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Supplementary Figures 

Supplementary Figure 1. Basic characteristics of Fe-OFET and P-E curve of ferroelectric film. a, 

Output characteristics of Fe-OFET with P(VDF-TrFE) gate insulating layer. b, Output characteristics of Fe-

OFET with BT NP(20wt%)/P(VDF-TrFE) nanocomposite gate insulating layer. c, Transfer curves of Fe-

OFET with BT NP(20wt%)/P(VDF-TrFE) and P(VDF-TrFE). IPSC and hysteresis are higher for Fe-OFET 

with BT NP(20wt%)/P(VDF-TrFE) compared to that with P(VDF-TrFE) only due to higher dielectric 

constant and lower coercive field. d, Gate leakage current of Fe-OFET with BT NP(20wt%) /P(VDF-TrFE) 

gate insulating layer. 
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Supplementary Figure 2. Changes in IPSC and ∆IPSC/IPSC,i with different frequency range. a, Changes in 

IPSC and ∆IPSC/IPSC,i in response to stimulation with frequencies ranging from 0.1 Hz to 1.42 Hz with a pulse 

width of 0.5 s. Here, IPSC,i indicates the initial value of the PSC. b, Changes in IPSC and ∆IPSC/IPSC,i according 

to receptor potential frequencies of 1 - 8 Hz with a pulse width of 0.5 s.  
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Supplementary Figure 3. Comparison of characteristics OFET with ferroelectric and non-

ferroelectric gate dielectric. a, Transfer curves of OFET with non-ferroelectric PVP (polyvinylpyrrolidone) 

gate dielectric and Fe-OFET with the ferroelectric nanocomposite gate dielectric (BT NP(20 wt%)/P(VDF-

TrFE)). b, Change of PSC (∆PSC) in OFET with non-ferroelectric PVP gate dielectric and Fe-OFET with 

the ferroelectric nanocomposite gate dielectric (BT NP(20 wt%)/P(VDF-TrFE)) when the 1.42 Hz of pulses 

are applied on gate electrode (pulse width = 0.5 s, amplitude = -10 V). 
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Supplementary Figure 4. Paired pulse ratio (PPR). When two identical pulses with a pulse width of a, 0.1 

s and b, 0.5 s were applied continuously, the second PSC peak current increased. PPR values according to 

the time interval (∆trec) between two pulses with a pulse width of c, 0.1 s or d, 0.5 s. e, Ratio of the first peak 

of PSC (A1) to the tenth peak of PSC (A10) according to the frequency of the pulse when successive pulses 

(pulse width of 0.1 s) were applied. 
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Supplementary Figure 5. Analysis of synaptic weights. Synaptic weight (SW) values of devices with BT 

NP(20 wt%)/P(VDF-TrFE) (red) or P(VDF-TrFE) (blue) for a, different frequencies of Vrec (pulse width of 

0.5 s and amplitude of -10 V), b, different durations of Vrec (amplitude of -10 V), c, different number of 

pulses of Vrec (pulse width of 0.1 s and amplitude of -10 V), d, different frequencies of Vrec (pulse width of 

0.5 s and amplitude of 10 V), e, different frequencies of pulses of Vrec (pulse width of 0.1 s and amplitude of 

10 V), f, different pulse durations of Vrec (amplitude of 10 V) and g, different number of pulses of Vrec (pulse 

width of 0.1 s and amplitude of 10 V). 
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Supplementary Figure 6. Repeatability test with the full recovery of Fe-OFET. a, PSC when applying 

the increasing amplitude of Vrec from -1V to -20V with the full recovery of current. b, PSC when decreasing 

amplitude of Vrec from -20V to -1V with the full recovery of current. c, Merged PSC to demonstrate the 

repeatability of Fe-OFET. c, Compare the PSC with increasing and decreasing amplitude of Vrec. d, PSC 

when applying the increasing pulses number of Vrec from 1 to 100. e, PSC when applying the decreasing 

pulses number of Vrec from 100 to 1. f, Compare the PSC at 100 number of pulses applied in case of 

applying increasing and decreasing number of Vrec pulses. g, SW with increasing and decreasing of 

