
Supplementary Note 1. Microfluidics may alter cell composition. 
To determine whether microfluidic partitioning could affect cell composition, we compared 

bulk RNA-seq and scRNA-seq data generated on the same dissociated kidney samples (Fig. 

1A, B). We used BSEQ-sc [1] to predict the proportions of each cell type present in the samples 

before they were loaded on the microfluidics. Most notably, BSEQ-sc predicted cells of the 

ascending loop of Henle (aLOH) to be present at 18.6% and 14.3% on average for 3 biological 

replicates for warm and cold dissociation, respectively (Additional file 2: Fig. S11), while 

they were only present at 4.99% and 2.52% in the scRNA-seq libraries (warm- and cold-

dissociated, respectively). Given that cells of aLOH are thought to be the second most populous 

cell type in kidney (estimated at 23.71% of kidney epithelial cells [2]), the analysis suggests 

the BSEQ-sc estimates are more likely to be correct and that aLOH cells may be lost in the 

microfluidic partitioning.  

Podocytes were highly depleted in the warm dissociated samples (0.03% in warm vs 2.78% in 

cold); however, BSEQ-sc predicted podocytes to be at more similar abundance in the warm- 

and cold-dissociated samples (0.86% and 1.36%, respectively). In addition, known podocyte 

markers Nphs1 and Nphs2 were not significantly differentially expressed between bulk RNA-

seq profiles of warm- and cold-dissociated kidneys (logFC = 0.397, FDR = 0.039 and logFC = 

0.390, FDR = 0.032, respectively, edgeR exact test [3]). Together, this suggests that 

microfluidic partitioning likely contributes to the depletion of podocytes specifically in warm-

dissociated kidneys. 

Supplementary Note 2. Ambient RNA profile of methanol-fixed 
cold-dissociated kidneys. 
We observed substantial contamination with highly abundant transcripts in methanol-fixed cell 

suspensions across all cell types (Fig. 3D). To investigate this phenomenon in more detail we 

selected all droplets which were discarded as empty ones by the EmptyDrops tool [4] in the 

cold-dissociated samples. Additional file 2: Fig. S12A, B shows boxplots comparing the 

numbers of genes and UMIs per empty droplet across fresh and methanol-fixed samples. Note 

that droplets with at least 1 gene detected are included. In methanol-fixed samples we find 

more outliers with over 100 genes (9715 droplets in total), whereas only one of the fresh 

samples has droplets with this many genes (1021 droplets in total). However, both figures 

indicate that the amount of contaminating ambient RNA does not seem to be dramatically 

higher in the methanol-fixed samples.  



Next, we investigated what genes contribute to the ambient RNA profile. We again selected all 

‘empty droplets’ and now summed up their counts for each sample to obtain aggregate ambient 

RNA counts. Then we calculated the percentage of counts attributed to each gene in each 

sample. Additional file 2: Fig. S12C shows the top 20 genes with the highest percentage in 

methanol-fixed samples. The figure indicates that mitochondrial genes compose a larger 

fraction of ambient RNA in fresh samples. In contrast, haemoglobin RNA and abundant tubular 

transcripts that are seen in Fig. 3D contribute more to the ambient RNA profile of methanol-

fixed kidneys. 

Hence, while the total amount of ambient RNA does not differ drastically between the fresh 

and methanol-fixed samples, we found differences in ambient RNA profile composition, which 

is ultimately seen in the downstream analysis as higher levels of haemoglobins and tubular 

genes in methanol-fixed cells. 

