Comparative Effects of Alpha- and Gamma-Tocopherol on Mitochondrial Functions in Alzheimer's Disease In Vitro Model

Aslina Pahrudin Arrozi¹, Siti Nur Syazwani Shukri¹, Wan Zurinah Wan Ngah¹, Yasmin Anum Mohd Yusof¹, Mohd Hanafi Ahmad Damanhuri¹, Faizul Jaafar¹, Suzana Makpol^{1,*}

¹Department of Biochemistry, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia

Figure Legends
1: Untreated control
2: 5 μM ATF
3: 100 μM ATF
4: 5 μM GTF
5: 80 μM GTF
____ Representative images

Full Image of Western blotting

Optimization of Pro-caspase-3 using different sample

Optimization of β -actin using different sample

Pro-caspase-3 (pro-caspase 3 and β -actin were detected on the same membrane but one after another)

Simultaneous detection of pro-caspase-3 and β -actin, resulted in overexposure of β -actin, as shown by the purple band. Because of this reason, pro-caspase-3 and β -actin were detected at different time and one after another. This apply to all other proteins.

Bcl-2 (Bcl-2 and β -actin were detected on the same membrane but one after another)

Optimization of BAX and Bcl-2 using different sample

BAX (BAX and β -actin were detected on the same membrane but one after another)

Cytochrome C

The membrane was cut into half for the detection of β -actin (upper part) and cytochrome c (lower part)

CYPD

The molecular weight of CYPD and β -actin was almost the same (CYPD: 40kDa, β -actin: 42kDa), therefore all samples were run on 2 gels, 1 gel to detect CYPD and the other to detect β -actin.

6