Supplementary Information

Development of an Exon skipping therapy for X-linked Alport syndrome with truncating

variants in COL4A5

Tomohiko Yamamura¹, Tomoko Horinouchi¹, Tomomi Adachi², Maki Terakawa², Yutaka Takaoka³, Kohei Omachi⁴, Minoru Takasato⁵, Kiyosumi Takaishi², Takao Shoji⁶, Yoshiyuki Onishi⁶, Yoshito Kanazawa⁶, Makoto Koizumi⁶, Yasuko Tomono⁷, Aki Sugano³, Akemi Shono¹, Shogo Minamikawa¹, China Nagano¹, Nana Sakakibara¹, Shinya Ishiko¹, Yuya Aoto¹, Misato Kamura⁴, Yutaka Harita⁸, Kenichiro Miura⁹, Shoichiro Kanda⁸, Naoya Morisada¹, Rini Rossanti¹, Ming Juan Ye¹, Yoshimi Nozu¹, Masafumi Matsuo¹⁰, Hirofumi Kai⁴, Kazumoto Iijima¹ and Kandai Nozu^{1*}

- 1. Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- 2. Rare Disease Laboratories, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan.
- 3. Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
- 4. Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- 5. RIKEN Center for Developmental Biology, Kobe, Japan
- 6. Modality Research Laboratories, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan.
- 7. Division of Molecular Cell Biology, Shigei Medical Research Institute, Okayama, Japan
- 8. Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- 9. Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
- 10. Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan

Exon 1	81	Exon 18	42	Exon 35	90
Exon 2	60	Exon 19	133	Exon 36	140
Exon 3	90	Exon 20	174	Exon 37	127
Exon 4	45	Exon 21	84	Exon 38	81
Exon 5	45	Exon 22	93	Exon 39	99
Exon 6	63	Exon 23	71	Exon 40	51
Exon 7	54	Exon 24	192	Exon 41	186
Exon 8	27	Exon 25	169	Exon 42	134
Exon 9	81	Exon 26	93	Exon 43	73
Exon 10	63	Exon 27	105	Exon 44	72
Exon 11	36	Exon 28	98	Exon 45	129
Exon 12	42	Exon 29	151	Exon 46	99
Exon 13	93	Exon 30	114	Exon 47	213
Exon 14	54	Exon 31	168	Exon 48	178
Exon 15	57	Exon 32	90	Exon 49	115
Exon 16	45	Exon 33	150	Exon 50	173
Exon 17	54	Exon 34	99	Exon 51	1249

Supplementary Table 1 | Nucleotide numbers in each exon of the COL4A5 gene

Exons 1–2 and 47–51 belong to the non-collagenous domain.

Numbers in red are a multiple of three.

Primer sequences for the mutagenesis in the split nanoluciferase complementation system					
a 1250 1251 dalAT	Forward:	ATGAGATGGGCTCGAGCGGTGGTGGCGGGA			
c.1550_1551deIA1	Reverse:	TCGAGCCCATCTCATCACTAGGAGGAATGT			
a 1411C>T	Forward:	ATGAGATGGGCTCGAGCGGTGGTGGCGGGA			
c.1411C>1	Reverse:	TCGAGCCCATCTCATCACTAGGAGGAATGT			
a 1240 1422 da184hm	Forward:	TCCTCCTAGTGACAAAGGTGACACTTGCTTC			
c.1340_1423de1840p	Reverse:	TTGTCACTAGGAGGAATGTGAGGGCCAGCAG			
Primer sequences for the RT-PCR in the In vitro exon skipping efficiency evaluation by ASO					
	Forward:	TTGCCTGGAGAAAAAGGAGA			
COL4AJ CDINA primer	Reverse:	TTCTGTCCAGGGAAACCAAG			
Primer sequences for the RT-PCR in the In vivo (mouse) exon skipping evaluation by ASO					
Colda 5 aDNA primar	Forward:	GGGGCCAGAAAGGTGATGAA			
Coltad CDINA primer	Reverse:	AAAGCCTGGAGCACCTGGAG			