amplitude of Vrec with the full recovery. h, SW with increasing and decreasing of pulses number of Vrec with 

the full recovery.
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Supplementary Figure 7. Fundamental characteristics of polarization-electric field (P-E) curve of 

ferroelectric films. a, P-E curves of BT NP(20 wt%)/P(VDF-TrFE) and P(VDF-TrFE) thin films with the 

thickness of 600 nm. b, P-E curves of BT NP(20 wt%)/P(VDF-TrFE) and P(VDF-TrFE) thin films by 

applying -10 V to 10 V as driving voltage. c, P-E curves of BT NP(20 wt%)/P(VDF-TrFE) nanocomposite 

thin film with the applied voltage varied. The sub-loops of P-E at the applied voltage range of -5 V ~ 5 V to -

60 ~ 60 V were also included. d, The sub-loops of P-E curve of BT NP(20 wt%)/P(VDF-TrFE) 

nanocomposite thin film at the applied voltage range of -1 V ~ 1 V to -10 V ~ 10 V. P-E curve of BT NP(20 

wt%)/P(VDF-TrFE) nanocomposite thin film at the applied voltage range of -10 V to 10 V with the e, 

frequency varied of applied voltage f, and electrode area of devices. g, Schematic of device structure for 

measurement of P-E curve as MIM (metal-insulator-metal) structure. h, Optical image of MIM device at top 
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view.  
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Supplementary Figure 8. Comparison PSC and retention time with applying pulse of -10 V and -30 V 

of Vrec. a, PSC change when applying the 100 pulses of Vrec (amplitude of -10 V, pulse width of 0.5 s). b, 

PSC change when applying the 100 pulses of Vrec (amplitude of -30 V, pulse width of 0.5 s). The retention 

time of PSC and PSC change after pulsing of c, -10 V and d, -30 V of Vrec.  
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Supplementary Figure 9. Characteristics of Fe-OFET after poling process and comparison of PSC values 

before and after device poling. a, Output characteristics of poled Fe-OFET (using BT NPs 20 wt%/P(VDF-

TrFE) composite as gate insulator). The poling was carried out by applying the negative gate bias of -30 V 

for 30 min. b, Dipole switching after poling process by applying the field between gate and drain electrode 

and formation of internal field. PSC change ratios of unpoled (red) and poled (blue) Fe-OFET by applying 

100 pulses of Vrec with the amplitude of c, -10 V and d, 10 V (pulse width of 0.5 s).  
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Supplementary Figure 10. Analysis of decay time constants. Decay time constants, τ, of devices with BT 

NP(20 wt %)/P(VDF-TrFE) (red) or P(VDF-TrFE) (blue) a, at different frequencies of Vrec (pulse width of 

0.5 s and amplitude of -10 V), b, different frequencies of Vrec (pulse width of 0.1 s and amplitude of -10 V), 

c, different number of pulses of Vrec (pulse width of 0.5 s and amplitude of -10 V), d, different frequencies of 

Vrec (pulse width of 0.1 s and amplitude of -10 V) and e, different pulse durations of Vrec (amplitude of -10 

V). 
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Supplementary Figure 11. Mechanical flexibility test of Fe-OFETs under tensile and compressive 

strain. a, Variations in SW change ratio and PPR under different static compressive strains (two successive 

pulses with a pulse width of 0.5 s and amplitude of -10 V). b, c, Increased amount and variation of peak PSC 

values (pulse width of 0.5 s and amplitude of -10 V) for different b, tensile and c, compressive static strains 

(0.375%, 0.75%, 0.9375%, 1.25%, and 1.88%). d, change ratio of PPR and increase in peak PSC and SW 

under a dynamic tensile strain of 1.25%. e, PSC with repetitive pulses around 100 s (pulse width of 0.1 s and 

amplitude of -10 V) before and after 10,000 and 100,000 cycles of exposure to a tensile strain of 1.25%. The 

cyclic bending test results indicate that there is a significant difference in the IPSC values between initial state 

and after compressive bending of 10,000 cycles (Supplementary Figure 9e). The IPSC values after 10,000 or 

