
Biophysical Journal, Volume 118
Supplemental Information
CompuCell3D Simulations Reproduce Mesenchymal Cell Migration on

Flat Substrates

Ismael Fortuna, Gabriel C. Perrone, Monique S. Krug, Eduarda Susin, Julio M.
Belmonte, Gilberto L. Thomas, James A. Glazier, and Rita M.C. de Almeida



 

Compucell3D simulations reproduces mesenchymal cell 
migration on flat substrates 

 

Ismael Fortuna, Gabriel C. Perrone, Monique S. Krug, Eduarda Susin, Julio M. 
Belmonte,  

Gilberto L. Thomas, James A. Glazier, and Rita M.C. de Almeida 

 

Supporting Information S1. Instructions for fitting 

Using Eq. (2) in the main text, and its second derivative with respect to ∆𝑡, we can determine 𝐷, 
𝑃, and 𝑆 from experimental or simulated trajectory data, as follows [1]: 

i) Obtain the MSD from the trajectories; 
ii) Calculate the second time derivative for the experimental MSD; 
iii) Fit the results in step ii to the second derivative of Eq. (2) to determine 𝐷 

and 𝑃; 
iv) With these values for 𝐷 and 𝑃, evaluate the original Fürth Equation (Eq. (2) 

with 𝑆 = 0) and subtract from the simulation data.  
v) Use a linear fit to the residual to determine its slope 2𝐷𝑓𝑎𝑠𝑡. This residual 

represents the correction term to the original Fürth Equation. 
vi) Add the correction term to the original Fürth Equation and compare to the 

measured MSD to assess the quality of the model prediction. 

vii) Calculate 𝑆 =
𝐷𝑓𝑎𝑠𝑡

𝐷𝑓𝑎𝑠𝑡+𝐷
. Larger values of 𝑆 mean that the fast-time diffusive 

regime is observable for longer time intervals. 
 

Supporting Information S2. CompuCell3D Project to Replicate Results 
Presented in this Paper 

General discussion of the project simulation files and contents 

The ability to replicate simulation results is a core aim of best-practice model 
development. CompuCell3D allows compact model simulation and execution, making 
publication of replicable models practical. This supplement contains the code and instructions 
for replication of all simulations presented in this paper. Note that simulations are stochastic, so 
that results of individual instances of simulations will differ. However, ensembles of simulations 
for the same parameter sets should closely reproduced the results, which we present in this 
paper. 

CompuCell3D (CC3D) is an open source modeling framework, which executes under 
most PC, Mac and Linux operating systems. Downloads and installation instructions are available 
from http://www.compucell3d.org/. This site provides one-button installers for most PC and 
Mac configurations. It also provides source code and binaries for some flavors of Linux. The site 
also archives older executables of CC3D to allow control for changes in program behavior during 
revision. The published simulations were executed using CC3D version 3.5.1, but execute and 
reproduce the original results in CompuCell3D version 3.7.9. 

CC3D executables consist of two tightly-coupled Graphical User Interfaces (GUIs), 
Twedit++ (a simulation editor, which allows users to modify simulation specifications) and Player 

http://www.compucell3d.org/


(which executes simulation specifications and displays and stores simulation results). A 
CompuCell3D simulation specification consists of a hierarchical group of files and folders. Most 
simulation specifications combine scripts written in Python and various XMLs. Specifically, a 
CC3D simulation <project> contains at least four files: an XML project manager, called 
<project>.cc3d, a Python control file, called <project>.py, a Python steppable file, called 
<project_steppables>.py, and an XML parameter scan file, called ParameterScanSpecs.xml. 
CompuCell3D stores the project manager file in a folder that usually shares the project name 
<project>, and stores the three other files in a subfolder called Simulation 
(<project>/Simulation). If you are new to CC3D simulations, please watch the presentation 
http://compucell3d.org/BinDoc/cc3d_binaries/Presentations/Introduction_To_CompuCell/Co
mpuCell_intro_2014_Hamner.pdf.  

To execute a simulation, launch Twedit++, select Open CC3D Project from the CC3D 
Project pulldown menu and open the project manager file (in this case, CellMig3D). Execute the 
simulation by selecting the CellMig3D.cc3d file in the left-hand subwindow and “right clicking” 
and selecting Open in Player. Alternatively, launch Player, select Open Simulation from the File 
pulldown menu and select the CellMig3D.cc3d file. In either case, the simulation should now 
execute. You can use the Windows pulldown menu Tile option to adjust the display layout to 
improve your visualization of the executing simulation. 

