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Theoretical background and experiment design 

In order to shed light on the neurophysiological processes underlying visual-olfactory stimulus 

categorization under cross-modal interference, we recorded EEG measures and investigated ERP 

responses that were time-locked to the bimodal cue presentation, and to the presentation of the 

auditory target. Since this is the first study of its kind to include ERP data, we were cautious in our 

predictions in terms of specifying exact effects, time windows and regions of interest. We can only 

hypothesize which ERP outcomes to expect on the basis of somewhat related studies investigating, for 

example, working memory and categorization of stimuli in other modalities. In the following, we 

briefly outline the assumed cognitive requirements of the experimental task, and then provide an 

overview of the ERP effects that could be expected on the basis of these assumptions. 

Since subjects maintain and categorize bimodal stimuli over a brief retention period, the experimental 

task can be regarded as a working memory task. When the olfactory and visual stimuli are congruent, 

the task is simple. Participants need to map the olfactory and visual sensory input to a multimodal 

semantic representation of the object at hand (e.g., lilac), and thereby determine that the stimuli match. 

They can then categorize the object as fruit or flower, maintain this information in short-term memory, 

and wait for the auditory target. The auditory target therefore only functions as cue for their response, 

but does not provide any additional information regarding which response is correct.  

When the stimuli are incongruent, on the other hand, the task is more difficult. Participants need to 

establish two (olfactory and visual) object representations to be encoded and retained in working 

memory simultaneously, but that compete for attentional resources. In order to make a categorization 

decision, participants then need to integrate the information provided by the auditory target with the 

information retained in working memory. The object representation corresponding to the target needs 

to be categorized as fruit or flower. A response decision can then be made on the basis of this 

information (see Figure A1). However, during this process, the conflicting object representation of the 

competing sensory modality needs to be resolvd, either passively (by a dominant stimulus 

overshadowing the non-dominant stimulus) or actively (by a dominant stimulus inhibiting the non-

dominant stimulus). If overshadowing/inhibition is asymmetric across the visual and olfactory 

channels, more attentional resources are therefore required during the categorization of the non-

dominant, (presumably olfactory) object, then during the categorization of the dominant (presumably 

visual) object, in order to compensate for the interference advantage of the visual object over the 

olfactory object. As illustrated in Figure A1, we assume that interference between sensory systems 

may occur both during encoding, directly following stimulus presentation, and at retrieval, following 

the presentation of the auditory target. However, it is only at the latter time-point - when information 

regarding the target modality is availible- that any cortical differences related to asymmetric inhibition 

between sensory modalities will be observed.  

Predicted ERP effects time-locked to visual-olfactory cue 

At the time point of stimulus presentation, participants are presented with either a congruent or an 

incongruent odor-picture pair. Many ERP studies have investigated cortical responses to both 

linguistic and non-linguistic incongruent information. It has been found that semantically incongruent 

words engender a centro-parietal negative shift, peaking around 400 ms after word presentation, called 

the N400 effect (see Kutas and Hillyard 1980 for initial evidence; and Kutas and Federmeier 2011 for 

a review). Other studies have also found a similar response to semantically incongruent pictures 

presented in a sentence context (Nigam, Hoffman and Simons 1992), incongruent pictures and sounds 

(Gallagher et al. 2014; Kovic, Plunkett and Westermann 2009, 2010), and incongruent visual scenes 
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Figure A1. An illustration of the cognitive processes assumed to underlie visual dominance in the delayed response odor-

picture categorization task with cross-modal interference. When stimuli are congruent (e.g., lilac odor and lilac picture), the 

task is easy. Participants process the olfactory and visual sensory input and map this information to a multimodal object 

representation that is categorized either as fruit or flower directly. This information is encoded into working memory until the 

presentation of the auditory target, at which time point it is used to make a response decision. However, when stimuli are 

incongruent (e.g., lilac odor and pear picture), the task is hard. The sensory input needs to be mapped to seperate olfactory 

and visual object representations that are encoded and retained in working memory simultaneously, and that compete for 

attentional resourses. These representations are then integrated with the information provided by the auditory target. The 

object representation that corresponds to the category of the auditory target (i.e., olfactory or visual) is retrieved from 

working memory and categorized as fruit or flower. During this process, the conflicting object representation of the 

competing sensory modality needs to be resolved, by overshadowing or inhibition. If baseline inhibition between sensory 

systems is asymmetric, more attentional resources are therefore required during the categorization of the non-dominant 

(presumably olfactory) object, in order to inhibit the dominant (presumably visual) object, then during the categorization of 

the dominant object, which requires less inhibition of the non-dominant object.   

(Mudrik, Lamy and Deouell 2010). Importantly, a few studies have found an N400-like response to 

words or pictures that were semantically incongruent with a previously or simultaneously presented 

odor (Castle, Van Toller and Milligan 2000; Grigor, Van Toller, Behan and Richardson 1999; 

Kowalewski and Murphy 2012; Olofsson et al. 2014; Sarfarazi 1999; but see Robinson, Reinhard and 

Mattingley 2015 for conflicting results). 

In many of these studies, the effect is different from the traditional, “linguistic” N400, in that it has 

long latency, often lasting throughout the full epoch (e.g., Grigor et al. 1999; Kowalewski and Murphy 

2012; Mudrik et al. 2010; Sarfarazi 1999) and a more frontal scalp distribution (e.g., Gallagher et al. 

2014; Grigor et al. 1999). A similar ERP incongruence effect, consisting of a centro-frontal negative 

deflection in the 350-550 ms time window, has been found in stroop tasks (Liotti, Woldorff, Perez and 

Mayberg 2000; Markela-Lerenc et al. 2004; Qiu, Luo, Wang, Zhang and Zhang 2006; Xiao, Dupuis-

Roy, Yang, Qiu and Zhang 2014). A few studies have instead found a pareito-occipital positive 

incongruence effect in the 400-600 ms time window, called the P400 (Liu, Wang and Jin 2009; Puce, 

Epling, Thompson and Carrick 2007).  

At the time point of stimulus presentation, we therefore expected - as stated in the preregistration - 

incongruent stimuli to engender either a negative or possibly a positive incongruence ERP effect with 

either a centro-parietal or centro-frontal scalp distribution, starting around 300-350 ms after stimulus 

presentation, and possibly extending throughout the epoch. 
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Predicted ERP effects time-locked to auditory target 

ERP responses time-locked to auditory targets are of greater theoretical interest because, as mentioned 

above, it is only when participants have information regarding the target modality that differences 

related to asymmetric interference between sensory systems can be observed. Once this information 

becomes available, the object representation in the target modality can be retrieved and categorized at 

the expanse of the representation in the interfering modality. If interference is asymmetric, participants 

can be expected to mobilize additional attentional resources in order to be able to effectively inhibit 

the object representation of the dominant (presumably visual) modality.  

Several studies have found a modulation of the frontocentral N2 wave, a negative deflection peaking 

between 200-350 ms post stimulus onset, in tasks that involve inhibitory control and/or monitoring of 

e.g. incorrect responses, such as in go/no-go tasks and the Eriksen flanker task (e.g., Bartholow et al. 

2005; Berchicci, Spinelli and Di Russo 2016; Dong, Yang, Hu and Jiang 2009; Heil, Osman, 

Wiegelmann, Rolke and Hennighausen 2000; Nieuwenhuis, Yeung, van den Wildenberg and 

Ridderinkhof 2003; and Folstein and Van Petten 2007 for a review). In the present study, inhibitory 

control over the interfering object might be reflected by an increase in N2 amplitude in the 

incongruent conditions in comparison to the congruent conditions, in which no inhibition is required. 

Further, if between-modality interference is asymmetric, a greater deal of inhibitory control over the 

dominated modality might be required, resulting in a more pronounced N2 wave during the 

categorization of dominated olfactory stimuli. 

Perhaps of greater significance is the previously mentioned P300 response, a positive, centro-parietal 

or in some cases a centro-frontal wave, that often peaks around 300 ms post stimulus presentation (e.g. 