100,000 cycles are not much different even the number of bending cycles increases more than that between 

the initial and 10,000, which indicate that there is a stabilization stage similarly to other organic flexible 

devices.1–5 AiS-TSO are not mechanically stretchable but flexible. There are some limitations in mimicking 

deformability of the skin for applications in electronic skin or soft robotics but its flexibility has many 

advantages compared to rigid devices. 
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Supplementary Figure 12. Characteristics of Fe-OFET depending on channel length. a, IPSC with 

varying the number of Vrec pulses from 1 to 50 from Fe-OFETs with channel length of 40, 50 and 70 µm 

(pulse width of 0.2 s and amplitude of -10 V). b, synaptic eight (SW) analysis depending on the channel 

length and number of Vrec pulses. To investigate the channel length effect of Fe-OFET, we fabricated the 

device with different channel lengths of 40, 50 and 70 µm. As shown in Supplementary Figure 10a, the 

IPSC level was increased with the channel length decreased, as expected. On the other hand, as shown in 

Supplementary Figure 10b, SW increases as the channel length increases. This observation can be 

explained as an effect of increased retention time with the channel length increased which is related with the 

gate area of Fe-OFET6–11 and slower switching time of dipoles in ferroelectric gate dielectric of Fe-

OFET8,10,12. 
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Supplementary Figure 13. Image of AiS-TSO and channel area of Fe-OFET. a, photograph of AiS-TSO 

with numbering the pixel. b, cross-sectional TEM (transmission electron microscopy) image of Fe-OFET in 

channel area prepared from the device structure by FIB (focused ion beam). The gap between Ni electrode 

and gate insulating layers was originated from delamination during sample cutting by FIB.
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Supplementary Figure 14. Measurement setting for responses of AiS-TSO to touch. Measurement 

environment with force gauge and PCB board connected with the device. 
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Supplementary Figure 15. PSC dependence on touched materials. PSC when the AiS-TSO was touched 

with different materials (a, bare hand, b, gloved hand, c, aluminum foil, d, stainless steel foil, e, label tape 

paper, f, polyethylene naphthalate (PEN) film, g, polyvinyl chloride (PVC) film, h, polyimide film with a 

force of ≈ 1 kPa.  
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Supplementary Figure 16. Slowly adapting reception property of the Fe-OFET. IPSC was recorded for 

Vrec pulses (duration of 10 s) applied with a, a pulse amplitude of -10 V for potentiation and b, a pulse 

amplitude of 10 V for depression.  

IPSC increased (decreased) when a negative (positive) Vrec was applied, but the ratio of the increase 

(decrease) decreased, which is a slow adaptation (SA) property that results from continuous changes in 

ferroelectric polarization that is similar to the SA characteristics of Merkel-cell membrane potential.
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Supplementary Figure 17. Responses of AiS-TSO to thermal and strain stimuli. a, change ratio of PSC 

(ΔIPSC/ IPSC,i) of AiS-TSO when touched by polyimide (PI) film and finger with varying temperature of 

polyimide and finger. The devices were touched with stimulation time of ≈3s at the force of≈ 1 kPa. b, PSC 

(IPSC) of AiS-TSO with BT NP(20 wt%)/P(VDF-TrFE) gate dielectric (blue) and OFET with PVP gate 

dielectric (red) with the temperature of finger varied during finger touch. The devices were touched by 

finger with stimulation time of ≈3s at the force of≈ 1 kPa. c, change ratio of PSC (ΔIPSC/ IPSC,i)in AiS-TSO 

under touching (stimulation time of ≈10 s at the force of ≈1 kPa) and bending strains (bending radius of 2 

mm). 
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Supplementary Figure 18. Comparison between piezoelectric oxide semiconductor FET (POSFET) 

and AiS-TSO as touch sensor. Schematic illustration of working principle of a, POSFET tactile sensor and 

b, AiS-TSO during touch (left) and after touch (right).  
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Supplementary Figure 19. Open circuit voltage of AiS-TSO according to touching force. Open circuit 

voltage output from triboelectrification induced by contact between a finger and polyimide film with 