In what follows, we describe briefly each of the four files: 

The file <project>.cc3d tells CC3D which files Player should run and where to find the 
parameters for the simulation(s). Our project is called CellMig3D, so the name of the project 
manager is CellMig3D.cc3d. CellMig3D.cc3d contains the lines  

<Simulation version="3.5.1"> 

   <PythonScript Type="PythonScript">Simulation/CellMig3D.py</PythonScript> 

   <Resource Type="Python">Simulation/CellMig3D_Steppables.py</Resource> 

   <ParameterScan Type="ParameterScan">Simulation/ParameterScanSpecs.xml</ParameterScan> 

</Simulation> 

The Python <project>.py control file specifies the simulation components and 
environment definitions: cell sizes and types, lattice size, interaction energies, calculation 
frequencies, simulation duration, chemical fields, etc…. It also calls the calculation subroutines 
(CC3D plugins): center-of-mass position, neighbor tracker, etc… In our project, the name of the 
control file is CellMig3D.py. 

The steppable file, CellMig3D_Steppables.py, specifies any temporally dynamic 
components of the simulation structure and parameters, performs the simulation analysis and 
displays and stores data, at intervals specified by the control file. Our project has two output 
files: one contains information about cell compartments’ center-of-mass displacements, and the 
other contains information about cell symmetry breaking. The simulation updates these output 
files at the frequency defined in the control file. The simulation stores output files in a subfolder 
of the <project> folder. 

Finally, the XML ParameterScanSpecs.xml file contains the list of the parameters we 
will sweep in the simulation, with their ranges (values) of variation. All the values we have used 
in this work are listed in it. Of course, the simulations can be grouped in sets of parameters. The 
file provided in the supplementary material generates 10 replicas for each parameter set, where 
the parameter sets have three possible cell radii, four values of phiF and seven values of 
lambCHEM. So executing the file runs a set of simulations consisting of a total of 
10 ×  3 ×  4 ×  7 =  830 individual simulations. This file generates all of the individual 
simulations used in the paper: 
  

http://compucell3d.org/BinDoc/cc3d_binaries/Presentations/Introduction_To_CompuCell/CompuCell_intro_2014_Hamner.pdf
http://compucell3d.org/BinDoc/cc3d_binaries/Presentations/Introduction_To_CompuCell/CompuCell_intro_2014_Hamner.pdf


<ParameterScan version="3.7.0"> 

   <OutputDirectory>CellMig3D_ParameterScan</OutputDirectory> 

   <ParameterList Resource="Simulation/CellMig3D.py"> 

     <Parameter CurrentIteration="0" Name="RANDOM_SEED" Type="PYTHON_GLOBAL" 

ValueType="int"> 

       <Values>68721, 198463, 206497, 211561, 217236, 240803, 353789, 380866, 404317, 

410770</Values> 

     </Parameter> 

     <Parameter CurrentIteration="0" Name="deltaT" Type="PYTHON_GLOBAL" ValueType="int"> 

       <Values>50</Values> 

     </Parameter> 

     <Parameter CurrentIteration="0" Name="cellRad" Type="PYTHON_GLOBAL" 

ValueType="float"> 

       <Values>10., 15., 20.</Values> 

     </Parameter> 

     <Parameter CurrentIteration="0" Name="phiF" Type="PYTHON_GLOBAL" ValueType="float"> 

       <Values>0.05, 0.1, 0.2, 0.3</Values> 

     </Parameter> 

     <Parameter CurrentIteration="0" Name="lambCHEM" Type="PYTHON_GLOBAL" 

ValueType="float"> 

       <Values>-75., -100., -125., -150., -175., -200., -250</Values> 

     </Parameter> 

   </ParameterList> 

</ParameterScan>  

The values in the list for the parameter RANDOM_SEED define the number of 
replicas for each parameter set (deltaT, cellRad, phiF, lambCHEM).  Each time a simulation 
replica starts, the CurrentIteration variable for each parameter increments by 1. For example, 
the replica that runs with RANDOM_SEED = 198463, deltaT = 50, cellRad = 15.0, phiF = 0.1, 

and lambCHEM = -100.0, will be replica number 161 (the replica counter starts at “0”). These 
values will be also used to assemble the associated output filenames. Identifying cellRad as “R”, 

phiF as “pF”, lambCHEM as “lC”, and deltaT as “dT”, sample filenames are: 

• 161_R15.0_pF0.1_lC-175.0_dT50_Displacement.dat 
This file contains 13 columns: time (MCS), the center-of-mass coordinates of the cell’s 
three compartments C, F, and N, and the center-of-mass coordinates of the entire cell. 

