Supplementary
Figure 7A and 7B). The effect size § and OR was most significant in the PCSK1 N221D/T640A

compound heterozygote, with an estimated OR of 7.6 (SE=0.59) and p-value of 0.003. Including
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T640A in the US, PCSK1 prevalence estimate adds over 33,000 individuals, mainly in the form of
N221D/T640A compound heterozygotes. In PCSK1, the genotype counts for the combination of
the two variants in the entire UK Biobank for N221D/T640A, Y181H/M125l, M1251/N221D,
T175M/N221D, E250X/N221D and S307L/N221D all provide support that these variants are on
different haplotypes and thus true compound heterozygotes (i.e. the compound heterozygote
frequency is consistent with the estimate assuming the variants are on different haplotypes).
However, we cannot rule out that a rare recombination event may have taken place in an
individual. Additionally, T640A/S690T carriers also seem to be true compound heterozygotes.
The POMC Group 1 and 2 compound heterozygotes were too rare to draw any conclusions, and
we did not find any LEPR compound heterozygotes (though there were few genotyped LoF
variants in LEPR). In POMC, all R236G homozygotes are also rs934778 homozygotes implying
that these variants are on the same haplotype in these individuals. Thus, it is likely that most of
the individual carrying 1 copy of each variant are not compound heterozygotes and the
expected and observed counts of the genotype combinations support R236G occurring on the

rs934778 haplotype the majority of the time.

For common variants, we recognize that without trios, we cannot determine at an individual
level if a common/rare variant combination is compound heterozygous. However, when we
analyze population data under the assumption that the two variants lie on different haplotypes,
the population counts for carriers of both variants either agree or disagree with the population
expected counts. When these counts agree, it is most likely that all or nearly all individuals are
true compound heterozygotes. For example, in the case of PCSK1 T640A (a rare variant) and
S690T (a common variant), given the allele frequencies of these 2 variants, the expected
number of individuals that would carry both these 2 variants would be 199 in UK Biobank if
they were not on the same haplotype. If they were on the same haplotype, we would expect
this number to be closer to 717, the total number of T640A carriers. We observed 189
individuals carry both T640A and S690T, strong suggesting they are very likely compound
heterozygotes. On the contrary, as described above that in POMC, all R236G (a rare variant)

homozygotes are also rs934778 (a common variant) homozygotes implying that they are on the
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same haplotype. We rationalize that most of the individual carrying 1 copy of R236G and 1 copy
of rs934778 are unlikely compound heterozygotes, and the expected and observed counts of
the genotype combinations support R236G occurring on the rs934778 haplotype the majority

of the time.

Burden Test

For most of the analyses, the results are dominated by the UK Biobank results due to the large
sample size (assigned high weights in the meta-analyses in Figure 4 and Supplementary Figure
6) and small data sets are included mainly for the purpose of visualizing the effect size trend
across the datasets and populations. Below is a table of the results, including for PCSK1

compound heterozygotes (Forest plot not shown).

Supplementary Table 8. LoF allele burden test.

Single variant (S) or Analysis - high level description B (p-value) Comparator
two or more variants
in 1 or more genes

(M)
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S PCSK1 N221D Het 0.18 (0.010) WT

S/M > 1 allele Group 1 or 2 alleles 0.35(0.012) WT

M PCSK1 N221D Het, plus one Group 0.57 (0.058) N221D
1 or2 allele vs N221D Het.
(Excluding N221D Hom

contribution)

M >2 Group 1 plus Group 2 alleles in 0.52 (0.098) WT

different genes (composites)

M >2 Group 1 or 2 alleles 2.79 (0.016) WT
M PCSK1 compound heterozygotes 1.75 (0.005) WT
S N221D homozygous 3.22(0.047) WT

*Note that these estimates have large confidence intervals.

Additional Composite analysis in Common Variants

To provide additionally evidence that variants in different genes can contribute to disease
burden more than a single heterozygous variant, we looked at the composite effect in two
common variants (MAF ~30%) where we have enough composites to have statistical power to
detect composite effects. Using the two most statistically significant BMI associated variants in
the UK Biobank individuals genotyped on the Biobank array (UKBB_BB): PCSK1 rs6235 (S690T)
and POMC rs934778, we compare the effects of: 1) heterozygous for one variant; 2)
heterozygous for both variants; 3) homozygous for 1 variant: 4) homozygous for one variant
and heterozygous for the other; and 5) homozygous for both versus WT for both. In this
example, the effect for genotypes in # 2 (heterozygous for both variants) seem to be
intermediate that of #1 and #3, and has a larger effect than either single variant effect. In the
UK Biobank the case of homozygosity for both variants at both genes versus wildtype at both
genes, shows a significant effect size of 0.85 and this result is corroborated for those genotyped

on the UK BiLEVE (UKBB_BL) array (Supplementary Table 9, Supplementary Figure 8A).
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Supplementary Table 9. Composite analysis of PCSK1 rs6235 and POMC rs934778.