different force ranges of a, 0.3~0.4 kPa, b, 1~1.5 kPa, and c, 2.5~3 kPa. Force applied by finger touch was 

adjusted using a hand force gauge. 
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Supplementary Figure 20. Characteristics of AiS-TSO with repetitive touches and different number of 

touches. a, Change ratio of PSC (∆IPSC/IPSC,i)with repetitive touches having retention time of 1 s and 

retention time of 5s and 10 s. b, IPSC with consecutive touches depending on different time interval and PPR 

value. All the data were obtained at the touch force of ≈ 1 kPa. 
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Supplementary Figure 21. Measurement of AiS-TSO varying humidity condition. 

Here we touched the AiS-TSO varying the humidity condition with around 1 kPa pressure. As 

shown in the Supplementary Figure 19, the response was decreasing with humidity increasing. This 

phenomenon can be explained the humidity effect on triboelectricity. Since the polyimide film is hydrophilic, 

so water absorption is high when it is in the high humidity condition increasing surface conductivity from 

water layer13. The higher surface conductivity discharges the surface decreasing the effective triboelectric 

charges transfer between polyimide film and skin14. 
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Supplementary Figure 22. FE-SEM images of ferroelectric nanocomposites. FE-SEM images of 

ferroelectric nanocomposites of a, BT NP(20 wt%)/P(VDF-TrFE), b, BT NP(40 wt%)/P(VDF-TrFE) and c, 

cross-sectional FE-SEM image of the nanocomposite of BT NP(20 wt%)/P(VDF-TrFE) coated on Si wafer 

to confirm thickness of thin film layer. The thickness was estimated around 0.6 µm. The scale bar in all 

images is 1 µm. 
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Supplementary Figure 23. IPSC with the number of touches varied. Touch force of ≈ 1 kPa varying 

number of touches. 
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Supplementary Figure 24. Measurement of memory strength to demonstrate memory-embedded 

function in AiS-TSO upon finger touches. 

Here, we measured the memory strength of AiS-TSO in an order of touch, pixel 214(3) while 

the pixel 3 was skipped (not touched). The measurements were repeated three times. All three experiments 

showed the same tendency that the untouched pixel 3 has the smallest memory strength and the memory 

strength was increased from the firstly touched (pixel 2) to lastly touched device (pixel 4).
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Supplementary Table 

Merkel Cell - Neurite Complex
(MCNC)

Artificial intrinsically Intelligent –
Tactile Sensory Organ

 (AiS-TSO)

Piezo-2 channel gating Mechanical triboelectric gating 

Merkel cell membrane Triboelectric layer 

Neurotransmitter 
BT NP/P(VDF-TrFE)  
dipoles polarization 

Post synaptic current Drain current 

Synaptic weight Inherent conductivity change 

Supplementary Table 1. Comparison of a Merkel-cell neurite complex (MCNC) and artificial 

intrinsic-intelligence tactile sensory organ (AiS-TSO).
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Supplementary Note 

Supplementary Note 1 

The analogy between an MCNC and AiS-TSO is explained for each step of signal propagation described in 

Fig. 1.  

Step (i): Tactile stimulation is applied. 

Step (ii): In an MCNC, Merkel cells, which are mechanical sensory epithelial cells that have mechanically 

activated Piezo-2 ion channels, activate a SA-I neuronal afferent. Upon tactile stimulation, Ca2 + enters the 

cell via Piezo-2 ion channels and increases membrane potential15,16. In our AiS-TSO, tactile stimulation 

generates a triboelectric potential due to influx of electrons from triboelectrification between the finger and 

receptive polyimide layer, which corresponds to an artificial Merkel cell membrane. Similar to the MCNC, 

the AiS-TSO mechanism uses mechanical energy to generate a potential without any external energy. 

Step (iii): Merkel cells have a high membrane resistance; therefore, the Ca2+ ion current generated by influx 

of Ca2+ through the Piezo-2 channels produces a large sustained depolarization of the Merkel cell17. The 

ability to produce sustained depolarization via Piezo-2 channels is responsible for the two-receptor-site 

mechanism where inactivation of the Piezo-2 channel results in SA firing17,18. By analogy, the receptive 

polyimide layer of our AiS-TSO, which corresponds to an artificial Merkel cell membrane, has an ability to 

store electrons from triboelectrification and therefore functions as a capacitor to generate a SA output signal. 