• 161_R15.0_pF0.1_lC-175.0_dT50_SBAn.dat,  
This file contains 8 columns: time (MCS), the distance between the center-of-mass of 
the F compartment and the center of mass of the combined C and N compartments, the 
𝑧-coordinate of the N compartment, the area of the boundary between the C and F 
compartments, the volume of the C compartment, the volume of the F compartment, 
the volume of the N compartment, and the volume of the entire cell. All lengths and 
areas are in units of lattice sites to the appropriate power. 

CC3D simulations have a natural time unit of a Monte Carlo Step (MCS). The calculations 
for mean-squared-displacement rescale both experiment and simulation times by the measured 
persistence times. The ratio of these two persistence times converts MCS into experimental time 
units 

To generate different simulations using the ParameterScanSpecs.xml file, you must 
change the numbers between the appropriate tag pairs of form <Values> … </Values>. For 
example, to run 5 replicas of a simulation with deltaT = 50, cellRad = 20.0, phiF = 0.2, and 

lambCHEM = -150.0, the modified ParameterScanSpecs.xml file reads:  
  



<ParameterScan version="3.7.0"> 

   <OutputDirectory>CellMig3D_ParameterScan</OutputDirectory> 

   <ParameterList Resource="Simulation/CellMig3D.py"> 

            <Parameter CurrentIteration="0" Name="RANDOM_SEED" Type="PYTHON_GLOBAL" 

ValueType="int"> 

         <Values>68721, 198463, 206497, 211561, 217236</Values> 

      </Parameter> 

<Parameter CurrentIteration="0" Name="deltaT" Type="PYTHON_GLOBAL" ValueType="int"> 

         <Values>50</Values> 

      </Parameter> 

      <Parameter CurrentIteration="0" Name="cellRad" Type="PYTHON_GLOBAL" 

ValueType="float"> 

         <Values>20.</Values> 

      </Parameter> 

      <Parameter CurrentIteration="0" Name="phiF" Type="PYTHON_GLOBAL" ValueType="float"> 

         <Values> 0.2 </Values> 

      </Parameter> 

      <Parameter CurrentIteration="0" Name="lambCHEM" Type="PYTHON_GLOBAL" 

ValueType="float"> 

         <Values>-150. </Values> 

      </Parameter> 

   </ParameterList> 

</ParameterScan>  

where bold face indicates lines changed from the version of the ParameterScanSpecs.xml 

provided. 

How to modify and run the project simulation using CC3D 

First, download the appropriate CC3D installer or binary package from 
http://compucell3d.org/ and install it. On Windows computers, we recommend installing to the 
“Desktop” rather than the “Programs” directory to avoid permission clashes. Download the 
compressed project file and unpack it to a folder in your workspace.  

Launch the CC3D project editor/creator Twedit++ using the method appropriate to 
your operating system.  Click on CC3d Project and then on Open CC3D Project. Go to the folder 
where you unpacked the project files and open the .cc3d file. This selected project will now show 
in Twedit++´s leftmost project structure panel, which displays the file hierarchy of open projects. 
Clicking on the project will display the project’s component files and will open both the Python 
files described in the previous section, as tabs in Twedit++’s right editing panel. 

If you want to run the simulation for a specific set of parameters, click on 
ParameterScan in Twedit++’s leftmost project structure panel to open the 
ParameterScanSpecs.xml file for editing. ParameterScanSpecs.xml specifies all externally-
controlled simulation parameters. Make any changes desired to the number of replicas, choices 
of “deltaT” or other swept parameters. CellMig3D_Steppables.py specifies all other simulation 
parameters, as given in Table 2 of the main text. These parameters are left the same in each 
simulation replica. You can change any of these values by clicking on CellMig3D_Steppables in 
Twedit++’s leftmost project structure panel to open the CellMig3D_Steppables.py file for 
editing. 