Donchin 1981; Kutas, McCarthy and Donchin 1977; Picton 1992; Sutton, Braren, Zubin and John 

1965; Verleger 1997; and Polich 2007, 2011 for reviews). Traditionally, the P300 is engendered by 

stimuli that deviate from an expected pattern (e.g. Kutas et al. 1977; Sutton et al. 1965), but it has also 

been observed in stimulus-driven, categorization tasks (e.g., Chen, Li, Qiu and Luo 2006) as well as in 

language comprehension tasks (e.g., Coulson, King and Kutas 1998; Hörberg, Koptjevskaja-Tamm 

and Kallioinen 2013; Keidel and Hörberg 2017) more generally. The P300 is usually differentiated 

into the P3a and the P3b subcomponents (e.g, Polich 2007, 2011). The P3a does not require active 

attention and has been linked to involuntary attention shifts (e.g., Kok 2001). The P3b, on the other 

hand, require active attention in that the eliciting stimuli must be task related (Kok 2001). In the 

following, we will therefore only focus on the P3b response, but will refer to it as “P300”. The P300 

has been suggested to reflect the updating of information in working memory (i.e., “context updating” 

see Donchin and Coles 1988) as a response to e.g. unexpected stimuli, but also to reflect event 

categorization (Kok 2001), or, relatedly, processes that links stimulus categorization with a response 

decision (Desmedt 1980; Verleger 1988, 1997; Verleger, Jaśkowski and Wascher 2005) such as 

inhibition of unrelated activity in order to focus attention on the task at hand (Polich 2007). According 

to Kok (2001), event categorization involves matching between external stimuli and internal, working 

memory representations, a process that is mediated by attention. Importantly, P300 amplitude is on 

this view assumed to reflect the amount of attentional resources that are invested into the 

categorization task (e.g. Kok 2001), which, in turn, co-occurs with inhibition of task-unrelated activity 

(Polich 2007). In the context of the present study, the additional attentional resources needed to inhibit 

the interfering sensory object during the categorization of incongruent stimuli can therefore be 

expected to result in an enhanced P300 wave, when compared to the categorization of congruent 

stimuli during which cross-modal interference is not an issue. Further, more attentional resources 

might be required to inhibit the sensory object in the dominant, visual modality, than the sensory 

object in the dominated, olfactory modality. This should result in a more pronounced P300 wave 

during olfactory object categorization in comparison to visual object categorization. 

At the time point of the presentation of the auditory target, we therefore expect, as stated in our 

preregistration, incongruent trials to engender an enhanced N2 wave with a central scalp distrbution 

and an enhanced P300 wave with either centro-parietal or centro-frontal scalp distribution in 
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comparison to congruent trials. Further, if there is any evidence for a visual dominance effect in the 

behavioral results, we also expect both the N2 wave and P300 wave to be more pronounced during the 

categorization of incongruent olfactory objects then during the categorization of incongruent visual 

objects.   

Power analyses 

Prior to running the experiment, we conducted power analyses of RT differences and mean P300 

amplitudes in auditory target ERPs. These analyses were done on the basis of pilot data and 

simulation. We piloted the experiment on four participants and used that data in order to get a rough 

estimate of the model parameters in generalized mixed effects models analysing RTs and P300 

amplitudes (see below for model details). We then generated simulated data sets of different sizes 

(N=10, 20, 30, 40) using some of the model parameters, but varying the effect sizes of the Modality 

effect and the Congruence × Modality interaction effects (standardized β = 0.1, 0.2, 0.3, 0.4). For each 

sample size–by-effect-size combination, we simulated 1000 data sets, and fitted a mixed effects model 

on each of those data sets. Power of each beta coefficient was then calculated as the percentage of 

times that the coefficient at hand was significant. Power calculations were conducted in R. The R code 

with the power analysis are available at osf.io/7qnwu/. The results of the RT power analyses are 

shown in Figure A2 (power of each coefficient) and A3 (mean and 95% percentile of the Congruence 

and Congruence × Modality betas), and results of ERP power analyses are shown in Figure A4 

(coefficient power) and A5 (mean and 95% percentile of the Congruence and Congruence × Modality 

betas). 

Figure A2. Results of simulation-based power analyses of RT data for each model coefficient, differentiated on the basis of 

number of participants (10, 20, 30 or 40), Modality effect size, and Modality × Congruence effect size. 
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Figure A3. Results of simulation-based power analyses of RT data, showing mean and 95% percentile of the Congruence and 

Congruence × Modality betas, differentiated on the basis of number of participants (10, 20, 30 or 40), Modality effect size, 

and Modality × Congruence effect size. 

Figure A4. Results of simulation-based power analyses of ERP data for each model coefficient, differentiated on the basis of 

number of participants (10, 20, 30 or 40), Modality effect size, and Modality × Congruence effect size. 
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Figure A5. Results of simulation-based power analyses of ERP data, showing mean and 95% percentile of the Congruence 

and Congruence × Modality betas, differentiated on the basis of number of participants (10, 20, 30 or 40), Modality effect 

size, and Modality × Congruence effect size. 

Prior research on the processing speed in visual and olfactory perception 

A general behavioral response speed advantage of visual processing over olfactory processing can be 

expected, independent of whether crossmodal, visual-olfactory interference is symmetric or not. 

Whereas visual detection reaction times (RTs) are on average about 300 ms (e.g., Amano et al. 2006; 

Collins and Long 1996), a few studies have found olfactory detection RTs around 800 ms (Olofsson 

2014; Olofsson, Bowman and Gottfried 2013), indicating a 400 ms processing time difference. Also 

ERP latencies engendered during visual and olfactory processing differ with about 300-400 ms, In an 

olfactory oddball task (i.e., measuring the neurophysiological response to odors deviating from an 

expected pattern), Pause et al. (1996) found the olfactory N1, P2 and P300 components to peak at 

roughly 450, 600 and 830 ms, respectively. This is about 350-400 ms later than the corresponding 

visual ERP components engendered in visual oddball tasks (e.g. Alexander et al., 1995; Geisler & 

Polich, 1994; Romero & Polich, 1996). Taken together, these findings are highly suggestive of a 350-

400 ms delay in olfactory processing time.    

Odor presentation time measurements 

In order to estimate the timing of odor presentation with respect to the on-screen visual presentation of 

the sniff cue, we performed measurements of the temporal performance of the olfactometer in a 

similar experimental set up as in the original experiment. In this session, we measured the activity of 

the olfactometer with respect to the opening of the odor channel valve, the on-screen visual 

presentation of the odor cue, and the concentration of odor molecules in the olfactometer output 

airflow.  

Olfactometer activity was measured via a trigger signal whose output changes when an odor channel is 

activated or deactivated. The presentation of the visual cue was measured with a phototransistor circuit 

that was attached to the upper left corner of the computer screen, where a black rectangle appeared 

simultaneously with the visual cue. The electric potential of the output of the circuit is proportional to 

the illuminance of a small area of the screen directly under the phototransistor. The concentration of 

the emissions from the olfactometer were measured with a photo-ionization detector (PID; miniPID 

200B, Aurora Scientific Inc, Aurora, Ontario, Canada) with a rise time of 0.6 ms, a detection limit of 
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0.1 ppm (propylene in air) and a ionization energy of 10.6eV. The PID measures volatile organic 

compounds and other gases. As compounds enter the detector they are exposed to high-energy UV 

photons and are ionized when absorbing the UV light, resulting in the formation of positively charged 

ions which produce an measurable electric current. The current is proportional to the number of ions 

and therefore to the concentration of the substance. Measurements are restricted to molecular 

structures that have similar or lower ionization potentials than the photons produced by the PID. The 

phototransistor circuit, the olfactometer output trigger signal, and the PID were connected to the 

analog inputs of  a Measurement Computing USB-1608FS-Plus data acquisition device
1
, measuring all 

three signals at a sampling rate of 2kHz. Using a windows 10 laptop, the data was collected in Python 

(Python 3.7) using the mcculw package, which is the official application programming interface (API) 

for the data acquisition device.  

We performed measurements with the continuous air flow set to 0.5 l/m and an individual channel air 

flow of 2.5 l/m, as in the experiment. We used limonene (CAS 5989-27-5) as odor chemical. 

Limonene has an ionization potential low enough to be measured by the PID (~8.2 eV) and is 

perceptually similar to the lemon odor used in the experiment. Each measurement trial had a similar 

structure as in the experiment. Each trial started with a 1 second delay before the odor was presented. 