Genotype UK Biobank Array UK BiLEVE Array
Combo Effect P-value Bin Size Effect P-value Bin Size
Size B Size B

1 0.17 6.97e-5 32716 0.08 0.192 10110
2 0.25 1.44e-6 13494 0.15 0.056 17055
3 0.32 1.20e-6 6785 0.29 0.002 7071
4 0.41 7.90e-09 5639 0.24 0.024 2916
5 0.85 2.11e-5 566 0.64 0.024 321

To more broadly evaluate MC4R-pathway allele burden in the UK Biobank, we looked at the
effect of carrying 2 or more Group 1 or Group 2 variants versus WT by BMI category. Please
note this analysis includes homozygotes, compound heterozygotes and composites among any
of the genes being analyzed. In Figure 5 and Supplementary Figure 9 when the Group 1 plus
Group 2 alleles, (including the Group 1 alleles, PCSK1 N221D and T640A), are included in the
burden test, the carriers of 2 or more alleles had significantly higher numbers of morbid obesity
patients (BMI1>40) when compared to the low BMI (BMI<20) population (p=0.0008, Figure 5;
specifically: 8/2680 vs. 26/2410, or about 3 times higher than expected). This effect appeared

to be larger in males than in females (Supplementary Figure 9A and 9B).

Burden of Rare and Common Variants

Our data on common variants in the MC4R-pathway indicate that it will be worthwhile
evaluating to what extent these common alleles can contribute to severe obesity when in
combination with Group 1 or 2 alleles and thus predict sensitivity to MC4R-pathway
supplementation therapy, to mitigate severe obesity and its comorbidities. While these
common alleles are predicted to predispose to higher BMI it is clear, that taken in isolation
these highly prevalent alleles cannot significantly contribute to the predisposition to severe

obesity. We, therefore, aim to analyze setmelanotide in patients with a high total allele burden
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in severe obesity, starting with the alleles that are proven to contribute to severe obesity
(presence of Group 1 and/or Group 2 alleles) and evaluate these when superimposed on more
common alleles. For example, there is a severely obese individual in the UK Biobank with
POMC E105X who is also homozygous for rs934778 (Supplementary Figure 7A). Here we show
how a combination of rare and common variants could be used to compute a genetic risk score
for an individual and identify individuals with high risk of obesity due to their genetic risk in

these rare and more common variants of these MC4R pathway genes.

One way of choosing patients would be to find those with the highest rare and common variant
burden or risk over the 3 genes. As an example, for the UK BioBank individuals, we construct a
weighted risk score, known as polygenic risk score (PRS) based on the estimated effect size f3,
estimated from the Group 1 and 2 variants and for several common variants from independent
association signals. In the UK Biobank (for the individuals genotyped on the UK Biobank chip),
we estimate the effect size B for each of the variants as a weight (we required at least 5
individuals to carry the variant on the UK Biobank chip in order to have a more informative
weight). This is a weighted risk score constructed from a linear model. It gives a higher weight
to variants that have larger impact, and negative weight to protective alleles. Then, for each
individual i, we simply sum their genotype G; ; = {0,1,2} at each locus j times the weight of

that genotype over all L variants in the model. The PRS for an individual is:

L
PRSL = Z B]Gl,]
i=1

This will give us a genetic risk score for the estimated increase in BMI for an individual due to
their genotypes. Those with a higher score are expected to have a higher BMI based on their
genetics. We then binned individuals into quantitative risk groups based on their score and
computed the effect sizes by risk group (Risk Bin 3 being the highest risk). We applied the
estimates from the Biobank chip to the individuals on the UK BiLEVE chip and to the UK Twins.
In Supplementary Table 10 below, we demonstrate that the correlation between the risk bins
and BMI constructed from one British data set holds in the two other British datasets. However,

we do not expect this to hold with other races/ethnicities due to differences in LD patterns
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between the associated common variant and whatever the true causal variant(s) may be. The
idea is that those individuals with the highest risk are most likely to have variants in these 3
genes that affect their BMI. These types of scores could be used to help prioritize the patients

selected for treatment.

Supplementary Table 10. Polygenic risk scores associated with BMI.

Risk UK Biobank Chip UK BiLEVE Chip UK Twins
Bin Effect | P-value Bin Effect | P-vale Bin Effect | P-value | Bin Size
Size B Size | Size B Size Size B
0 - - | 12499 - - 6543 - - 237
1 0.18 | 1.98¢e-4 44285 | 0.13 0.068 | 22999 | 0.37 0.31 879
2 0.38 | 1.85e-13 | 21373 | 0.21 0.006 | 11342 | 0.65 0.11 438
3 0.97 | 5.17-08 732 | 0.78 0.007 318 | 1.56 0.28 13

*Note: Bin 0 is the low risk baseline bin. Effect sizes are estimated against these individuals.

Based on these analyses we conclude that in the MC4R-pahtway increased allele burden due to
the accumulation of diverse loss of function alleles, can significantly predispose to a higher BMI.
This in turn, forecasts that patients with a higher MC4R-pathway allele burden may show
increased sensitivity to pharmacotherapy aimed at restoring MC4R agonist tone. As more

studies are done, weights could instead be estimated based on patients’ response to treatment.

Extensive Review of Common variants

Many of the common variants in these three genes have been heavily studied in published
genetic association studies for BMI and other anthropometric traits. We evaluated associations
and hence benchmarked our populations under analysis against published literature by
reviewing the summary statistics from the ENGAGE (European Network for Genetic and
Genomic Epidemiology) (26) and GIANT (Genetic Investigation of Anthropometric Traits) (25)
meta-analyses for the common variants with MAF > 5% for variants within any of the three
genes. These studies include data from many cohorts, aggregated to make up datasets with 87K

and 124K individuals, respectively. For these 2 studies, we did not see strong evidence for
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association of any of these known common variants with BMI (Supplementary Table 9).

Additionally, we analyzed common variation in the British individuals from the UK BioBank.

In association studies, the most associated variant at a locus is not necessarily within the gene
nor does it carry a known functional mechanism explaining the association. Generally, it is
assumed that these variants are in linkage disequilibrium (LD) with functional variants (rare
variants are not generally genotyped in these studies) or that there are haplotypic effects. We
suspect this may be true for many of the reported common SNPs for obesity in the literature.
Manhattan plots for the UK Biobank for all 3 genes are shown if Supplementary Figure 10

(including 5kB up/downstream).

POMC gene-wide BMI association

The POMC locus reached genome-wide significance (p-value<5x10°®) for an impact on BMI in
both the ENGAGE and GIANT studies and near genome-wide significance in our analysis. The
lead SNP near the POMC locus in the ENGAGE meta-analysis was an intergenic SNP rs6749422.
In our analysis of the UK BioBank, the intronic variants rs934778, rs1009388, and rs6713532 are
significantly associated with BMI with p-values < 10 (Supplementary Figure 10, 11A).
rs1009388 is imputed and is in high linkage disequilibrium (LD) with the genotyped rs934778
(r’=0.8 in Europeans). rs934778 has a frequency around 30% in Europeans, but closer to 5% in
Africans. The rs934778 alternate allele appears to be on the rs6713532 reference allele
background and vice versa (r’=0.16 in Europeans) and has a frequency near 20% in Europeans
but closer to 50% in other populations. rs6713532 has previously been reported to be
associated with waist-hip ratio, visceral fat and abdominal fat in Dutch males (35). rs934778
and rs6713532 are modestly associated with BMI in the GIANT and ENGAGE datasets as well,
with p-values 0.004 and 0.008 in GIANT and 0.016 and 0.017 in ENGAGE respectively. The 3’
UTR rs1042571 alternate allele (MAF~3-30%, 20% in Europeans) often occurs with the rs934778
alternate allele (r2=0.51 in Europeans), though rs934778 is more common. POMC rs1042571
was modestly associated with BMI in the UK BioBank (p-value near 0.01), and has been

associated with obese (BMI = 30 kg/m?) versus non-obese individuals (BMI < 30 kg/m?) in a
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small population of North Indians (36) and in a small population of European Americans (37).
Currently, it is difficult to determine which of these common variants if any, are driving a
putative association signal at this locus, but analysis in additional populations and ethnicities

can aid in fine mapping of this region.

