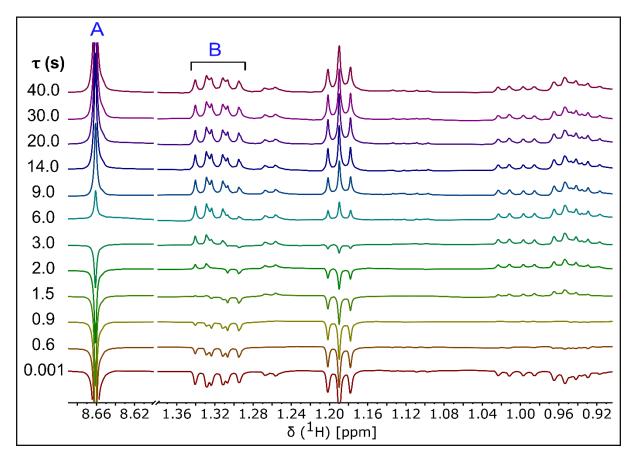
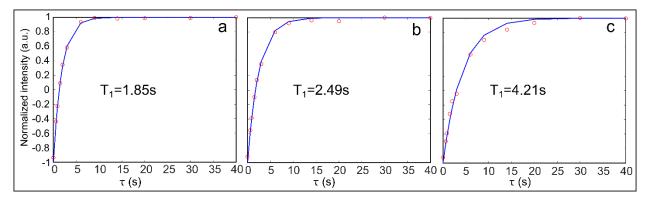
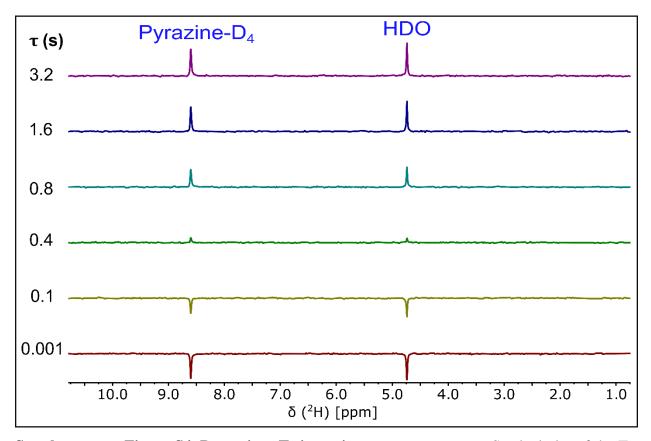

## HDO production from [<sup>2</sup>H<sub>7</sub>]glucose Quantitatively Identifies Warburg Metabolism


Rohit Mahar<sup>1</sup>, Patrick L. Donabedian<sup>1</sup>, Matthew E. Merritt<sup>1</sup>

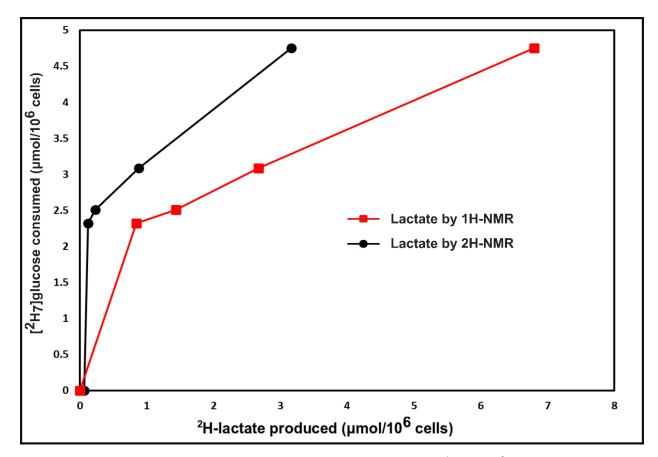
<sup>1</sup>Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA, 32610.