The rate of increase in potential of the polyimide layer decreases gradually, which means that the response to 

the stimulus gradually decreases, and SA reception is achieved. 

Step (iv): In an MCNC, Merkel cells act as pre-synaptic neurons and release serotonic neurotransmitters to 

activate receptors of A afferents for excitatory signals19. Similarly, the potential generated in the receptive 

polyimide layer of the AiS-TSO switches the dipoles of the BT NP/P(VDF-TrFE) nanocomposite 

ferroelectric layer above the coercive field. Polarization changes due to dipole switching in the AiS-TSO 

correspond to neurotransmitter release in the MCNC. 
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Step (v): In an MCNC, the amount of neurotransmitter that accumulates depends on the degree of tactile 

stimulation, resulting in synaptic plasticity, which, in turn causes generation of an action potential in the A 

afferent to transduce SA-I signaling18,19. In our AiS-TSO, the amount of permanent polarization depends on 

the degree of stimulation as this modulates the drain current, i.e., post synaptic current (IPSC) and can be 

considered the synaptic weight. Indeed, the retention time of synaptic weight in a biological MCNC is much 

shorter than that in the AiS-TSO although the exact principles of sensory memory function in an MCNC 

have not yet been elucidated. In our AiS-TSO, short-term and long-term plasticity (STP and LTP) can form 

because of the ferroelectric properties of the gate dielectric layer, which makes it possible to create short-

term and long-term memory in addition to sensory memory. In an MCNC, A afferents convert the 

postsynaptic current to action potentials depending on the strength of the synaptic connection. Our AiS-TSO 

mimics the synaptic connections and functions of an MCNC prior to converting the PSC to an action 

potential; and PSC is endowed with synaptic weight which can be tuned by varying the composition of the 

nanocomposite ferroelectric gate dielectric layer. 

Supplementary Note 2 

When the frequency of the receptor potential was low, the change ratio of IPSC for a pulse width of 0.1 and 

0.5 s exhibited STP properties, while for faster pulses, the IPSC exhibited LTP properties, both of which are 

consistent with biological synapse properties. For a pulse frequency of 1 Hz and pulse width of 0.5 s, IPSC

showed LTP tendencies (Supplementary Figure 2a), but at a pulse width of 0.1 s, STP properties were 

observed (Supplementary Figure 2b). Pulse width (duration) is also an important determinant of STP or 

LTP. Our data indicate that STP or LTP characteristics can be obtained by regulating frequency and duration, 

which are related to the SRDP and SDDP of biological synapses, respectively. 

Supplementary Note 3 
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To demonstrate that ferroelectric characteristics of gate dielectric layer in Fe-OFET mainly contribute to 

synaptic properties of the device, we also fabricated the OFET with non-ferroelectric PVP 

(polyvinylpyrrolidone) as a gate dielectric layer. The measured capacitance of BT NP(20wt%)/P(VDF-TrFE) 

was much higher (~21 nF/cm2 , dielectric constant = 13.81) than PVP (~5.2 nF/cm2, dielectric constant = 

3.25) in the MIM structure with the same insulator thicknesses as those in the FET structure, which results in 

the higher on-state current level in the transfer characteristics (Supplementary Figure 3a) in Fe-OFET with 

ferroelectric nanocomposite than that in OFET device with PVP device. The change of PSC (∆PSC) of the 

device with PVP (~1x10-11 A) during Vrec biasing was much smaller than that of the device with BT NP(20 

wt%)/P(VDF-TrFE) (~1x10-9 A) during Vrec biasing (Supplementary Figure 3b). However, Fe-OFET with 

ferroelectric gate dielectric material has larger hysteresis in the transfer curve (Supplementary Figure 3a) 

and larger change in PSC after finishing Vrec pulsing (Supplementary Figure 3b) compared to OFET with 

PVP gate insulator. These results are originated from internal field generated in partial polarization 

switching in ferroelectric material, which results in the generation of synaptic weight (SW) in the Fe-OFET. 