Following this delay, the computer signal for opening the odor channel valve was sent simultaneously 

with the presentation of the visual cue (a black fixation cross centered on the screen). After a 400 ms 

delay, the visual cue was replaced with an image. After another 1500 ms delay the signal for closing 

the odor channel valve was sent simultaneously as the image disappeared. The trial then continued 

until 10 seconds had passed. Thus, on each trial, odors were presented for a total of 1900 ms with a 

total inter-stimulus-interval of 8100 ms. We performed 20 measurement trials. However, since there is 

no baseline preassure in the system prior to the presentation of the initial odor, the initial trial was 

excluded from our analyses (in line with Lundström et al. 2010). 

Across trials, we calculated the mean PID response at each time point. For each trial, we also 

estimated the time of the opening of the olfactometer valve, the time of presentation of the visual cue, 

the time of the onset of the odor output, and the time at which odor output reached 50%. The time of 

the opening of the valve was estimated on the basis of the electrical activity of the olfactometer. It is 

the first within-trial time point at which the electrical response is above three standard deviations of 

the within-trial mean electrical response. The time point of the visual cue is the first within-trial time 

point at which the phototransistor response is below 75% of the within-trial phototransistor response 

range. The time of odor output onset is the first within-trial time point at which the PID response 

exceeds 5 standard deviations from the PID response in a 1000 ms within-trial baseline time window. 

The time at which odor output reached 50%, finally, is the within-trial time point at which the PID 

response reaches 50% of the within-trial PID response range. 

Figure A6 illustrates the mean PID response across time points. The time scale is referenced to the 

time of the onset of the visual cue (time 0). The vertical lines illustrate the mean time point of the onset 

of the opening of the olfactometer valve, the onset of the odor output, and the time point at which 50% 

odor output is reached. Shaded areas illustrate ±3 standard deviations from the means. On average, the 

olfactometer valve opens 5.4 ms after the presentation of the visual cue. However, the standard 

deviation of the time of the opening of the valve is 6.7 ms. Thus, across trials, the valve opens within 

the same time range as the visual cue is presented. On average, the odor is presented about 53.5 ms 

after the visual cue has been presented (standard deviation: 6.7 ms), and reaches 50% output around 

217.5 ms after the presentation of the visual cue (standard deviation: 17.9 ms). 

 

                                                      
1
 The certificate of calibration for the data acquisition device is 5685368 
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Figure A6. Mean PID response across time points, referenced to the time point of the onset of the visual cue. Vertical lines 

illustrate the onset of the opening of the olfactometer valve, the odor output onset and 50% odor output. Shaded areas show 

±3 standard deviations from the mean.   

Identification and rating tasks 

Before the experiment started, participants performed an identification task and two stimulus rating 

tasks. The odor presentation procedure was the same in all three tasks. First, a black fixation cross 

appeared for 1500 ms in the center of the screen, indicating that an odor was about to be presented and 

that it was time to prepare for the sniff by inhaling. Following this inhalation cue, a blank screen was 

presented for 200 ms. Then, a red fixation cross appeared that indicated that it was time to sniff, 

simultaneously as the odor was presented in the olfactometer.  

In the identification task, participants were exposed to the four odors in the manner described above. 

They identified each odor by selecting one of the four images that were presented simultaneously in a 

2 × 2 grid on the screen. Odor presentation order was counterbalanced across participants. Image 

positions were randomized within each trial. Each trial was repeated until it was answered correctly. 

Each odor was identified twice in order for participants to get familiarized with the stimuli. 

In the first rating task, participants rated each odor quality in terms of intensity, pleasantness, 

specificity (i.e., the extent to which the odor provided a good match with the object indicated by its 

label), and edibility, using a scale from 1 to 100. Following odor presentation, the four rating scales 

appeared on the screen. Participants rated odors by moving a marker across a graphical illustration of 

each scale using the mouse and then clicking the numerical rating value that was shown directly below 

each scale. Both odor and scale order was counterbalanced across participants. 

The results of the odor quality rating task is illustrated in Figure A7 below. As shown in the figure, all 

odors are rated fairly similarly in terms of intensity, specificity and pleasentness. As can be expected, 

pear and lemon are rated as high in edibility, and lavender and lilac as low.  

In the second rating task, each stimulus was rated for its between-category similarity, using a scale 

from 1 to 100. That is, all stimuli were rated with respect to how perceptually similar they are to the 

two stimuli of the other category (e.g., the similarity between the pear odor, on the one hand, and the 

lavender and lilac odors, on the other). Each rating trial begun with a 2000 ms presentation of a text, 

centered on the screen, indicating the modality and names of the stimuli to be rated (e.g., “Pictures 

pear and lavender”). On olfactory trials, the two odors were then presented sequentially in the manner 

described above, with a 2000 ms blank screen in between the two presentations. On visual trials, a 

black fixation cross was presented for 1000 ms, followed by a 1500 ms presentation of the first image,  
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Figure A7. Mean odor ratings in terms of intensity, specificity, pleasantness and edibility. Error bars show 95% confidence 

intervals, calculated on the basis of bootstrapping. 

another 1000 ms presentation of the fixation cross, and, finally, a 1500 ms presentation of the second 

image (everything being presented in the center of the screen). Following stimuli presentation, a rating 

scale identical to that of the first rating task was presented in the center of the screen. Each object pair 

was rated twice. Each participant therefore performed a total of 2 (modality) × 4 (stimuli) × 2 (cross-

category stimuli) × 2 (repetitions) = 32 rating trials. Object pair presentation order was pseudo-

randomized, with the following exceptions. The first occurrence of an object pair always appeared 

among the 16 initial trials and the second occurrence among the 16 final trials. The within-trial 

presentation order of an object pair was reversed on its second repetition. The presentation order of 

this within-trial ordering (e.g., whether pear-lavender appeared before or after lavender-pear) was 

counterbalanced across participants and modalities. All rating trials were always preceded and 

followed by trials with stimuli in the opposite modality (e.g., olfactory trials always being preceded 

and followed by visual trials). The modality of the initial trial (i.e., the first trial being visual or 

olfactory) was counterbalanced across participants. Mean similarity ratings, corrected for between-

participant variation by standardizing ratings within participants, are shown in Figure A8. As the 

figure illustrates, odors are consistently rated as more similar to each other than pictures, thereby 

introducing a possible confound into the experiment. In order to control for this possible confound, we 

calculated a stimulus similarity index that was included as a covariate in all statistical analyses. First, 

ratings were standardized within participants, ensuring that participant rating means and standard 

deviations were the same for each participant. The between-category similarity index was then 

calculated within each participant, cue stimulus and modality as the mean of the standardized 

similarity ratings involving the stimulus at hand. Since participants rated the stimuli on their similarity 

with each of the two within-category stimuli twice (e.g., two similarity ratings of lemon-lilac, and two 

of lemon-lavender), this index was the mean of four ratings. The mean similarity index is illustrated in 

Figure A9. 

Statistical models 

All data was analysed with Bayesian mixed effects modeling in the Stan modeling language (Stan 

Development Team 2017), using the R package Rstan (Stan Development Team 2018), as well as with 

frequentist mixed effects modeling. Frequentist linear mixed effects models were fitted with the 

lmerTest() package (Kuznetsova, Brockhoff and Bojesen Christensen 2014), in which degrees of 

freedom for the calculation of p-values are estimated with Welch-Satterthwaite approximation. 

Frequentist logistic mixed effects models were fitted with the glmer() function in the lme4 package  
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Figure A8. Mean similarity ratings, corrected for between-participant variation, for each stimulus pair in each modality. 

Error bars show 95% confidence intervals, calculated on the basis of bootstrapping. 

Figure A9. Mean similarity index for each stimulus type in each modality. Error bars show 95%, calculated on the basis of 

bootstrapping. 

(Bates, Maechler, Bolker and Walker 2014). RTs and ERP amplitudes were analyzed with linear 

mixed effects modeling, and accuracy with logistic mixed effects modeling.  

In the pre-registration, we specified that inferences would be made on the basis of Bayesian model 

comparison using Bayes factor. Bayes factor is the ratio of the likelihood probability of two competing 

models or hypotheses. It expresses the likelihood of the data given a statistical model relative to the 

likelihood of the data given a null model (e.g. Wagenmakers et al. 2018). A Bayes factor > 3 is usually 

considered as evidence for a model (Jeffreys 1961; Wagenmakers et al. 2018). In our case, inferences 

about the effect of a parameter (e.g., the Congruence × Modality interaction) can be done by 
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comparing a model with the parameter at hand against an identical model without that parameter. 