Supplementary Table 2 | List of all primers in this study

		Weight (g)				
		Whole body	Kidney	Heart	Liver	Pancreas
Average	Wild-type $(n = 3)$	30.1	0.34	0.13	1.48	0.07
	Vehicle $(n = 6)$	29.5	0.31	0.16	1.22	0.08
	ASO (<i>n</i> = 5)	28.70	0.34	0.14	1.55	0.08
SE	Wild-type	2.20	0.02	0.00	0.03	0.00
	Vehicle	1.02	0.02	0.00	0.00	0.00
	ASO	0.58	0.01	0.00	0.00	0.00

Supplementary Table 3 | Clinical and laboratory data about the mice studied

		Serum laboratory data			
		Albumin (g/dL)	BUN (mg/dL)	Creatinine (mg/dL)	
Average	Wild-type $(n = 3)$	2.77	33.00	0.10	
	Vehicle $(n = 6)$	2.42	83.67	0.35	
	$\begin{array}{c} \text{ASO} \\ (n=5) \end{array}$	2.36	34.20	0.12	
SE	Wild-type	0.07	1.00	0.00	
	Vehicle	0.04	8.32	0.05	
	ASO	0.07	3.43	0.02	

SE: standard errors

Source data are provided as a Source Data file.

Supplementary Fig. 1 | 3D structure of collagen IV. a, 3D structure of collagen IV: Green, wild-type; yellow, p.D448_G475del84bp mutant; Magenta, p.Gln471* mutant.
b, Total energy of each structure. The energy value for ∆exon21 is closer to the wild-type value. Source data are provided as a Source Data file.

Supplementary Fig. 2 | **In vitro exon skipping efficiency evaluation by an antisense oligonucleotide (ASO).** Patient's urine derived cultured cells (p.Gln471* in exon 21) were transfected with an ASO that targeted exon 21 (84 bp) skipping. **a**, even the lowest dose of 10 nM caused complete exon 21 skipping. **b**, The sequencing results showed that the larger band included exons 20 to 22, whereas the sequencing results of the smaller band showed that exon 20 was directly connected to exon 22. RT-PCR was conducted twice and gave identical results.

Supplementary Fig. 3 | **RT-PCR results for treated mice kidneys.** Wild-type and vehicle treated mice had larger PCR products with exon 21 present, whereas the antisense oligonucleotide (ASO) treated mice gave rise to a band that showed that exon 21 had been skipped, that is, shorter oligonucleotide product. Primer sequences are shown in Supplementary Table 2. RT-PCR was conducted once for all samples and samples in the treatment group gave an identical exon-skipped pattern as shown in this figure.

WT (saline)

MUT (saline)

MUT (ASO)

Supplementary Fig. 4 |Type IV collagen $\alpha 3/\alpha 4/\alpha 5$ chain staining at twenty-one weeks of age. Green: Type IV collagen $\alpha 3/\alpha 4/\alpha 5$ chain. Type IV collagen $\alpha 3/\alpha 4/\alpha 5$ chain were completely negative in the vehicle group (g-l), but they were expressed on the glomerular basement membrane (GBM) in ASO-treated group (m-r). Scale bars are 100 µm. Staining was conducted by two different researchers from different institutes and gave identical expression patterns.

Supplementary Fig. 5 | **ASO-ENA injection into healthy mice.** Green: WT1 protein. Red: ASO-ENA tagged by Cyanine 3. The uptake of ASO-ENA by podocytes (arrows) and tubular epithelial cells (arrow heads) is clearly observed in every specimen. **a**, **b**, Wild-type mouse sacrificed 24 hours after administration. **b**, **c**, Mutant mouse sacrificed 24 hours after administration. **b**, **c**, Mutant mouse sacrificed administration. **g**, **h**, Mutant mouse sacrificed two weeks after administration. Scale bars are 100 μm. Staining was conducted twice and both yielded the same staining pattern.