On the other hand, negligible hysteresis and residual ∆PSC after finishing Vrec pulsing in the OFET with 

non-ferroelectric PVP indicate that charge trapping does not significantly affect synaptic properties as much 

as ferroelectric effect event though charge trapping of organic semiconductors has been reported.20,21 On the 

other hand, it can be argued that synaptic property in our Fe-OFET device is mainly related to 

ferroelectricity of nanocomposite gate dielectric layer. 

Supplementary Note 4 

To demonstrate the repeatability of Fe-OFET as a synaptic device, we applied the Vrec of increasing and 

decreasing amplitude of pulses and number of pulses. As shown in Supplementary Figure 6, PSC response 

was almost the same when we applied the Vrec in increasing or decreasing amplitude and pulse number. 

Since we applied each pulse after full recovery to the state at the previous pulse, PSCs were only minimally 

affected by the previously formed polarization. Therefore, we found that if we need the repeatability of the 
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device, we can apply the pulse after the full recovery. Here the repeatability in SW was good when we 

increase and decrease the amplitude of pulses and the number of pulses. 

Supplementary Note 5 

To confirm the effect of BT NPs in the nanocomposite film on polarization behaviors, we fabricated the 

metal (Pt)-ferroelectric-metal (Al) (MFM) structures with the ferroelectric layers of BT NP(20 

wt%)/P(VDF-TrFE) nanocomposite and P(VDF-TrFE) on SiO2/Si wafer and measured polarization-electric 

field (P-E) curves by applying the voltage from -80 V to 80 V (Supplementary Figure 7a). The smaller 

coercive field (Ec) of 48.83 (-Ec = -45.83) MV/m for BT NP(20 wt%)/P(VDF-TrFE) nanocomposite film 

was obtained compared to that (Ec = 88.2 MV/m, -Ec = -84.6 MV/m) for pure P(VDF-TrFE) film. Also, the 

nanocomposite film has much larger remnant polarization (Pr) (6.1 µC/cm2) than that of pure P(VDF-TrFE) 

(4 µC/cm2). These results demonstrate that generation of larger Pr in BT NP(20 wt%)/P(VDF-TrFE) was 

observed compared to pure P(VDF-TrFE), which means that synaptic behaviors of the Fe-OFET can be 

tuned by varying the concentration of BT NPs in the nanocomposite. There would be some differences in Pr

compared to the values from the previous reports about P(VDF-TrFE) thin films22–25. This could occur from 

different thickness of film, electrode area of device or measurement condition such as driving voltage.8,10,11

However, the coercive field value was not much different from those in the previous reports and the 

tendency of increasing in polarization was observed when the BT NPs are included in nanocomposite, 

similarly to the results reported from the previous reports22–26. Also, when the range of applied voltage was 

varied to a smaller range, there was observed partial polarization in minor loop. We could demonstrate that 

usage of smaller range of voltage such as -10 V to generate SW by controlling the partial polarization with 

pulse rate, number and duration time varied. Therefore, polarization switching can be controlled according 

to the range of applied voltage10,11,27–29, which implies that SW in Fe-OFET will depend on amplitude, 

duration time, rate and number of the Vrec pulses similar to other Fe-RAM devices using minor loop of 

ferroelectric materials.23,30–34 Of course, the device has smaller retention time for polarization of minor 
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loop30–33. However, the retention time can be controlled by pulse duration time, number or frequency for 

generating SW and controlling the STP and LTP behaviors, as shown in Fig. 2. 

Supplementary Note 6 

In Supplementary Figure 8,  we checked the PSC values when applying -30 V of Vrec which is above the 

coercive voltage of gate insulating layer in Fe-OFET. Comparing with the results obtained with -10 V of 

Vrec, the results show the fast saturation in PSC but poor characteristics in terms of linearity of PSC 

increasing rate. On the other hand, in case of retention time, the time taken to drop below 15% of the 

maximum PSC change at -30 V was longer (~1814 min) than that at -10 V (~68 min). Also, the maximum 

PSC increasing rate was also about 2 times at -30 V of Vrec (~18) larger than that at -10 V of Vrec (~11). This 

is related to remnant polarization formed by applying bias pulses above coercive field and, therefore, much 

longer retention time was obtained compared to that by applying bias pulses in minor loops of P-E curve. 