Save all files using the Save All button or the Save CC3D Project As menu item in the 
CC3D Project pulldown menu, then right click on the project name in Twedit++’s leftmost project 
structure panel. Click on Open in Player. The CC3D player will open and start the series of 
simulations specified in ParameterScanSpecs.xml. 

http://compucell3d.org/


Simulation initial configuration 

Our simulations use a 3D square lattice with periodic boundary conditions, of size 
(𝐿𝑥 , 𝐿𝑦, 𝐿𝑧), defined in units of the of cell radius, 𝑅𝑐𝑒𝑙𝑙 . Initially, the number of lamellipodium 

sites is zero and the cell is spherical. The cell flattens on contact with the substrate and the 
lamellipodium forms and spreads rapidly due to the target-volume effective energy term. The 

lamellipodium target volume is proportional to 𝑅𝑐𝑒𝑙𝑙
3and 𝜙𝑙. Consequently, the horizontal 

dimensions of the cell-lattice must increase with 𝑅𝑐𝑒𝑙𝑙 and 𝜙𝑙. The following cell-lattice 
dimensions sufficed to prevent the cell spanning any single cell-lattice dimension and causing 
an artifact due to the periodic boundary conditions: 

𝐿𝑧 = 2.1 𝑅𝑐𝑒𝑙𝑙 , 

𝐿𝑥 = 𝐿𝑦 =

{
 
 

 
 8 𝑅𝑐𝑒𝑙𝑙, if 𝑅𝑐𝑒𝑙𝑙 < 20 lattice sites

1
3⁄  or 𝜙𝑙 < 0.20

10 𝑅𝑐𝑒𝑙𝑙, if 20 lattice sites
1
3⁄ ≤ 𝑅𝑐𝑒𝑙𝑙 < 30 lattice sites

1
3⁄  and 𝜙𝑙 ≥ 0.20

12 𝑅𝑐𝑒𝑙𝑙 , if 30 lattice sites
1
3⁄ ≤ 𝑅𝑐𝑒𝑙𝑙 < 40 lattice sites

1
3⁄  and 𝜙𝑙 ≥ 0.20

14 𝑅𝑐𝑒𝑙𝑙  , if 40 lattice sites
1
3⁄ ≤ 𝑅𝑐𝑒𝑙𝑙  and 𝜙𝑙 ≥ 0.20

(𝑆1) 

Inside the lattice, the lattice sites with coordinates at (𝑥, 𝑦, 𝑧 = 0) are frozen and set to a 
generalized cell of type substrate. All other lattice sites not in a cell compartment are set to a 
generalized cell of type medium. Initially the cell is a sphere centered on coordinates 

(
𝐿𝑥

2
,
𝐿𝑦

2
,
𝐿𝑧

2
) consisting of two concentric compartments, a central sphere, of cell type nucleus 

and a surrounding spherical shell, of cell type cytoplasm. When lattice sites of type cytoplasm 
come into contact with lattice sites of generalized cell type substrate they create lattice sites of 
cell type lamellipodium, as illustrated in the main text. 

 

 

Additional File S1. Simulated cell migration - movie 

Cellmigration.mp4: Simulations with 𝑅𝑐𝑒𝑙𝑙 = 15 lattice sites
1
3⁄ , 𝜙𝑙 = 0.10, and 𝜆𝐹−𝑎𝑐𝑡𝑖𝑛 =

175. Snapshots show configuration at 105 MCS. Time interval between frames is 100 MCS. 
  



Supporting Figure S1 

 

FIG. S1. Typical cell trajectories and (selected) morphologies for different values of 𝜙𝑙 and 
𝜆𝐹−𝑎𝑐𝑡𝑖𝑛. Each panel shows 10 cell trajectories of length 105 MCS, with 𝑅𝑐𝑒𝑙𝑙 =

10 (lattice sites)1/3. Axes show 𝑥 and 𝑦 positions measured relative to the center of the cell 
lattice in units of 𝑅𝑐𝑒𝑙𝑙.  The background color indicates confinement (cyan), persistent migration 
(gray), and artefactual lamellipodium detachment (light red). Larger 𝜆𝐹−𝑎𝑐𝑡𝑖𝑛and smaller 
𝜙𝑙 increase cell motility. When 𝜆𝐹−𝑎𝑐𝑡𝑖𝑛 is too small, the lamellipodium remains 
symmetrical and the cell does not migrate, while for very small 𝜙𝑙, the lamellipodium is 
not strong enough to cause cell migration (not shown). 



Supporting Figure S2 

 
FIG. S2. Typical cell trajectories and (selected) morphologies for different values of 𝜙𝑙 and 
𝜆𝐹−𝑎𝑐𝑡𝑖𝑛. Each panel shows 10 cell trajectories of length 105 MCS, with 𝑅𝑐𝑒𝑙𝑙 =

20 (lattice sites)1/3. Axes show 𝑥 and 𝑦 positions measured relative to the center of the cell 
lattice in units of 𝑅𝑐𝑒𝑙𝑙. The background color indicates confinement (cyan), persistent migration 
(gray), and artefactual lamellipodium detachment (light red). Larger 𝜆𝐹−𝑎𝑐𝑡𝑖𝑛 and smaller 
𝜙𝑙 increase cell motility. When 𝜆𝐹−𝑎𝑐𝑡𝑖𝑛 is too small, the lamellipodium remains 
symmetrical and the cell does not migrate, while for very small 𝜙𝑙, the lamellipodium is 
not strong enough to cause cell migration (not shown). 

  



 

Supporting Figure S3 

 

FIG. S3. MSD (〈|∆�⃗�|2〉)) vs. Δ𝜏 in a log-log plot, both quantities rescaled as in Figure 2, 

for cells with 𝑅𝑐𝑒𝑙𝑙 = 10 (lattice sites)1/3, averaged over 5 replicas. The insets present 
the unscaled data in units of MCS and cell radius. 

  



Supporting Figure S4 

 

FIG. S4. MSD (〈|∆�⃗�|2〉)) vs. Δ𝜏 in a log-log plot, both quantities rescaled as in Figure 2, 

for cells with 𝑅𝑐𝑒𝑙𝑙 = 20 (lattice sites)1/3, averaged over 5 replicas. The insets present 
the unscaled data in units of MCS and cell radius. 

 

Supporting Information S3. Estimate of localization error as a possible   
explanation for observed short-time MSD behavior. 

The fitting procedure that produced Figs. 5, S3, and S4 requires the short-time diffusive 
correction to the Fürth equation. We tested for localization error as an alternative  explanation 
for short-time diffusion, but we ruled out this possibility: localization errors in these simulations 
would produce deviations in short time MSD several orders of magnitude smaller than those we 
observed. Fluctuations due to the spatial discreteness of the simulation also have  a different 
effect on the MSD and velocity autocorrelation function from those we observed. We obtained 
MSD curves by measuring the nucleus center-of-mass position in the 𝑥𝑦 plane of the cell, 
calculated using the 𝑥 and 𝑦 coordinates of all lattice sites of the nucleus. All lattice sites at 
the nucleus surface contribute a segmentation error to our estimate of the nucleus center-
of-mass position. Since this positional error is uncorrelated over times when the cell moves 

significantly, the error is diluted by averaging over the 
𝑇−∆𝑡

∆𝑡
  time intervals present in one 

trajectory. Thus the estimated error is: 

𝜀  ~  
0.53

√𝑇 − ∆𝑡
∆𝑡   𝑅𝑐𝑒𝑙𝑙

3

pixels,                                                           (13) 

where we have taken the nucleus volume to be 0.15 of the cell volume and hence the 

nucleus radius to be 0.151/3 𝑅𝑐𝑒𝑙𝑙. For 𝑅𝑐𝑒𝑙𝑙 = 15 (lattice sites)
1/3, and taking  (

𝑇−∆𝑡

∆𝑡
) =



1999 in our simulations, we find  𝜀  ~ 3.5 × 10−6  (lattice sites)1/3. Table S1 presents the the 
expected deviations due to segmentation error from the Fürth behavior for short-time intervals 

of the MSD curves for an 𝑅𝑐𝑒𝑙𝑙 = 15 (lattice sites)
1/3 simulation. 

 Comparing the error estimates in Eq. (13) with the values in the last column of Table 2 
in the main text, shows that the observed MSD deviations from Fürth behavior in the simulations 
are not due to segmentation error. Together with the fitting procedure results, these results 
indicate that a diffusive term is the leading correction to the Fürth equation at short-time scales. 

 

𝜆𝐹−𝑎𝑐𝑡𝑖𝑛 
 

𝑀𝑆𝐷 deviation 

(Rcell
2) 

𝑀𝑆𝐷 deviation 
(lattice sites)2/3 

√𝑀𝑆𝐷 deviation 
(lattice sites)1/3 

150 3.26E-04 7.33E-02 0.27 

175 3.29E-04 7.40E-2 0.27 

200 3.11E-04 7.00E-02 0.26 

Table S1. MSD deviations from Fürth behavior in the short-time regime for 𝑹𝒄𝒆𝒍𝒍 = 𝟏𝟓  and 𝝓𝒍 = 𝟎. 𝟎𝟓. 

 

Supporting Figure S5  

 

FIG. S5.  Simulation execution times (in min/1000 MCS) as a function of cell radius 𝑅𝑐𝑒𝑙𝑙 . Execution times 
are roughly independent of 𝜆𝐹−𝑎𝑐𝑡𝑖𝑛 (not shown) and 𝜙𝑙. 
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