PCSK1- gene wide BMI association

The PCSK1 locus was not reported as genome-wide significant in the ENGAGE or GIANT dataset.
However, consistent with our ethnicity analysis, the PCSK1 locus did reach genome-wide
significance in a meta-analysis of nearly 28K East Asians (38). There is a set of variants in PCSK1
that showed some evidence of association with BMI in the GIANT dataset, though these
variants did not reach the genome-wide significance level. The 3 variants in PCSK1: rs6234
(Q665E), rs6235 (S690T), and rs6232 (N221D discussed above) have been heavily studied for
implication in obesity and adiposity, and show association in Caucasians but mixed results in
other ethnicities (39-43). Functional analysis showed the rs6234/ rs6235 pair elicits a non-
significant 6% decrease in enzymatic activity of PCSK1, while rs6232 resulted in a 10% reduction
in activity versus wild type (44). rs6234 and rs6235 are the more common variants (frequency
around 0.23-0.29) and tend to be in high LD with each other. rs6232 is rarer (MAF ~0.01-0.05)
and is also in LD with the other pair, especially in individuals of European descent. The largest
study on these variants consists of more than 300K individuals from more than 30 cohorts of
diverse ethnicity and provides convincing evidence that these variants have a small but real
effect on BMI and obesity (45). Thus, it may be worth considering the effects of an MC4R
agonist treatment for carriers of these variants in a severely obese population. While these
variants might not have large effects in the overall population, they may be having a large
impact on some obese individuals with a predisposing genetic background. We also performed
a standard association test (under an additive model or genotype model) on the common
known variants with MAF>0.05 in the UK Biobank (Supplementary Figures 11B). Most of the
previously reported variants showed little evidence of association with BMI, but rs6232/4/5 are
significantly associated with BMI and obesity in the UK Biobank as well as rs271919, rs271939,
rs3811942, rs3811951, rs155981, rs155982 and the rare variant rs139453594. rs6232 is
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associated with BMI in most of the datasets examined (Supplementary Figures 5B and 7). In
European populations, rs6234 and rs6235 are in nearly perfect LD with each other and are in
high LD with the intronic variant rs3811951 (r’=0.84). In the UK Biobank, the effect of
rs3811951 is completely mitigated in non- rs6234/5 carriers. rs3811951 also was modestly
significant in the GIANT dataset as well, likely due to LD. rs6232 is usually on the same
haplotype as rs6234/5. We repeated the rs6234/rs6235 association removing all rs6232
carriers and found the effect size and association still held, implying these 2 signals carry
independent effects, as previously seen. rs6232 has a prevalence around 0.05 in European
populations, but closer to 0.01 in African populations. rs6232 also tends to occur on a
rs271919/rs271939 GC background, and often occurs with the rs155982 G allele in the UK
Biobank British individuals. The intronic variant rs271919 and downstream variant rs271939
are in nearly perfect LD with each other and in LD with rs3811942 (r’=0.65). However, in the
UK Biobank, the effects of rs155982 with either rs6232 or rs6234/5 seem to be independent or
additive signals. The rare variant rs155981 (minor allele A, MAF=0.01) tends to occur with the
rs155982 minor allele G, but rs155982 is likely responsible for any signal from rs155981 in the
UK Biobank (these variants are also modestly associated with BMI in the UK Twins). The effect
of rs271919 disappears when we exclude carriers of rs6232/4/5, rs155982, and rs139453594

and is likely driven by the LD patterns with these variants.

LEPR- gene wide BMI association

The LEPR locus was not reported as significant in the ENGAGE or GIANT study. For the ENGAGE,
GIANT, and UK Biobank, few, if any, variants within these genes achieved a p-value below 0.01
(Supplementary Figure 11C). It may be that there are no common variants with even small

effects on BMI in this gene.

Results from additional studies of rs6232/rs6234/rs6235
Kilpeldinen et al., examined rs6232 (N221D) and rs6235 (S690T) SNPs in 20,249 individuals of
European descent from Norfolk, UK (40). They found neither of the SNPs was significantly

associated with obesity, BMI or waist circumference under the additive genetic model (P > 0.05)
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but observed an interaction between rs6232 and age on the level of BMI (P = 0.010) and risk of
obesity (P =0.020). The rs6232 SNP was associated with BMI (P = 0.021) and obesity (P = 0.022)
in the younger individuals [less than median age (59 years)], but not among the older age group

(P=0.81 and P = 0.68 for BMI and obesity, respectively).

Choquet et al., using subjects from CARDIA (8,359 subjects), found that in European-American
subjects, only rs6232 (not rs6235) was associated with BMI (P=0.006) and obesity (P=0.018)
but also increased the obesity incidence during the 20 years of follow-up (HR=1.53 [1.07-2.19],
P=0.019) (39). They also found that alternatively, in African-American subjects from CARDIA,
rs6235 (but not rs6232) was associated with BMI (P=0.028) and obesity (P=0.018). However,
due to the low frequency of this variant in Africans, it would be unlikely to find association in a
study of that magnitude. In a Mexican -Mestizo population of 2382 individuals, Villalobos-
Comparan et al found rs6232 was significantly associated with childhood obesity and adult class
Il obesity (OR=3.01, 95%Cl 1.64-5.53; P=4x10"* in the combined analysis) (41). In contrast,
rs6235 showed no significant association with obesity or with glucose homeostasis parameters

in any group.

It could be that rs6234/rs6235 are sometimes detected since they are in high LD with rs6232
but are more common (though in the UK Biobank, the effect of rs6234/rs6235 remains after
removal of carriers of rs6232). It may also be that the rs6232/rs6234/rs6235 has a larger effect
that any one variant alone, but this is harder to untangle due to the high LD. The LD may be
lower in non-European ethnicities and we could potential use these groups to determine

interactions. rs6234/rs6235 are also in high LD with rs17085675 and rs2882298 (44).
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Supplementary Figures

Supplementary Figure 1. Receiver Operator Characteristic (ROC) Curve. The ROC curve
indicates near-perfect classification of functional relevance for human missense variants. This
model was used to score variants within LEPR, POMC and PCSK1. Note no significant statistical

shrinkage (overfitting) observed between training and testing of the deepCODE model.
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Supplementary Figure 2. Distribution of Group 1 (purple) and Group 2 (black) variants in POMC,
PCSK1 and LEPR coding regions. The lollipop plots were generated using cBioportal’s

MutationMapper tool (http://www.cbioportal.org/mutation_mapper.jsp). Protein domains

shown in the plots are PFAM domains based on UniProt annotation (www.uniprot.org/).
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Supplementary Figure 3. Ethnicities in US Census vs. the ExAc cohort.
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US Census (2010) versus gnomAD race/ethnicity
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Supplementary Figure 4. Cumulative allele frequencies of Group 1 and Group 2 variants in
POMC (A), PCSK1 (B), and LEPR (C) in various ethnicities along with the list of Group 1 variants.
Variants listed red font occur more than once in the gnomAD data. The ‘All’ group is based on
the overall gnomAD allele frequencies, while the ‘All (NRM)’ group is based on non-random
mating within ethnicities given the estimated percentage of individuals within each ethnic
group in the US. Group 1 and Group 2 variants are listed below each plot. Those in red occur in

more than one individual in gnomAD.
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Thr252Met
Pro249Ser
Thr248Met
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Ser246Arg
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Gly219Asp
Leu205GIn
Asp192Tyr
Glu179GIn
Glu175GIn
Phe172Leu
Ser168Leu
Ser168Pro
Val159Ala
Gly151Ser
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Lys148Glu
Gly147Asp
Arg145Gly

His143Tyr
Ser140Phe
Ser138Phe
Arg137Pro
Glu134Lys
Gly127Cys
Glu105GIn
Arg104His
Arg104Cys
Gly88Arg

Arg86Gin

Arg86Gly
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Trp84Gly
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Phe82Val
His81Arg
Met79lle
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Leu70GiIn
GIn68Lys
Gly63Glu
Pro62Leu
Pro59Leu
Glu57Lys
Ser55Leu
Lys51Asn
Lys51Thr
Cys50Ser
Cys50Tyr
Cys50Arg
Arg48Pro
Cys46Tyr
Cys46Arg
Cys46Ser
Leu43Met
Thr39Met
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Cummulative Frequency in PCSK1

W Group 1
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Ancestry
Group 1 Group 1 cont Group 2 cont Group 2 cont Group 2 cont Group 2 cont Group 2 cont Group 2 cont
Tyr729LeufsTer2 Tyr181His Asp616His Alad446Val Ser348Phe Val261Gly Thri64lle Ser79Cys
Phe7008SerfsTer8 Asn180Ser Asp616Asn Gly442Arg Lys346Asn Val261Ala Val161Ala Arg78Ser
Arg669Ter Thr175Met Asn611Ser Leu433Trp Ala344Asp Val261Met Gly158Ala Pro76Ser
Thr558Ala Met125lle Ser609Phe Gly432Ser Ala344Pro His260Arg Thr157Met Gly59Asp
Phe548lle GIn102Ter Ser609Tyr Ala431Glu Ala344Thr Ser253Thr Thr157Ser Gly59Ser
1588+2T>C 285+1G>A Thr608Met Pro419Leu Ala344Ser Gly237Ser lle156Thr Asp56His
Arg517Ter Arg80GiIn Arg605Pro Trp413Arg Pro341Leu Val235Ala Gly155Asp Tyr55Cys
Trp426Ter Arg80Ter Arg605His His409Tyr Ser332Gly Lys234lle Gly155Ser Gly42Asp
Asn423Lys Glu34Ter Pro604Arg Met407lle lle329Val Lys234Thr Pro150Thr Gly41Arg
Arg405Ter Glu599Gly Thr403Asn Cys319Tyr Tyr231Cys lle149Thr Pro40His
Trp404Ter Group 2 Ser595Cys Pro400Ser Arg312His Gly228Val Asp145Asn Glu38Lys
1197-1G>A Arg740Gin 11e590Thr Ala398Glu Gly311Arg Ala217Val Leu141Gin Ala36Thr
1196+2T>A Arg740Trp lle571Asn Ala398Thr Gly310Arg lle216Thr Thr138Met
Ala389LeufsTer45 Asp739Asn lle571Phe Glu397Asp Val304lle Ala213Val Thr135lle
Cys374Ter Tyr734His Glu561Gly Phe392Ser Gly298Ala Thr210Ser Leu132Phe
1095+1G>C Tyr729Asp Thr558Lys Gly390Ser Arg296lle Glu205Lys Trp130Leu
GIn363Ter Val725Asp Val556lle Pro386Leu Tyr290Cys Thr203Ala Trp130Ser
Tyr343Ter Tyr721His Asp542Gly Thr381lle Tyr290His Pro198Leu Arg110His
Asp320Ter Ser719Arg Arg541Trp Thr377Met Ala287Thr Pro198Ser Arg110Cys
Ser307Leu Asp715Tyr Leu521Phe Thr375Lys Ala284Pro Asp193Gly Arg107Lys
882+2T>C Tyr701Cys Arg517Gin Thr366Met Arg282Gin Tyr187His Tyr103Asn
Pro258Thr Pro696Arg Ser503Phe Asp362Asn Arg282Trp Ser186Asn Val96Ala
709+2T>C Ser664Phe Cys494Gly Gly358Arg Thr276lle Asn180Lys Arg95His
Gly236Ter Met623lle Val461Leu Tyr355His Lys275GiIn Tyr178Cys Ser91Pro
Gly226Arg Val620Met Val461Met Ser354Cys Asp272Val Asp176Tyr Ser82Thr
Gly209Arg Gly619Trp Asp451Asn Thr353lle Asp272Gly Leu166Val Ser82Cys
Arg199Ter Gly619Arg Leu449Val Thr350lle Asp262Asn Val165lle Arg80Leu
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Cummulative Frequency in LEPR
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Ancestry
Group 1 Group 1 cont Group 2 cont Group 2 cont Group 2 cont Group 2 cont Group 2 cont
Met1? 2396-1G>T Lys272lle Arg402GiIn Met511Val Asn697Ser Cys881Phe
Thr29TyrfsTer6 2592_2597+3delCCAA... Ser292Tyr Tyr407Cys lle513Val His710Arg Pro892Thr
Tyr46Ter 2597+1G>T Pro300His His419Arg Asp523Val His710Leu Thr894Met
Leu101TyrfsTer15 Val962Ter Gly301Glu His419Leu Pro525Leu Asn718Ser His897Arg
Tyr155llefsTer13 GIn1002Ter GIn307His Tyr422Cys Pro526Ala Asn726Ser Val906Gly
Cys212Ter Tyr1078llefsTer2 Trp319Cys Tyr422Phe Leu530Pro Thr730Ala Glu914Gin
GIn223Ter Thr1147AsnfsTer8 Trp322Cys Glu424Gin Val534Glu Thr730Asn Pro915Leu
Leu241Ter Gin1151ArgfsTer13 Ser323Asn Tyr426Asn Pro540Thr Ser736Arg Glu916Gin
GIn268Ter Thr1164ValfsTer15 11e334Thr lle432Val Phe563Val Val741Met Glu920Gly
850-1G>A Thr342Ser lle434Met GIn571His GIn742Leu Asp921Asn
Pro316Thr Group 2 Thr342Arg Ser435Pro Arg573Cys Tyr747Asp 11e922Thr
Phe394SerfsTer3 Phe33Leu Ser343Asn Thr438Pro Arg573His Val754Met Ser923Gly
Tyr411LeufsTer4 Ser36Tyr Asn347His Thr438Asn Arg573Leu lle755Thr Asp925His
€.1403+1_1403+2dupGT Thr43Ala Asn347Ser Tyr441Cys Tyr574Cys Leu760Arg Asp932Asn
1752+1G>A Cys89Phe Tyr354Cys Arg448Thr Gly575Val Lys775Glu Asp932His
Arg612His Leu161Val Lys355Giu Arg448lle Gly578Val Ser789Tyr Cys954Phe
Glu644LeufsTer6 Tyr163Asn Val361Phe Trp449Leu Tyr586Cys Ser789Phe Ala987Thr
Trp646Ter Ser224Leu Ser363Pro Arg468Lys Leu598Arg Lys794Thr Ala987Asp
Glue57GlyfsTer15 Pro225Ser lle366Phe Leu471Arg Tyr607Cys Asp799Giu Ala987Val
Trp664Arg Pro231Ser Trp369Ser Asp475Gly Arg612Cys Val819Gly Gly1056Arg
1996-10_1998delTTT... lle232Arg Asn371Lys Lys486Arg Cys613Tyr Phe828Tyr Ser1098Leu
His684Pro Lys236Glu Ala373Thr Asp493Val lle636Lys Gly841Arg Ser1133Tyr
2213-1G>T Leu241Ser Pro377Ser Gly494Asp Val638Phe Tyr843Ser Ser1133Phe
Lys766Ter Asp249Gly GIn380Arg Tyr496Asn Pro639Ser Tyr843Cys Gin1146Leu
Glu773Ter Ser259lle Ser385Arg Glu497Ala Pro643Ser Pro876Leu
lle783SerfsTer37 Pro266Ser Ser389Gly Pro502Ala Asn659His Asn877Asp
Leu786Pro Val271Met Ser389Asn Thr510lle Lys665Thr Pro878Ser
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Supplementary Figure 5. Estimated BMI effect sizes (left) and case/control odds ratios (right)
for homozygous (denoted by (2)) or heterozygous carriers of individual rare Group 1, Group 2,
literature reviewed variants, or other significant variants in POMC (A) and PCSK1 (B) and LEPR
(C) vs. controls in UK Biobank. For effect size estimates, the number of carriers is denoted next
to the bar. For odds ratio estimates, cases are defined as BMI>40, controls as BMI<25, and the
number of cases is denoted next to the bar (a notation is made when carriers are either only
cases or controls). Coding variants are referred to by their amino acid change while non-coding
variants are reported with dbSNP ids. +Denotes a variant studied in literature not in Group1/2.
*Denotes a Group 1 variant. **Denotes a Group 2 variant. *"Denotes an imputed variant. Any
other additional associations with p-values<0.01 are also reported. The red line represents the
PCSK1 N221D heterozygote effect size or odds ratios. The blue line represents an odds ratio of

1. The darker the blue bar, the more statistically significant the association.
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Supplementary Figure 6. Forest plot of effect sizes of PCSK1 N221D (A) heterozygotes and (B)
homozygotes, and (C) PCSK1 T640A carriers versus non-carriers across cohorts. The UK Biobank
data is split by genotyping array: BL (BiLEVE array) and BB (Biobank Axiom array). For the MHS
data, both the sequences (BM) and genotype (BB) data set were split by reported race and
ethnicity: 1) White Caucasian was divided into EA-European American or EA_AJ- Jewish; 2) Black
or African was divided into AA-African American or AFR-African; and 3) HA-Hispanic/Latino was
divided in PUR-Puerto Rican, LAT-Central and South American, and DOM- Dominican Repubilic.

Ethnic outliers were removed using PCs (see Supplementary Materials and Methods).

40



Study Carriers Non—carriers Beta [95% CI] Weight (%)

A) PCSK1 N221D Het

BM HA PUR 16 220 —_— -118[ =470, 2351 0.1
BB_HA_LAT 13 543 — _045[ -3.49, 258] 0.2
BM_EA_AJ 16 399 —_— _004[ 277, 269] 02
UKBB_BB 7600 71075 : 0.09[ -0.02, 0.20]  54.8
BB_HA_PUR 160 2474 0.12[ -1.01, 1.25] 14
UKBB_BL 3984 37101 0.19[ 003, 0.35] 377
BM_HA_DOM 11 332 057[ -2.81, 395] 02
BM_EA 73 784 H— 073[ -0.71, 217] 08
UK10K 144 1417 . 078[ -0.08, 1.64] 23
BB_EA 63 585 s 0.80[ -0.75, 2.35] 07
BB_HA_DOM 39 800 ot 098[ -0.71, 267] 06
BB_AA 49 2957 s 153[ -0.79, 385] 0.3
BB_EA_AJ 21 557 —— 1.95[ -0.37, 426] 03
BM_HA_LAT 6 219 —_— 243[ -181, 667] 0.1
BM_AA 14 806 —_— 4441 026, 861] 0.1
RE Model (Q = 15.22, df = 14,p = 0.36; P = 7.6%) | 0.18[0.04,0.31] p=0.0097
B) PCSK1 N221D Hom
BM_AA 1 806 —342[-1873,11.88] 3.4
BM_HA_PUR 2 220 —_— _268[-11.98, 6.62] 6.8
BB_HA_LAT 1 543 _1.46[-12.37, 9.46] 56
BB_EA 3 585 —_— ~0.79[ -7.48, 5.90] 95
UKBB_BL 17 37101 o _0.03[ -0.94, 0.88]  16.4
UKBB_BB 213 71075 m 0.69[ 0.06, 1.32] 16.5
BB_AA 1 2957 265[-13.26,1857] 3.2
BB_HA_DOM 1 800 6.99[ -3.30,17.27] 60
UK10K 6 1417 N 7.65[ 3.78,11.53] 133
BB_HA_PUR 7 2474 N — 10.36[ 5.13,1559]  11.4
BM_EA 2 784 : 1085[ 272,1898] 7.9

RE Model (Q = 36.57, df = 10, p = 0.00; I? = 92.0%) 3.22[0.05,6.38] p=0.0464

C) PCSK1 T640A Het :
BB_EA 3 648 .—. -1.77[ -8.50 , 4.96] 0.3

BB_EA_AJ 6 572 —_— -155[ -5.82, 2.73] 0.6
UK10K 6 1561 —_— -0.90[ -5.21, 3.41] 0.6
BM_HA_DOM 1 342 0.28[-10.73,11.30] 0.1
BB_HA_PUR 72 2569 s 054[ -1.12, 221] 4.1
UKBB_BB 500 78310 - 0.65[ 0.23, 1.06]  67.6
UKBB_BL 217 37155 - 0.74[ 007, 141] 254
BM_HA_PUR 7 231 —_— 2,03[ -3.06, 7.12] 0.4
BB_HA_DOM 1 839 254[ -7.78,12.86 ] 0.1
BM_EA_AJ 4 411 —_— 3.16[ -2.19, 8.51] 0.4
BB_AA 3 3004 S E— 5.75[ -3.53 , 15.04 ] 0.1
BM_EA 3 856 ———— 1244 579,19.09] 0.3
RE Model (Q = 16.53, df = 11, p = 0.12; I = 0.0%) ] 0.69[0.35,1.03] p=0.0001
I T I T 1
-20.00 -10.00 0.00 15.00 25.00
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Supplementary Figure 7. Estimated effect sizes (left) and odds ratios (right) of potential
compound heterozygotes for carriers of individual rare Group 1 plus Group 2 variants and the 2
BMI associated variants POMC rs934778 and PCSK1 S690T in POMC (A) and PCSK1 (B) vs.
controls in UK Biobank. For effect size estimates, the number of carriers is denoted next to the
bar. For odds ratio estimates, cases are defined as BMI>40, controls as BMI<25, and the
number of cases is denoted next to the bar (a notation is made when carriers are either only
cases or controls). Coding variants are referred to by their amino acid change while non-coding
variants are reported with dbSNP ids. *Denotes a homozygous copy for that variant. ADenotes
an imputed variant. Homozygote carriers of a variant are denoted with (2). The blue line
represents an odds ratio of 1. The darker the blue bar, the more statistically significant the
association. Note: for combinations of rare alleles with rs934778 or S690T, some of the
individuals may be compound heterozygotes while for others the variants will lie on the same
haplotype. Combinations of N221/S690T were excluded, as they are known to be on the same

haplotype in the British population.
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Supplementary Figure 8. Estimated effect sizes (left) and odds ratios (right) of composites for
carriers of individual rare Group 1 plus Group 2 variants and the 2 BMI associated variants
POMC rs934778 and PCSK1 S690T in POMC/PCSK1 (A), POMC/LEPR (B), and PCSK1/LEPR (C) vs.
controls in UK Biobank. For effect size estimates, the number of carriers is denoted next to the
bar. For odds ratio estimates, cases are defined as BMI>40, controls as BMI<25, and the
number of cases is denoted next to the bar (a notation is made when carriers are either only
cases or controls). Coding variants are referred to by their amino acid change while non-coding
variants are reported with dbSNP ids. *Denotes a homozygous copy for that variant. ADenotes
an imputed variant. The variant listed first in the pair belongs to the gene listed first in the title.
The blue line represents an odds ratio of 1. The darker the blue bar, the more statistically

significant the association.
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Supplementary Figure 9. In the UK Biobank, the proportion of individuals carrying two or more
Group 1 and 2 variants (plus PCSK1 N221D and T640A) (bottom) across these 3 genes increases

as BMl increases. (A) Females only. (B) Males only.
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Supplementary Figure 10. Manhattan plot (p-values versus position) for the UK Biobank of
variant in POMC (A), PCSK1 (B), and LEPR (C). The red line denotes a p-value of 0.05. Significant
variants are labeled with either the amino acid change or dbSNP id. Genotyped (Gen) variants
are represented by green dots, while imputed variants (Imp) are represented by blue dots. The

y axis is the —log10 p-values while the x axis corresponds to base pair position in Kb.
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Supplementary Figure 11. Estimated BMI effect sizes (left) and case/control odds ratios (right)
for homozygous (denoted by (2)) or heterozygous carriers of individual common literature
variants or other significant variants in POMC (A) and PCSK1 (B) and LEPR (C) vs. controls in UK
Biobank. For effect size estimates, the number of carriers is denoted next to the bar. For odds
ratio estimates, cases are defined as BMI>40, controls as BMI<25, and the number of cases is
denoted next to the bar. Coding variants are referred to by their amino acid change while non-
coding variants are reported with dbSNP ids. +Denotes a variant studied in literature not in
Groupl/2. ADenotes an imputed variant. * Denotes a group 1 variant. Tests on the homozygous
genotype are denote with (2). Any other additional associations with p-values<0.01 are also
reported. The red line represents the PCSK1 N221D heterozygote effect size or odds ratios. The
blue line represents an odds ratio of 1. The darker the blue bar, the more statistically

significant the association.
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Supplementary Figure 12. (A) Distribution of BMI in Mount Sinai Biobank. (B) Distribution of

BMI in Mount Sinai Biobank (MtSH) cohort versus the UK Biobank (UKBB) cohort.
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Supplementary Table (in Microsoft excel) Description

Supplementary Tables 1-3. Potential LoF variants in POMC (Supplementary Table 1), PCSK1
(Supplementary Table 2), and LEPR (Supplementary Table 3) genes. All tables include the dbSNP
id, the predicted effect, the amino acid change, the hg19 left normalized position, the reference
allele, the alternate allele, the gnomAD allele frequency, the predicted Wuxi deepCODE score,
the Mutation assessor (46) predicted effect, and the SIFT (47) predicted effects. Tables 1A, 2A,
and 3A are the results of literature curation and include additional information about the
functional evidence, hgmd and clinvar notation, and references. Tables 1B, 2B, and 3B list all

Group 1 and Group2 variants.

Supplementary Table 7. The maximum number of sequenced individuals for any variant in

gnomAD for each ethnicity.

Supplementary Table 11. Association results from different studies for common variants

studied in the literature along with allele frequencies amongst different cohorts.
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