But as we mentioned before, we can generate and adjust SW even with -10 V of Vrec pulses. Therefore, we 

judged that it was not necessary to apply a voltage above the coercive field, which would decrease the 

linearity of the PSC increasing rate and the SW window, and cause the fatigue in ferroelectric material 

resulting in device breakdown. Also, we used the triboelectric-capacitive coupling effect by touching the 

polyimide substrate to generating of SW on AiS-TSO, and the measurement of synaptic characteristics of 

Fe-OFET was conducted as electrical demonstration of AiS-TSO. We could not generate triboelectric 

voltage output above coercive field by touching. So, we determined that using -10 V magnitude of Vrec is 

appropriate to demonstrate the generation of the synaptic weight originated from ferroelectric dielectric 

layer. Furthermore, we focus on the fact that our sensory organs have synaptic-like functions that can be 

used for sensory memory before they are processed in the brain, which are not intended to implement semi-

permanent memory. Therefore, we believe that using -10 V of Vrec in the minor loop region is enough to 

demonstrate synaptic function by mimicking the Merkel cell neurite complex. LTP in synapse is very 

broad35–37, ranging from minutes to decades, and we can control the STP (seconds) and LTP (hours) of this 

device by controlling the duration, number and frequency of stimuli. 
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Supplementary Note 7 

I Supplementary Figure 9, we compared PSC values for the device with poled ferroelectric gate dielectric 

layer. We conducted poling process by applying the bias of -30 V between gate electrode and drain electrode 

for 30 min. The channel layer acts as a poling electrode. As shown in Supplementary Figure 9a, output 

characteristics showed increased drain current without saturation, which is different from saturation 

behavior of unpoled device. No saturation in the poled device is attributed to internal field generated by 

remnant polarization of gate insulating layer. This result corresponds to our previous investigation about 

poled Fe-OFET.5,38 The generated internal field in the poled device acts as negative bias, which enhances 

accumulation of holes in p-type organic semiconductor channel (Supplementary Figure 9b). PSC change 

and synaptic properties with Vrec pulsing were much different for the unpoled and poled device. During 

pulsing of -10 V Vrec is applied to the poled device, the change of PSC is negligibly small since the dipoles 

in the ferroelectric layer are already aligned (Supplementary Figure 9c). So, the dipoles are difficult to be 

switched further in the same direction with negative Vrec pulsing since they are already fully switched by 

gate biasing of -30 V. Therefore, the synaptic weight of the poled device under negative Vrec pulsing is 

negligible because the polarization was already saturated by poling process. During positive Vrec pulsing, the 

change of PSC in poled device is much smaller than that in unpoled device. The positive Vrec pulsing will try 

to rotate dipoles in the opposite direction to the poled direction of the poled ferroelectric layer resulting in a 

slight decrease in the PSC because partial switching of dipoles can be more difficult by applying the field 

opposite to aligned direction of dipoles compared to switching of randomly oriented dipoles 

(Supplementary Figure 9d). Under positive Vrec pulsing of the poled device, therefore, a smaller synaptic 

weight value than that of the unpoled device was also observed. In our approach, partial polarization in 

ferroelectric gate insulating layer in the unpoled device is used for generating synaptic weight by applying 

negative or positive Vrec pulses. The partial polarization behavior is closely related to mechanism of 

ferroelectric memory devices.4,23–27 Therefore, we conclude that the poling process was disadvantageous in 

generating synaptic weights with potentiation and depression. In our work, the unpoled devices were used 

for all other measurements to utilize the change in partial polarization as synaptic plasticity. 
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Supplementary Note 8 