Correspondence and requests for materials should be addressed to M.E.M. (email:matthewmerritt@ufl.edu)

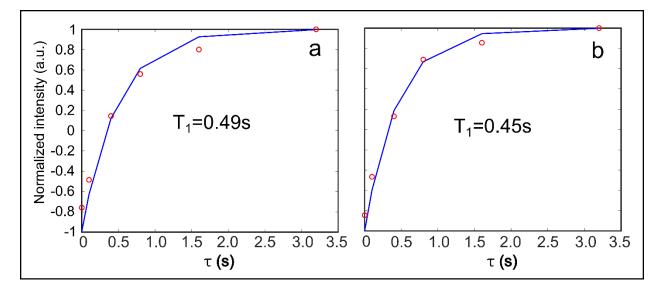



Supplementary Figure S1. <sup>2</sup>H-NMR spectra of the AML12 cell media at different time points: Stacked plot of the <sup>1</sup>H-decoupled <sup>2</sup>H-NMR spectra of the AML12 cell line incubated with 5.5 mM [<sup>2</sup>H<sub>7</sub>]glucose. Cell media withdrawn at (a) 0 min, (b) 20 min, (c) 1 h, (d) 2 h and (e) 5 h time points from cultures of AML12 cancer cells. Labeling on each peak in the (e) spectrum showing the resonances arise from the pyrazine-D<sub>4</sub>, HDO, residual [<sup>2</sup>H<sub>7</sub>]glucose, and <sup>2</sup>H-lactate.




Supplementary Figure S2. Inversion recovery spectra of pyrazine and lactate isotopomers: Stacked plot of the T<sub>1</sub>-inversion recovery <sup>1</sup>H-NMR spectra recorded with <sup>2</sup>H-decoupling during acquisition. Inversion recovery delays ( $\tau$ ) used to acquire the FIDs have been indicated in the front of respective spectrum. A and B marks represent the pyrazine and lactate isotopomers peak respectively.




Supplementary Figure S3. Proton  $T_1$  relaxation times of the lactate isotopomers: Longitudinal relaxation time ( $T_1$ ) fitting curves and calculated  $T_1$  relaxation times for (a) lac-CH<sub>3</sub>, (b) lac-CH<sub>2</sub>D and (c) lac-CHD<sub>2</sub> isotopomers.  $T_1$  relaxation times were calculated using the normalized  $T_1$ -inversion recovery <sup>1</sup>H-NMR data and the standard inversion recovery equation.



Supplementary Figure S4. Deuterium T<sub>1</sub>-inversion recovery spectra: Stacked plot of the T<sub>1</sub>-inversion recovery <sup>2</sup>H-NMR spectra, showing the pyrazine-D<sub>4</sub> and HDO resonances. Inversion recovery delays ( $\tau$ ) used to acquire the FIDs have been indicated in the front of respective spectrum. T<sub>1</sub> relaxation times were calculated for HDO and pyrazine-D<sub>4</sub> and found to be 0.49s and 0.45s respectively.



**Supplementary Figure S5. Lactate production measured by <sup>1</sup>H and <sup>2</sup>H NMR:** Plot of the correlation between [<sup>2</sup>H<sub>7</sub>]glucose consumption and lactate production from HUH-7 cells. Red circles and black squares showed the lactate concentration, measured by <sup>1</sup>H and <sup>2</sup>H NMR, respectively. The <sup>1</sup>H-NMR has very high sensitivity to measure the lactate isotopomers produced from [<sup>2</sup>H<sub>7</sub>]glucose.



Supplementary Figure S6. Deuterium  $T_1$  relaxation times of the HDO and pyrazine-D<sub>4</sub> isotopomers: Longitudinal relaxation time ( $T_1$ ) fitting curves and calculated  $T_1$  relaxation times for (a) HDO and (b) pyrazine-D<sub>4</sub>.  $T_1$  relaxation times were calculated using the normalized inversion recovery <sup>2</sup>H-NMR data and the standard inversion recovery equation.