Supplementary Note 3. Comparison of three nuclei isolation 
protocols. 
Aggregate gene expression was highly correlated in the three nuclei isolation protocols 

(Additional file 2: Fig. S13) and each yielded similar numbers of nuclei with similar numbers 

of genes and UMIs detected per nucleus (Additional file 2: Fig. S14). The major difference 

observed was a higher percentage of reads mapping to mitochondrial genes in the 

SN_FANS_1x2000g_v3 data (mean of 1.69%), vs 0.27% and 0.15% for the SN_sucrose and 

SN_FANS_3x500g_v3 data, respectively (Additional file 2: Fig. S14). Additional files 11-

13 list differentially expressed genes for three pair-wise comparisons between the protocols, 

calculated for each cell type separately using Wilcoxon test in Seurat [5] with thresholds of 

logFC = 0.5, minimum detection rate 0.5, FDR < 0.05. The differential expression analysis 

suggested that contamination of all cell populations with highly expressed kidney transcripts 

was the strongest in SN_FANS_1x2000g_v3 and the lowest in SN_FANS_3x500g_v3. In 

terms of cell type composition, SN_FANS_1x2000g_v3 and SN_sucrose were mostly similar, 

while SN_FANS_3x500g showed significant differences across several cell populations 

(Additional file 2: Fig. S13). Taking the low levels of contamination and the simpler protocol 

without need for specialist FANS equipment we recommend the SN_sucrose protocol.  



Supplementary Note 4. Comparison of bulk RNA-seq of intact 
kidneys and cold-dissociated cell suspensions. 
We compared bulk RNA-seq profiles of undissociated kidneys to bulk RNA-seq profiles of 

cold-dissociated single-cell suspensions derived from kidneys of Balb/c female mice. Raw 

counts were normalised to gene length and then to library sizes using weighted trimmed mean 

of M-values (TMM) method in edgeR [3], to derive gene length corrected trimmed mean of 

M-values (GeTMM) as described in [6] (see Methods). Note that single-cell suspensions were 

filtered through 70µm and 40µm cell strainers, hence, this comparison could potentially reveal 

poorly dissociated cell types. 

Differential expression analysis (edgeR exact test [3] with FDR < 0.05 and logFC threshold of 

2) identified 191 genes with higher expression in undissociated kidneys and 36 genes with 

higher expression in dissociated kidneys (Additional file 2: Fig. S15, Additional file 15). To 

get insight into the potential source of these genes, we investigated their expression levels in 

our single-cell dataset derived from the same batch of mice. Of a total of 227 differentially 

expressed genes, 26 genes were absent from the 10x transcriptome reference, hence, were not 

measured in single-cell experiments. Another 99 genes were not detected in the single-cell 

dataset, which could indicate either loss of certain cell types or low expression levels of these 

genes below the detection limit on a single-cell level. The latter is supported by the fact that 

genes which were detected in single-cell experiments had higher expression levels in 

undissociated bulk RNA-seq samples than genes not detected in single-cell experiments (mean 

expression of 200.9 versus 9.3 GeTMM-normalised counts, median 24.5 versus 4.1 GeTMM-

normalised counts; two-sided Mann-Whitney test W = 7687, p-value < 2.2e-16). On the other 

hand, amongst the 99 genes not detected in the single-cell data, several are indicative of specific 

cell types. For example, the nervous tissue transcripts Cck, Ak5 and Gabra3 were more 

abundant in the intact kidney and may indicate RNA from nerve fibers which would not be 

expected to be seen in single-cell preparations. 

Amongst the 102 differentially expressed genes which were detected in the single-cell dataset, 

86 genes showed higher expression in undissociated kidneys and 16 – higher expression in 

dissociated suspensions. Amongst the 16 genes more abundant in the dissociated samples we 

identified haemoglobins (Hbb-bs, Hba-a1, Hbb-bt, Hba-a2) indicative of red blood cells. 

Additional file 2: Fig. S16 shows a heatmap for average expression levels of the 102 genes in 

all cell types in the single-cell dataset. The heatmap reveals that several cell types, such as 

neutrophils, proximal tubules or endothelial cells, express genes which showed higher 



expression in undissociated than dissociated kidneys. This might indicate that the 

corresponding cell types were incompletely dissociated. Surprisingly, mesangial cells express 

both genes which showed higher expression in undissociated kidneys and genes with higher 

expression in dissociated suspensions, which might point to mesangial cell subtypes that are 

unequally represented in intact vs dissociated bulk RNA-seq kidney profiles. 
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