When the device was touched with a bare hand, gloved hand, aluminum foil, stainless steel foil, or label tape 

paper, the PSC increased due to the electron affinity of polyimide is higher than that of these materials. This 

is because triboelectric charges (electrons) accumulated on the polyimide, which generated a negative 

potential on the polyimide and, in turn, an excitatory PSC44–47. When the device was touched with PEN or 

PVC film, triboelectric electrons moved from the polyimide to the touching materials, generating a positive 

potential on the polyimide and, in turn, an inhibitory PSC44–47. Furthermore, when we touched the device by 

polyimide film, the device response and change of PSC were very small because the triboelectric effect was 

the smallest (Supplementary Figure 15). This phenomenon indicates that triboelectric-capacitive coupling 

is the dominant mechanism in AiS-TSO. 

Supplementary Note 9 

For further investigation about the mechanism of our AiS-TSO, we characterized the response of 

PSC depending on touching object, temperature and bending strain. First, we touched the AiS-TSO with 

polyimide (PI) film and finger varying the temperature. As shown in Supplementary Figure 17a, the PSC 

change (ΔIPSC/ IPSC,i)of AiS-TSO to finger touch was much larger by three orders of magnitude than that to 

touching with PI at the same temperature (~27 oC). In both cases, the ΔIPSC/ IPSC,i was increased with the 

temperature increased. These results indicate that the main mechanism of AiS-TSO is triboelectric-

capacitive coupling effect even though there is a slight change in the ΔIPSC/ IPSC,i with the temperature 

increased. 

For further investigation effect of temperature change on the response of PSC, we fabricated the 

OFET device using PVP (polyvinylpyrrolidone) as gate dielectric layer which has no pyroelectricity 

compared its response to the AiS-TSO. As shown in Supplementary Figure 17b, when we touch the both 

devices by finger using BT NP(20wt%)/P(VDF-TrFE) and PVP gate dielectrics, we could observe the 

increase of PSC (IPSC) in both devices with the temperature increased. From those results, it can be 
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confirmed that the response of AiS-TSO is not originated from pyroelectricity. Since the OFET with PVP 

gate dielectric shows an increase in the IPSC with the temperature increased, an increase in IPSC may be 

attributed to increase in channel conductance due to thermal generation of carriers. Furthermore, 

pyroelectric effect is expected to be negligible because we didn’t carry out any poling process for generating 

pyroelectricity. From those data, we could confirm that the pyroelectric effect in AiS-TSO is negligible 

compared to triboelectric-capacitive effect which is the main mechanism of touch response. 

In order to investigate the response of AiS-TSO with BT NP(20 wt%)/P(VDF-TrFE) gate dielectric 

to mechanical strain, we also measured ΔIPSC/ IPSC,i of the device to tensile and compressive bending strains 

and compared to that to finger touch. As shown in Supplementary Figure 17c, when the AiS-TSO is 

touched by finger and bent with the bending radius of 2 mm for around 10 s, The ΔIPSC/ IPSC,i under finger 

touch was much larger compared to that under bending. Since the bending strain does not induce 

triboelectric-capacitive effect, only a small response was observed with no synaptic weight. Observed 

increase and decrease in ΔIPSC/ IPSC,i of the AiS-TSO may be attributed to piezoresistive effect in the 

pentacene channel due to increase and decrease of hole carriers in the semiconductor channel under 

compressive and tensile bending strain, respectively. With a small change in PSC under bending, the device 

could not generate synaptic weight. These results also indicate that main mechanism of synaptic weight 

generation is triboelectric-capacitive coupling effect. 

Supplementary Note 10 

Firstly, working principle of POSFET is much different from that of AiS-TSO. POSFET touch 

sensor utilizes the piezoelectric response of the piezoelectric gate dielectric while AiS-TSO does not utilize 

the piezoelectric effect of the gate dielectric. In POSFET, touch stimuli induce i) the displacement of 

polarized piezoelectric material and ii) change the electric field in piezoelectric material, which modulates 

the carrier density in the channel and, in turn, the drain current (Supplementary Figure 18a). Here, the 

piezoelectric layer upon pressurizing induces change in dipole alignment resulting in change in effective 

gate electric field49–51. Therefore, POSFET needs intended poling process for generating the saturated 
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remnant polarization, