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Figure S1. Calculated absorption, reflection, and transmission spectra for FP cavities with 

nanorod arrays for various rod lengths (L) and spacing (dy) for the electric field parallel to the 

nanowires. Red lines mark the FP resonances vs cavity length and the vertical black line the 

plasmon position of the array. 



3 
 

 

Figure S2. Calculated absorption, reflection, and transmission spectra for FP cavities with 

nanorod arrays for various rod lengths (L) and spacing (dy) for the electric field perpendicular 

to the nanowires. Red lines mark the FP resonances vs cavity length and the vertical black line 

the plasmon position of the array. 
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Figure S3. Calculated transmission, reflection, and absorption spectra of empty FP cavities of 

varied length. The subsequent resonance orders in each respective panel are traced and then 

plotted as reference in the spectra of total cavities.  
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Figure S4. Calculated transmission, reflection, and absorption spectra for bare nanorod arrays 

with various density (dy = 30, 90, 150 nm) and nanorod lengths (L = 200-400 nm). Here 

polarization is parallel to the nanorods.  
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Figure S5. Transmission, reflection, and absorption spectra for bare nanorod arrays with 

various density (dy = 30, 90, 150 nm) and nanorod lengths (L = 200-400 nm). Here polarization 

is perpendicular to the nanorods. 
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Figure S6. SEM images of the fabricated nanorod arrays with Lrod in the range from 200 to 

400 nm. 
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Figure S7. Experimental dispersion of normal-incidence reflection and absorption spectra of 

empty cavities filled with SiO2 as a function of the cavity thickness. 

 

 

 

 

Figure S8. Experimental dispersion of normal-incidence reflection and absorption spectra of 

bare Au nanorod arrays fabricated on a glass substrate as a function of the nanorods length. 
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Figure S9. Experimental dispersions of the normal-incidence reflection and absorption spectra 

of coupled plasmon-cavity systems as a function of the cavity thickness for various nanorods 

length with the electric field polarization parallel to the nanorods axis. 
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Figure S10. Experimental normal-incidence reflection spectra of coupled plasmon-cavity 

systems as a function nanorods length for 100 nm cavity thick samples, measured in the 2-

3.3 eV range inaccessible for FTIR microscope. The reflection minima are found at around 

2.35 eV, independently of the nanorod length, indicating the cavity-like character of UP states 

for 100 nm thick cavities. 
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Figure S11. Experimental dispersions of the normal-incidence reflection spectra of coupled 

plasmon-cavity systems as a function of the cavity thickness with the electric field polarization 

perpendicular to the nanorods axis. 
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Fig. S12. (a) Eigenenergies spectrum of the Hopfield Hamiltonian (Eq. 1) plotted for 𝜔𝑝𝑙 =

𝜔𝑐𝑎𝑣 = 1 eV as a function of the coupling constant 𝑔. Arrows indicate resonant transitions 

between the ground state and two single-particle excited states that can be observed 

spectroscopically in a linear optical experiment. The dashed line is the constant level of 1 eV, 

corresponding to the ground state of the system in rotating-wave approximation. (b) 

Eigenenergies of Hopfield Hamiltonian without the diamagnetic 𝐴2 term. Notice the breakdown 

of the energy spectrum at 𝑔𝐶 = 𝜔𝑐𝑎𝑣/2, associated with the square-root singularity. (c) 

Eigenenergies of Hopfield Hamiltonian without the diamagnetic 𝐴2 term and the fast-rotating 

terms, leading to the superradiant phase transition and negative energy spectrum at 𝑔 > 𝜔𝑐𝑎𝑣. 
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Figure S13. Fitting of the measured polaritonic dispersions of the coupled plasmon-cavity 

system with the single-mode Hopfield Hamiltonian transition energies for all nanorod lengths 

ranging from 200 to 400 nm. Circles show resonant energies of the coupled system extracted 

as reflection dips, lines are Hopfield polaritons dispersion, gray dashed lines are the bare cavity 

and bare plasmon energies. 

 

𝐿𝑟𝑜𝑑, nm 200 250 300 350 400 

𝜔𝑝𝑙, eV 0.83 0.71 0.64 0.58 0.52 

𝑔𝐶, eV 0.33 0.31 0.3 0.3 0.29 

Table SI. The values of bare plasmon energies and Coulomb gauge coupling strengths obtained 

by fitting the polariton dispersion by eigenvalues of the single-mode Hopfield Hamiltonian. 
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Note S1. Multi-mode Hopfield Hamiltonian. 

To describe coupling of the nanorod array with all Fabry-Pérot modes of the cavity, 

we adopt the multi-mode Hopfield Hamiltonian in the Coulomb gauges from  [1]: 
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where �̂�𝑗 is the annihilation operator of the j-th FP mode having the resonant energy 𝜔𝑐𝑎𝑣
(𝑗)

, and 
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 is the coupling constant with j-th FP mode. We will assume here that the cavity is formed 

by perfect electric conductor mirrors; hence, at normal incidence (𝑘∥ = 0), the energy of the j-

th cavity mode is 𝜔𝑐𝑎𝑣
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Figure S14. Fitting of the experimental polariton dispersions with the multimode normal-

incidence Hopfield Hamiltonian. 

 

𝐿𝑟𝑜𝑑, nm 200 300 400 

𝜔𝑝𝑙, eV 0.85 0.67 0.56 

𝑔𝐶, eV 0.35 0.33 0.32 

Table SII. The values of bare plasmon energies and Coulomb gauge coupling strengths 

obtained by fitting the polariton dispersion with eigenvalues of the multimode Hopfield 

Hamiltonian. 
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Note S2. Transition dipole moment of a single plasmonic nanorod 

In order to estimate the effective transition dipole moment of a plasmonic nanorod 𝜇, 

in analogy to a two-level system, we employ the coupled-mode theory for an arbitrary three-

dimensional scatterer in free space  [3]. The scattering cross-section on resonance reads: 

𝜎𝑠𝑐𝑎𝑡 = (2ℓ + 1)𝜆2 |
𝛾𝑟𝑎𝑑

𝛾𝑟𝑎𝑑 + 𝛾𝑛−𝑟𝑎𝑑
|

2

, 

where 𝛾𝑟𝑎𝑑 and 𝛾𝑛−𝑟𝑎𝑑 are the radiative and non-radiative decay rates of the plasmon mode, 

and ℓ = 1 for the dipolar scattering channel. Thus, by extracting the total plasmon decay rate 

𝛾𝑟𝑎𝑑 + 𝛾𝑛−𝑟𝑎𝑑 as the full width of the scattering peak and the resonant value of the scattering 

cross-section (Fig. S12), we are able to calculate its pure radiative decay rate. Next, we estimate 

the transition dipole moment by using the Larmor formula for the radiative decay rate of an 

electric dipole 𝛾𝑟𝑎𝑑 =
𝜔0

3

3𝜋ℏ𝜀0𝑐3
|𝜇|2  [4], yielding around 34 000 D for the 400 nm long Au 

nanorod. 

 

Figure S15. Scattering cross-section of single Au nanorods of various lengths (height ℎ = 20 

nm, width 𝑤 = 50 nm corresponding to the analyzed arrays) in air calculated with the finite-

difference time-domain solver (Lumerical), and the dipolar limit 𝜎0 =
3

2𝜋
𝜆2 for the scattering 

cross-section imposed by the energy conservation. 
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𝐿𝑟𝑜𝑑, nm 200 250 300 350 400 

𝜔𝑝𝑙, eV 1.33 1.13 1.0 0.9 0.81 

𝛾𝑡𝑜𝑡, meV 140 134 122 115 107 

𝛾𝑟𝑎𝑑, meV 88 84 76 73 67 

𝜇, 103 D 18.5 23 26.3 30.2 33.8 

Table SIII. Resonant frequencies, total decay rates, radiative decay rates, and the effective 

transition dipole moments of single Au nanorods of different lengths estimated from finite 

difference time domain simulations. 

 

Similarly, to estimate the radiative decay rate of a nanorod array, we simulate the 

normal incidence reflection spectrum of the array illuminated with a plane wave. Reflection of 

a single-mode system at resonance can be well approximated by |
𝛾𝑟𝑎𝑑

𝛾𝑡𝑜𝑡
|

2

  [5,6]. Therefore, for 

the 400 nm long nanorods array with 30 nm spacing we obtain 𝛾𝑟𝑎𝑑/𝛾𝑡𝑜𝑡~0.95, indicating that 

the radiative decay of the plasmonic array is the dominant decay process. 

 

Figure S16. Reflection spectrum of a 400 nm long nanorods array in air calculated with the 

finite-difference time-domain solver (Lumerical). 
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Figure S17. (a, c, e) Fitting of the measured polaritonic dispersions of the coupled systems with 

𝐿𝑟𝑜𝑑 = 200, 300, and 400 nm with transition energies of the single-mode Hopfield Hamiltonian 

without the 𝐴2 term. (b, d, f) Fitting the same data with Hopfield Hamiltonian under rotating 

wave approximation and no 𝐴2 term. 
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Figure S18. The normalized vacuum energy variation 𝛿𝐸𝐺/𝐸𝐺 =
�̃�𝐺−𝐸𝐺

𝐸𝐺
 of the coupled 

plasmon-cavity system as a function of the bare cavity energy for normal incidence eigenmodes 

calculated with the coupling strengths obtained from the single-mode Hamiltonian fitting for 

various nanorod lengths (curves), as well as the vacuum energy variation calculated directly 

from the measured polariton energies (circles). 

 

 

 

 

 

Figure S19. The photonic occupancy of the modified ground state �̃�𝑝ℎ𝑜𝑡 = ⟨�̃�|�̂�†�̂�|�̃�⟩ of 

coupled plasmon-cavity systems as a function of the bare cavity energy calculated with the 

coupling strengths obtained from the single-mode Hamiltonian fitting for various nanorod 

lengths. 

  



20 
 

[1] D. De Bernardis, P. Pilar, T. Jaako, S. De Liberato, and P. Rabl, Breakdown of gauge 

invariance in ultrastrong-coupling cavity QED, Phys. Rev. A 98, 053819 (2018). 

[2] S. De Liberato, Light-matter decoupling in the deep strong coupling regime: The 

breakdown of the purcell effect, Phys. Rev. Lett. 112, 016401 (2014). 

[3] R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, Coupled-mode theory 

for general free-space resonant scattering of waves, Phys. Rev. A - At. Mol. Opt. Phys. 

75, 1 (2007). 

[4] L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 

2006). 

[5] S. Fan, W. Suh, and J. D. Joannopoulos, Temporal coupled-mode theory for the Fano 

resonance in optical resonators, J. Opt. Soc. Am. A 20, 569 (2003). 

[6] S. Huppert, A. Vasanelli, G. Pegolotti, Y. Todorov, and C. Sirtori, Strong and 

ultrastrong coupling with free-space radiation, Phys. Rev. B 94, 155418 (2016). 

 