However, Bayes factor is highly sensitive to the choice of prior (Gelman and Robert 2013; McElreath 

2016). Weakly informative or improper parameter priors can lead to ill-defined Bayes factors that 

always provide evidence for the null model, independent of the data (Bartlett 1957; Gelman and Rubin 

1995; Strachan and van Dijk 2005). In our case, Bayes factor analyses turned out to be too 

conservative for our complex models in the sense that they were inconsistent with the parameter 

statistics as well as with the results of the frequentist model comparisons. Therefore, we instead base 

our conclusions on the basis of the parameter statistics, considering a parameter 95% credibility 

interval (CI) not including zero as evidence for an effect of the parameter at hand. We also report the 

posterior probability of a parameter being zero or taking on values in the opposite direction of the 

mean parameter estimate. Nevertheless, for transparency, below we report all results of the statistical 

analyses, including Bayes factor analyses and frequentist model comparisons. 

The models of stimulus presentation ERPs included fixed effects of Congruence (Congruent vs. 

Incongruent), Object Category (Fruit vs. Flower), the Congruence × Object Category interaction, 

Gender, Trial number and Similarity index. Thus, mean stimulus presentation ERP responses y for the 

i:th participant and the j:th item were modelled as 

yij = α0 + αi + αj + βiTrialij + β1Congruenceij + β2Categoryij +  β3Congruenceij × Categoryij + 

 β4Genderij + β5Trialij + β6Similarityij + εij, 

 εijk ~ N(0, σ
2
(εij)), 

    
  
     

 
 
   

              

              
  , 

 αij ~ N(0, σ
2
(αij)) 

 

All other models contained fixed effects of Congruence, Modality (Visual vs. Olfactory), the 

Congruence × Modality interaction, Object Category, Gender, Trial number, Delay, Similarity index. 

Thus, log RTs, accuracy as expressed in log-odds, and mean auditory target ERP responses for the i:th 

participant and the j:th item were modelled as y accordingly 

yij = α0 + αi + αj + βiTrialij + β1Congruenceij + β2Modalityij +  β3Congruenceij × Modalityij + 

 β4Categoryij + β5Genderij + β6Trialij + β7Delayij + β8Similarityij + εij, 

 εijk ~ N(0, σ
2
(εij)), 

    
  
     

 
 
   

              

              
  , 

 αij ~ N(0, σ
2
(αij)) 

 

In simple effects models, the Congruence-by-Modality conditions were dummy coded with predictors 

either for Visual-congruent, Olfactory-congruent and Visual-incongruent, or for Visual-incongruent, 

Olfactory-incongruent and Visual-incongruent, e.g. 

yij = α0 + αi + αj + βiTrialij + β1VisualCongruentij + β2VisualIncongruentij +  

 β3OlfactoryIncongruentij + β4Categoryij + β5Genderij + β6Trialij + β7Delayij + 

 β8Similarityij + εij, 

 εijk ~ N(0, σ
2
(εij)), 

    
  
       

 
 
     

              

              
  , 

 αj ~ N(0, σ
2
(αj)) 
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All models also included random intercepts for participants and items, and by-participants random 

slope for Trial number. 

In the Bayesian analyses, we used weakly informative priors, as suggested by Stan Development Team 

(2017), Gelman (2006), and Gelman, Jakulin, Pittau and Su (2008). For error terms σ
2
(εij), σ

2
(αi), 

σ
2
(αj) and σ

2
(ßi), we used Cauchy(0, 2) priors. For the intercept α0 and all the fixed effects coefficients 

βx, we used N(0, 1). As hyperpriors for the (αi, ßi) multivariate distribution, we used N(0, 1) for the 

mean vector μ, and for the variance-covariance matrix Σ of the (αi, ßi) multivariate distribution, we 

used a LKJ Correlation Distribution with a shape parameter of 2, using Cholesky factorization (see 

Stan Development Team 2017). Complete model specifications in Stan and R code can be found at 

osf.io/7qnwu/. 

RT data was log-transformed in order to ensure normality. Continuous variables were standardized by 

subtracting the mean and dividing by two standard deviations. Categorical variables were effect-coded 

through centering
2
. Trials with RTs below 200ms or above 5s were considered as outliers and 

excluded from all analyses. In simple effects models, the Congruence-by-Modality conditions were 

dummy coded with predictors either for Visual-congruent, Olfactory-congruent and Visual-

incongruent, or for Visual-incongruent, Olfactory-incongruent and Visual-incongruent. 

Figure A10. Regions of interest in which mean amplitudes were analyzed. 

 

Analyses of ERP data 

In order to identify regions of interest in the spatio-temporal ERP structure, the ERP data was 

analyzed with a cluster-based permutation test (Maris, 2012; similar too, e.g., Maris & Oostenveld, 

2007), as implemented in the ERP analysis toolkit Fishermans' Friend (Hörberg forthcoming). This 

                                                      
2
 That is, by coding the variable as 0 or 1 and subtracting the mean, see e.g. Gelman and Hill (2006: 55). 
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analysis is presented in more detail in the main manuscript. For the stimulus presentation ERP data, 

we performed a cluster-based permutation test that compared the congruent and incongruent condition. 

For auditory target ERPs, we first compared the congruent and incongruent conditions across 

modalities and then compared modality differences within the congruent and the incongruent 

conditions seperately. These analyses are presented below.   

 We also conducted analyses on mean ERP amplitudes across the centro-frontal (CF) scalp region 

(electrodes AF3, Afz, AF4, F1, Fz, F2, FC1, FCz, FC2), and the centro-occipital (CO) region 

(electrodes P4, P2, Pz, P1, P3, PO8, PO4, POz, PO3, PO7, O2, Oz, O1). These are illustrated in Figure 

A10. Time windows were choosen on the basis of previous findings (see above) and on the basis of 

visual inspection of the data. For stimulus presentation ERPs, we conducted two analyses in the 350-

500 ms time window, one within the CF ROI and one in the CO ROI, and two in the 750-1000 ms, 

again within each ROI. For auditory target ERPs, we conducted two analyses in the 275-300 ms time 

window within each ROI, and an analysis in the 320-580 ms time window in the CF ROI. In addition 

to these preregistered analyses, we also conducted analyses in the 600-700, 700-800, and 800-900 ms 

time windows in the CO ROI that were based upon visual inspection of the data.  

Model results 

In the following, we report full results of both the Bayesian and the frequentist mixed effects models, 

together with results of frequentist and Bayesian model comparisons. For simple-effects analyses, we 

only report effects for the dummy coded simple effect predictors, as the other predictors are identical 

to those in the initial analyses. We start out with analyses of RTs, followed by analyses of accuracy 

data, stimulus presentation ERPs, and finally auditory target ERPs. 

RT data models 

 Table A1 shows results of both the Bayesian and Frequentist models of RT data. The two bottom 

panels show results of the simple effects analyses, testing the effect of Modality in the congruent and 

the Congruence or Congruence × Modality parameters were significant in the full model, that the 

Table A1. Parameter statistics of Bayesian and Frequentist linear mixed effects models of RTs. 

 

Model Coefficient 
Bayesian Frequentist 

Beta S. E. Lower Upper p Beta S.E. df t p 

Full model 

(Intercept) 0.17 0.07 0.04 0.30 .009 0.18 0.06 35.56 2.91 .006 

Congruence 0.45 0.03 0.38 0.52 <.0001 0.45 0.03 8.05 15.60 <.0001 

Modality 0.04 0.02 0.00 0.08 .041 0.04 0.02 4321.38 2.01 .045 

Congruence ×  
Modality 

0.06 0.03 0.00 0.11 .041 0.06 0.03 4312.08 2.06 .040 

Category 0.02 0.02 -0.02 0.05 .383 0.02 0.02 300.12 0.88 .381 

Sex 0.14 0.13 -0.11 0.40 .280 0.14 0.12 33.00 1.21 .236 

Trial -0.35 0.03 -0.42 -0.28 <.0001 -0.35 0.03 34.13 -11.40 <.0001 

Delay 0.02 0.01 -0.01 0.04 .229 0.02 0.01 4325.91 1.23 .217 

Similarity 0.01 0.02 -0.03 0.05 .516 0.01 0.02 4300.98 0.64 .524 

Congruent 

VisualCongruent 0.01 0.03 -0.04 0.06 .571 0.01 0.02 4322.20 0.55 .583 

OlfactoryIncongruent 0.43 0.04 0.35 0.50 <.0001 0.43 0.03 12.02 13.24 <.0001 

VisualIncongruent 0.50 0.04 0.41 0.57 <.0001 0.50 0.04 18.33 13.86 <.0001 

Incongruent 

OlfactoryCongruent -0.42 0.04 -0.50 -0.35 <.0001 -0.50 0.04 18.33 -13.86 <.0001 

VisualCongruent -0.41 0.04 -0.49 -0.33 <.0001 -0.48 0.03 12.01 -14.99 <.0001 

VisualIncongruent 0.07 0.03 0.02 0.12 .009 0.07 0.03 4322.59 2.80 .005 
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incongruent conditions separately (see main text). Table A2 shows both Bayesian and Frequentist 

model statistics (WAIC / AIC, log Likelihood and model deviance) and model comparisons. If either  

parameter was also tested using model comparison. This was done by comparing the full model to a 

model in which the parameter at hand was excluded, using Bayes factor (Bayesian models) or the 

likelihood ratio (frequentist models). 

Table A2. Model statistics and null model comparisons of Bayesian and Frequentist linear mixed effects models of RTs.  

Model Bayesian Frequentist 

Full 

 

Full 
model 

No 
Congruence 

No 
interaction  

Full 
model 

No 
Congruence 

No 
interaction 

WAIC 5619.61 5621.96 5622.64 AIC 5772.89 5806.46 5775.12 

logLik -2771.37 -2771.41 -2773.29 logLik -2872.44 -2890.23 -2874.56 

Deviance 5542.74 5542.83 5546.57 Deviance 5744.89 5780.46 5749.12 

Full model vs. No Congruence model Full model vs. No  Congruence model 

BF10 266468.21 χ
2
(1) 35.57 

BF01 0 p <.0001 

Full model vs. No interaction model Full model vs. No interaction model 

BF10 0.22 χ
2
(1) 4.23 

BF01 4.5 p .040 

Congruent 

 

Full model No Visual-congruent 
 

Full model No Visual-congruent 

WAIC 5620.41 5618.37 AIC 5771.19 5772.89 

logLik -2771.59 -2771.32 logLik -2872.6 -2872.44 

Deviance 5543.19 5542.63 Deviance 5745.19 5744.89 

Full model vs. Visual-congruent model Full model vs. No Visual-congruent model 

BF10 0.03 χ
2
(1) 0.30 

BF01 34.31 p .580 

Incongruent 

 
Full model No Visual-incongruent 

 
Full model No Visual-Incongruent 

WAIC 5619.76 5625.95 AIC 5778.75 5772.89 

logLik -2771.47 -2774.96 logLik -2876.37 -2872.44 

Deviance 5542.94 5549.91 Deviance 5752.75 5744.89 

Full model vs. No Visual-incongruent model Full model vs. No Visual-incongruent model 

BF10 1.45 χ
2
(1) 7.86 

BF01 0.69 p .005 
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Accuracy data models 

Table A3 shows results of both the Bayesian and Frequentist models of Accuracy data, the two bottom 

panels showing results of the simple effects analyses. Table A4 shows both Bayesian and Frequentist 

model statistics and model comparisons. If either the Congruence or Congruence × Modality 

parameters were significant in the full model, that parameter was also tested using model comparison,  

comparing the full model to a model in which the parameter at hand was excluded, using Bayes factor 

(Bayesian models) or the likelihood ratio (frequentist models). 
 

 
Table A3. Parameter statistics of Bayesian and Frequentist logistic mixed effects models of Accuracy data. 

 

  

Model Coefficient 
Bayesian Frequentist 

Beta S. E. Lower Upper p Beta S.E. z p 

Full model 

(Intercept) 3.68 0.26 3.18 4.18 <.0001 3.73 0.23 16.21 <.0001 

Congruence -1.34 0.33 -1.96 -0.63 .001 -1.55 0.29 -5.38 <.0001 

Modality 0.58 0.24 0.11 1.07 .012 0.66 0.26 2.55 .011 

Congruence × 
Modality 

-0.8 0.35 -1.49 -0.11 .023 -1.00 0.39 -2.57 .010 

Category 0.19 0.17 -0.13 0.52 .252 0.17 0.16 1.05 .295 

Sex -0.31 0.37 -1.07 0.46 .391 -0.28 0.37 -0.75 .453 

Trial 0.54 0.24 0.07 1.04 .020 0.67 0.26 2.58 .010 

Delay -0.12 0.15 -0.4 0.18 .426 -0.12 0.14 -0.83 .406 

Similarity -0.26 0.21 -0.68 0.17 .210 -0.26 0.21 -1.19 .233 

Congruent 

VisualCongruent 1.13 0.36 0.44 1.83 .001 1.16 0.39 2.98 .003 

OlfactoryIncongruent -0.85 0.32 -1.44 -0.17 .017 -1.06 0.29 -3.62 <.0001 

VisualIncongruent -0.66 0.36 -1.33 0.09 .075 -0.90 0.34 -2.61 .009 

Incongruent 

OlfactoryCongruent 0.81 0.33 0.13 1.44 .022 1.05 0.29 3.62 <.0001 

VisualCongruent 1.82 0.41 0.98 2.62 <.0001 2.21 0.43 5.18 <.0001 

VisualIncongruent 0.12 0.24 -0.35 0.59 .627 0.15 0.24 0.64 .519 
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Table A4. Model statistics and null model comparisons of Bayesian and Frequentist linear mixed effects models of Accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Bayesian Frequentist 

Full 

 

Full 
model 

No 
congruence 

No 
interaction  

Full 
model 

No 
congruence 

No 
interaction 

WAIC 1470.92 1472.56 1474.83 AIC 1514.84 1528.04 1519.62 

logLik -709.55 -709.37 -711.65 logLik -744.42 -752.02 -747.81 

Deviance 1419.09 1418.73 1423.3 Deviance 1488.84 1504.04 1495.62 

Full model vs. No congruence model Full model vs. No congruence model 

BF10 52.9 χ
2
(1) 15.20 

BF01 0.02 p <.0001 

Full model vs. No interaction model Full model vs. No interaction model 

BF10 4.29 χ
2
(1) 6.78 

BF01 0.23 p .010 

Congruent 

 

Full model No Visual-congruent 
 

Full model No Visual-congruent 

WAIC 1470.27 1478.77 AIC 1522.01 1514.840 

logLik -709.14 -713.66 logLik -749.01 -744.420 

Deviance 1418.28 1427.33 Deviance 1498.01 1488.840 

Full model vs. No Visual-congruent model Full model vs. No Visual-congruent model 

BF10 72.23 χ
2
(1) 9.17 

BF01 0.01 p .002 

Incongruent 

 
Full model No Visual-incongruent 

 
Full model No Visual-incongruent 

WAIC 1471.15 1469.26 AIC 1513.26 1514.84 

logLik -709.35 -709.11 logLik -744.63 -744.42 

Deviance 1418.7 1418.23 Deviance 1489.26 1488.84 

Full model vs. No Visual-incongruent model Full model vs. No Visual-incongruent model 

BF10 0.31 χ
2
(1) 0.42 

BF01 3.23 p .518 
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Stimulus presentation ERP data models 

Table A5 shows results of both the Bayesian and Frequentist models of stimulus presentation ERP 

data in the N400 (350-500 ms) and LNS (750-1000 ms) time windows. Table A4 shows both Bayesian 

and Frequentist model statistics and model comparisons, done by comparing the full model to a model 

in which the parameter at hand was excluded, using Bayes factor (Bayesian models) or the likelihood 

ratio (frequentist models). 

 
Table A5. Parameter statistics of Bayesian and Frequentist linear mixed effects models of single trial amplitudes of object 

presentation ERPs on mean amplitudes in the N400 (350-500 ms) and LNS (750-1000 ms) time windows of the CF and the 

CO ROIs.  

 

 

T.W. ROI 
Bayesian Frequentist 

Coefficient Beta S. E. Lower Upper p Beta S. E. df t p 

N400 

CF 

(Intercept) -1.42 0.23 -1.86 -0.95 <.0001 -1.41 0.24 34.18 -6.00 <.0001 

Congruence -0.37 0.26 -0.89 0.15 .135 -0.40 0.24 7.09 -1.68 .136 

Category 0.10 0.21 -0.31 0.51 .605 0.09 0.21 8.95 0.42 .681 
Congruence × 
Type 0.31 0.41 -0.48 1.12 .428 0.36 0.42 9.04 0.87 .405 

Sex -0.27 0.38 -1.01 0.49 .482 -0.32 0.39 33.08 -0.80 .427 

Trial 0.16 0.17 -0.17 0.48 .313 0.17 0.17 34.16 0.98 .335 

Similarity -0.02 0.12 -0.26 0.21 .844 -0.02 0.12 3716.60 -0.20 .839 

CO 

(Intercept) 2.63 0.29 2.04 3.19 <.0001 2.68 0.28 35.70 9.66 <.0001 

Congruence 0.19 0.29 -0.39 0.79 .520 0.18 0.28 7.64 0.64 .540 

Category 0.05 0.24 -0.44 0.50 .819 0.11 0.24 9.22 0.44 .669 
Congruence × 
Type -0.57 0.45 -1.44 0.31 .202 -0.73 0.48 9.31 -1.50 .167 

Sex 0.45 0.46 -0.46 1.35 .325 0.55 0.50 33.04 1.12 .272 

Trial -0.30 0.18 -0.65 0.06 .098 -0.31 0.18 33.19 -1.70 .098 

Similarity 0.05 0.13 -0.19 0.30 .667 0.06 0.13 3691.04 0.44 .662 

LNS 

CF 

(Intercept) 0.72 0.33 0.07 1.33 .027 0.75 0.31 33.70 2.43 .020 

Congruence -0.60 0.20 -0.99 -0.19 .011 -0.63 0.18 6.11 -3.60 .011 

Category -0.02 0.18 -0.35 0.34 .862 -0.05 0.16 10.31 -0.32 .758 

Congruence × 
Category 0.89 0.35 0.19 1.54 .020 1.03 0.33 10.54 3.13 .010 

Sex -0.10 0.52 -1.17 0.89 .844 -0.15 0.60 32.79 -0.24 .809 

Trial -0.19 0.18 -0.55 0.16 .281 -0.19 0.18 35.06 -1.05 .299 

Similarity 0.01 0.13 -0.25 0.27 .947 0.01 0.14 3657.29 0.09 .930 

CO 

(Intercept) 0.13 0.38 -0.62 0.87 .720 0.11 0.37 35.52 0.29 .776 

Congruence 0.66 0.25 0.17 1.14 .019 0.70 0.23 7.15 3.04 .018 

Category 0.30 0.22 -0.16 0.71 .172 0.36 0.20 10.05 1.76 .109 
Congruence × 
Category -0.83 0.42 -1.61 0.05 .058 -1.01 0.41 10.20 -2.47 .033 

Sex 0.23 0.58 -0.91 1.40 .696 0.35 0.73 33.04 0.48 .635 

Trial 0.10 0.20 -0.31 0.50 .597 0.11 0.21 34.35 0.50 .618 

Similarity -0.10 0.14 -0.37 0.19 .476 -0.10 0.14 3676.79 -0.69 .490 
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Table A6. Model statistics and null model comparisons of Bayesian and Frequentist linear mixed effects models of single 

trial amplitudes of object presentation ERPs on mean amplitudes in the N400 (350-500 ms) and LNS (750-1000 ms) time 

windows of the CF and the CO ROIs. 

 

 

 

 

 

  

T.W. ROI 
Bayesian Frequentist 

 

Full model 
No 

congruence  
Full model 

No 
congruence 

N400 

CF 

WAIC 20787.97 20787.02 AIC 20852.86 20854.04 

logLik -10365.82 -10365.23 logLik -10414.43 -10416.02 

Deviance 20731.63 20730.47 Deviance 20828.86 20832.04 

Full model vs.  No congruence Full model vs.  No congruence 

BF10 0.79 χ
2
(1) 3.18 

BF01 1.26 p .074 

CO 

 

Full model 
No 

congruence 
 

Full model 
No 

congruence 

WAIC 21017.56 21017.43 AIC 21094.87 21093.39 

logLik -10479.80 -10479.71 logLik -10535.43 -10535.70 

Deviance 20959.6 20959.41 Deviance 21070.87 21071.39 

Full model vs.  No congruence Full model vs.  No congruence 

BF10 0.42 χ
2
(1) 0.52 

BF01 2.41 p .469 

LNS 

CF 

 

Full model 
No 

congruence  
Full model 

No 
congruence 

WAIC 21679.97 21681.89 AIC 21756.45 21764.22 

logLik -10814.03 -10813.82 logLik -10866.23 -10871.11 

Deviance 21628.07 21627.65 Deviance 21732.45 21742.22 

Full model vs. No congruence Full model vs. No congruence 

BF10 10.46 χ
2
(1) 9.77 

BF01 0.1 p .002 

CO 

 
Full model 

No 
congruence  

Full model 
No 

congruence 

WAIC 21765.46 21765.02 AIC 21856.37 21862.22 

logLik -10852.67 -10852.02 logLik -10916.18 -10920.11 

Deviance 21705.35 21704.04 Deviance 21832.37 21840.22 

Full model vs.  No congruence Full model vs.  No congruence 

BF10 4.71 χ
2
(1) 7.85 

BF01 0.21 p .005 
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Auditory target ERP data models 

Table A7 shows results of Bayesian and Frequentist models of auditory target ERP data in the N2 

(275-300 ms) and the P300 (320-580 ms) time windows. Table A8 shows model statistics and model 

comparisons for these models, comparing the full models to models in which the parameter at hand is 

excluded, using Bayes factor (Bayesian models) or the likelihood ratio (Frequentist models). 
 

 
Table A7. Parameter statistics of Bayesian and Frequentist linear mixed effects models of single trial amplitudes of auditory 

target ERPs on mean amplitudes in the N2 (275-300 ms) and P300 (320-580 ms) time windows of the CF and the CO ROIs. 

 

 

 

  

T.W. ROI Coefficient 
Bayesian Frequentist 

Beta S. E. Lower Upper p Beta S. E. df t p 

N2 

CF 

(Intercept) -3.89 0.29 -4.46 -3.32 <.0001 -3.94 0.28 30.26 -14.10 <.0001 

Congruence 0.26 0.16 -0.06 0.57 .094 0.27 0.14 3374.80 1.93 .054 

Modality 0.13 0.21 -0.29 0.53 .530 0.14 0.22 3377.72 0.64 .524 

Congruence × 
Modality 

0.12 0.27 -0.41 0.65 .665 0.13 0.28 3372.86 0.48 .629 

Category 0.24 0.15 -0.06 0.53 .112 0.25 0.14 3376.07 1.84 .066 

Sex -0.32 0.48 -1.23 0.64 .491 -0.47 0.52 30.03 -0.91 .370 

Trial 0.06 0.19 -0.31 0.42 .732 0.07 0.19 32.82 0.38 .708 

Delay 0.05 0.14 -0.20 0.33 .733 0.05 0.14 3395.21 0.37 .709 

Similarity 0.08 0.20 -0.31 0.49 .682 0.10 0.21 3377.33 0.49 .626 

CO 

(Intercept) 4.01 0.32 3.37 4.66 <.0001 4.12 0.32 30.13 13.01 <.0001 

Congruence -0.09 0.17 -0.41 0.24 .564 -0.09 0.14 3351.61 -0.67 .501 

Modality -0.23 0.21 -0.65 0.19 .284 -0.25 0.22 3355.82 -1.12 .262 

Congruence × 
Modality 

-0.12 0.26 -0.63 0.38 .652 -0.14 0.28 3349.38 -0.51 .607 

Category -0.33 0.15 -0.62 -0.03 .028 -0.34 0.14 3352.27 -2.43 .015 

Sex 0.59 0.52 -0.45 1.58 .238 0.78 0.58 30.23 1.34 .190 

Trial -0.06 0.22 -0.51 0.38 .789 -0.08 0.22 31.48 -0.37 .716 

Delay 0.01 0.14 -0.26 0.29 .916 0.01 0.14 3369.29 0.10 .920 

Similarity -0.26 0.20 -0.65 0.13 .201 -0.28 0.21 3355.46 -1.35 .179 

P300 CF 

(Intercept) -2.27 0.32 -2.89 -1.63 <.0001 -2.31 0.32 30.43 -7.30 <.0001 

Congruence 0.71 0.15 0.40 1.01 .001 0.73 0.14 8.33 5.31 .001 

Modality 0.14 0.18 -0.20 0.50 .433 0.15 0.19 3328.67 0.81 .419 

Congruence × 
Modality 

0.13 0.23 -0.31 0.56 .605 0.13 0.24 3395.20 0.56 .578 

Category 0.17 0.13 -0.08 0.44 .172 0.18 0.13 34.13 1.37 .179 

Sex -0.49 0.53 -1.54 0.55 .347 -0.70 0.62 29.82 -1.12 .271 

Trial -0.16 0.14 -0.43 0.11 .261 -0.16 0.14 706.05 -1.16 .247 

Delay 0.01 0.12 -0.21 0.24 .930 0.01 0.12 3401.21 0.06 .952 

Similarity -0.05 0.17 -0.38 0.30 .771 -0.05 0.18 3135.00 -0.26 .792 
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Table A8. Model statistics and null model comparisons of Bayesian and Frequentist linear mixed effects models of single 

trial amplitudes of auditory target ERPs on mean amplitudes in the N2 (275-300 ms) and P300 (320-580 ms) time windows 

of the CF and the CO ROIs. 

 
 
 

Table A9 shows results of Bayesian and Frequentist models of auditory target ERP data in the LPC1 

(600-700 ms), LPC2 (700-800 ms), and LPC3 (800-900 ms) time windows, together with results of 

simple effects analyses. Tables A9-A11 show model statistics and model comparisons for these 

models, comparing the full models to models in which the parameter at hand is excluded, using Bayes 

factor (Bayesian models) or the likelihood ratio (Frequentist models). If either the Congruence, 

Modality or Congruence × Modality parameters were significant in any of the full models, that 

parameter was tested with model comparison. 
  

T.W. ROI 
Bayesian Frequentist 

 

Full model No congruence 
 

Full model No congruence 

N2 

CF 

WAIC 19412.41 19415.58 AIC 19476.06 19477.78 

logLik -9681.21 -9682.37 logLik -9724.03 -9725.89 

Deviance 19362.42 19364.74 Deviance 19448.06 19451.78 

Full model vs. No congruence model Full model vs. No congruence model 

BF10 0.72 χ
2
(1) 3.73 

BF01 1.39 p .053 

CO 

 

Full model No congruence 
 

Full model No congruence 

WAIC 19258.06 19256.94 AIC 19332.80 19331.26 

logLik -9601.13 -9601.00 logLik -9652.40 -9652.63 

Deviance 19202.26 19202.00 Deviance 19304.80 19305.26 

Full model vs. No congruence model Full model vs. No congruence model 

BF10 0.14 χ
2
(1) 0.45 

BF01 7.28 p .500 

P300 CF 

 
Full model No congruence model 

 
Full model No congruence model 

WAIC 18352.57 18358.04 AIC 18435.72 18448.42 

logLik -9153.28 -9153.62 logLik -9203.86 -9211.21 

Deviance 18306.57 18307.24 Deviance 18407.72 18422.42 

Full model vs. No congruence model Full model vs. No congruence model 

BF10 105.20 χ
2
(1) 14.70 

BF01 0.01 p <.001 
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Table A9. Parameter statistics of Bayesian and Frequentist linear mixed effects models of single trial amplitudes of auditory 

target ERPs on mean amplitudes in the LPC1 (600-700 ms), LPC2 (700-800 ms) and the LPC3 (800-900 ms) time windows 

of the CO ROI. 

 

T.W. Coefficient 
Bayesian Frequentist 

Beta S.E. Lower Upper p Beta S.E. df t p 

LPC1 

(Intercept) 2.41 0.32 1.76 3.02 <.0001 2.48 0.30 29.96 8.27 <.0001 

Congruence 0.66 0.17 0.31 1.00 <.0001 0.68 0.15 3361.99 4.58 <.0001 

Modality 0.14 0.22 -0.29 0.58 .549 0.10 0.23 3372.57 0.43 .668 

Congruence × 
Modality 

0.22 0.29 -0.34 0.78 .458 0.26 0.29 3360.93 0.90 .369 

Category -0.34 0.16 -0.65 -0.03 .030 -0.35 0.15 3362.81 -2.37 .018 

Sex 0.40 0.51 -0.65 1.37 .434 0.55 0.58 29.93 0.94 .354 

Trial 0.01 0.19 -0.35 0.38 .941 0.00 0.18 31.11 0.03 .980 

Delay -0.25 0.14 -0.52 0.02 .083 -0.26 0.15 3383.42 -1.74 .082 

Similarity 0.17 0.22 -0.26 0.59 .438 0.13 0.22 3372.29 0.58 .562 

VisualCongruent -0.01 0.27 -0.54 0.53 .949 -0.03 0.28 3368.90 -0.12 .902 

OlfactoryIncongruent 0.53 0.22 0.09 0.96 .024 0.54 0.21 3363.83 2.62 .009 

VisualIncongruent 0.76 0.28 0.21 1.31 .009 0.78 0.27 3366.85 2.82 .005 

OlfactoryCongruent -0.51 0.22 -0.94 -0.07 .024 -0.54 0.21 3363.83 -2.62 .009 

VisualCongruent -0.49 0.27 -1.03 0.03 .064 -0.58 0.27 3372.65 -2.11 .035 

VisualIncongruent 0.30 0.26 -0.21 0.80 .262 0.23 0.27 3370.40 0.84 .399 

LPC2 

(Intercept) 2.13 0.35 1.52 2.81 <.0001 2.24 0.31 30.29 7.11 <.0001 

Congruence 0.54 0.20 0.15 0.93 .014 0.57 0.17 7.91 3.31 .011 

Modality 0.26 0.22 -0.17 0.69 .245 0.27 0.24 3274.50 1.16 .248 

Congruence × 
Modality 

0.55 0.27 0.03 1.07 .039 0.59 0.30 3352.86 1.97 .049 

Category -0.38 0.16 -0.71 -0.05 .026 -0.40 0.16 30.25 -2.44 .021 

Sex 0.40 0.52 -0.62 1.44 .530 0.60 0.62 29.88 0.96 .347 

Trial -0.02 0.19 -0.40 0.34 .936 -0.04 0.19 27.39 -0.19 .851 

Delay -0.17 0.14 -0.46 0.11 .225 -0.17 0.15 3383.32 -1.11 .269 

Similarity 0.06 0.21 -0.35 0.47 .859 0.07 0.23 3042.24 0.30 .761 

VisualCongruent -0.06 0.26 -0.59 0.45 .809 -0.02 0.28 3325.24 -0.09 .930 

OlfactoryIncongruent 0.25 0.24 -0.21 0.73 .298 0.27 0.23 24.39 1.20 .242 

VisualIncongruent 0.80 0.30 0.21 1.39 .010 0.84 0.29 63.67 2.88 .005 

OlfactoryCongruent -0.24 0.24 -0.72 0.25 .310 -0.27 0.23 24.39 -1.20 .242 

VisualCongruent -0.28 0.29 -0.84 0.29 .328 -0.30 0.29 63.04 -1.02 .312 

VisualIncongruent 0.57 0.27 0.05 1.08 .033 0.57 0.28 3326.75 2.04 .042 

LPC3 

(Intercept) 0.97 0.32 0.35 1.60 .003 1.00 0.30 29.76 3.27 .003 

Congruence 0.28 0.19 -0.10 0.63 .137 0.29 0.16 3366.17 1.87 .062 

Modality 0.22 0.23 -0.23 0.66 .338 0.24 0.24 3370.61 0.98 .328 

Congruence × 
Modality 

0.77 0.30 0.17 1.35 .012 0.84 0.31 3364.44 2.71 .007 

Category -0.39 0.16 -0.71 -0.09 .011 -0.40 0.16 3367.29 -2.56 .010 

Sex 0.22 0.54 -0.86 1.27 .668 0.32 0.61 29.76 0.53 .603 

Trial 0.19 0.20 -0.22 0.59 .346 0.19 0.21 29.84 0.88 .389 

Delay -0.18 0.15 -0.48 0.12 .244 -0.18 0.16 3386.30 -1.16 .247 

Similarity 0.00 0.22 -0.45 0.43 .989 0.00 0.23 3370.43 0.01 .991 

VisualCongruent -0.19 0.27 -0.71 0.33 .480 -0.18 0.29 3368.60 -0.64 .524 

OlfactoryIncongruent -0.13 0.23 -0.58 0.32 .575 -0.13 0.22 3366.73 -0.58 .561 

VisualIncongruent 0.50 0.28 -0.03 1.04 .072 0.53 0.29 3365.97 1.84 .067 

OlfactoryCongruent 0.11 0.23 -0.34 0.58 .660 0.13 0.22 3366.73 0.58 .561 

VisualCongruent -0.09 0.28 -0.62 0.45 .757 -0.06 0.29 3372.50 -0.20 .843 

VisualIncongruent 0.60 0.27 0.07 1.13 .032 0.66 0.29 3369.19 2.28 .023 
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Table A10. Model statistics and null model comparisons of Bayesian and Frequentist linear mixed effects models of single 

trial amplitudes of auditory target ERPs on mean amplitudes in the LPC1 (600-700 ms) time window in the CO ROI. 

 
 

 

 
Table A11. Model statistics and null model comparisons of Bayesian and Frequentist linear mixed effects models of single 

trial amplitudes of auditory target ERPs on mean amplitudes in the LPC2 (700-800 ms) time window in the CO ROI. 

   

Bayesian Frequentist 

 

Full model No congruence 
 

Full model No congruence 

WAIC 19764.43 19771.69 AIC 19828.97 19839.82 

logLik -9858.26 -9859.72 logLik -9900.49 -9906.91 

Deviance 19716.52 19719.44 Deviance 19800.97 19813.82 

Full model vs. No congruence model Full model vs. No congruence model 

BF10 40.23 χ
2
(1) 12.84 

BF01 0.02 p .0003 

Model Bayesian Frequentist 

Full 

 

Full model 
No 

congruence 
No 

interaction  
Full model 

No 
congruence 

No 
interaction 

WAIC 19915.96 19918.72 19918.32 AIC 19983.09 19989.52 19985.20 

logLik -9933.77 -9933.86 -9935.36 logLik -9977.55 -9981.76 -9979.60 

Deviance 19867.53 19867.72 19870.71 Deviance 19955.09 19963.52 19959.20 

Full model vs. No congruence model Full model vs. No congruence model 

BF10 8.71 χ
2
(1) 8.42 

BF01 0.11 p .003 

Full model vs. No interaction model Full model vs. No interaction model 

BF10 2.95 χ
2
(1) 4.1 

BF01 0.34 p .042 

Congruent 

 
Full 

model 
No Visual-congruent 

 
Full 

model 
No Visual-congruent 

WAIC 19915.65 19913.53 AIC 19983.09 19981.11 

logLik -9933.5 -9932.81 logLik -9977.55 -9977.56 

Deviance 19867 19865.61 Deviance 19955.09 19955.11 

Full model vs. No Visual-congruent model Full model vs. No Visual-congruent model 

BF10 0.24 χ
2
(1) 0.02 

BF01 4.08 p .885 

Incongruent 

 
Full 

model 
No Visual-incongruent 

 
Full 

model 
No Visual-incongruent 

WAIC 19915.65 19918.45 AIC 19983.09 19985.25 

logLik -9933.39 -9935.40 logLik -9977.55 -9979.62 

Deviance 19866.77 19870.79 Deviance 19955.09 19959.25 

Full model vs. No Visual-incongruent model Full model vs. No Visual-incongruent model 

BF10 2.7 χ
2
(1) 4.16 

BF01 0.37 p .041 
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Table A12. Model statistics and null model comparisons of Bayesian and Frequentist linear mixed effects models of single 

trial amplitudes of auditory target ERPs on mean amplitudes in the LPC3 (800-900 ms) time window in the CO ROI. 

 

 

 

 
 

  

Model Bayesian Frequentist 

Full 

 
Full model No interaction 

 
Full model No interaction 

WAIC 20143.55 20148.57 AIC 20207.1 20212.44 

logLik -10047.26 -10050.14 logLik -10089.55 -10093.22 

Deviance 20094.52 20100.29 Deviance 20179.1 20186.44 

Full model vs. No interaction model Full model vs. No interaction model 

BF10 7.47 χ
2
(1) 7.34 

BF01 0.13 p .006 

Congruent 

 
Full model No Visual-congruent 

 
Full model No Visual-congruent 

WAIC 20142.2 20142.03 AIC 20207.1 20205.51 

logLik -10046.57 -10046.76 logLik -10089.55 -10089.76 

Deviance 20093.14 20093.52 Deviance 20179.1 20179.51 

Full model vs. No Visual-congruent model Full model vs. No Visual-congruent model 

BF10 0.37 χ
2
(1) 0.41 

BF01 2.67 p .524 

Incongruent 

 
Full model No Visual-incongruent 

 
Full model No Visual-incongruent 

WAIC 20142.64 20146.7 AIC 20207.1 20210.33 

logLik -10046.69 -10049.14 logLik -10089.55 -10092.16 

Deviance 20093.39 20098.28 Deviance 20179.1 20184.33 

Full model vs. No Visual-incongruent model Full model vs. No Visual-incongruent model 

BF10 4.98 χ
2
(1) 5.22 

BF01 0.2 p .022 
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Stimulus presentation ERP effects 

Cluster-based permutation analysis 

The cluster-based permutation analysis of the stimulus presentation ERPs identified one negative 

cluster with a centro-frontal and centro-parietal scalp distribution, spanning the 750-1000 ms time 

window, and one positive cluster with a centro-parietal and centro-occipital scalp distribution in the 

750-1000 ms time window. These clusters are illustrated in Figure A11. 

Figure A11. Results of the cluster-based permutation analysis of the stimulus presentation ERPs. The top panel illustrates the 

scalp topographies of the identified clusters (ordered by size) at selected time points. The bottom panel illustrates the spatio-

temporal distribution of the identified clusters. The dashed lines correspond to the selected time points of the topoplots in the 

upper panel.      

Mean ERP analyses 

Grand average stimulus presentation ERP:s across each ROI, together with topoplots of Congurent-

Incongruent grand average differences in the 350-500 and 750-1000 ms time windows are shown in 

Figure A12. The figure indicates that incongruent trials engender a dipolar scalp effect, ranging from 

300 ms to the end of the epoch, which is negative in the frontal region and positive in the parietal-

occipital region. As shown in Table A6, the analyses in the 350-500 ms time window did not find a 

Congruence effect neither in the CF ROI, β = -0.37, S.E. = 0.26, CI = [-0.89, 0.15], p = .135, nor in the 

CO ROI, β = 0.19, S.E. = 0.29, CI = [-0.39, 0.79], p = .520. We also conducted additional analyses in 

the 750-1000 ms time window. These found a significant negative effect in the CF ROI, β = -0.60, 
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S.E. = 0.20, CI = [-0.99, -0.19], p = .011, mirrored by a positive effect in the CO ROI, β = 0.66, S.E. = 

0.25, CI = [0.17, 1.14], p = .019. Thus, although we did not find strong enough evidence for a 

congruence-based N400-like effect, contrary to our predictions, incongruent trials engendered a late, 

dipolar slow wave that is negative in the anterior scalp region and positive in the posterior scalp 

region. A plausible interpretation of this effect is that it reflects differences in working memory load 

between congruent and incongruent trials. As illustrated in Figure A1, participants needed to encode 

and retain information about the stimuli in working memory until the presentation of the auditory 

target. It is therefore possible that the late, dipolar slow wave is related to differences in working 

memory load. In the congruent trials, participants only need to retain the category of the multisensory 

object in working memory, whereas in the incongruent trials, they are required to retain the 

incongruent olfactory and visual object representations simultaneously. In line with this, several 

studies investigating ERP correlates to working memory load during retention have found high versus 

low load to be reflected in slow wave activity (Bosch, Mecklinger and Friederici 2001; Honda et al. 

1996; Mecklinger and Pfeifer 1996; Monfort and Pouthas 2003; Ruchkin et al. 1997; Ruchkin, 

Johnson, Canoune and Ritter 1990). For instance, Rutchkin et al. (1990) found high working memory 

load during retention to be reflected by a centro-parietal positive slow wave that was followed by 

frontal negative slow wave (see also Honda et al. 1996), very similar to the effects observed in the 

present study. It therefore seems plausible that the observed late, dipolar slow wave stems from 

differences in working memory load. 

 

 

 

Figure A12. Panel A. Grand average ERPs time-locked to the onset of the visual stimuli, averaged across the CF and CO 

ROIs. Shaded areas show 95% confidence intervals. Grey areas mark the 350-500 and 750-1000 ms time windows. Panel B. 

Topographies of Congruent-Incongruent grand average differences in the 350-500 and 750-1000 ms time windows. The 

positions of the electrodes of each ROI are highlighted in white.     
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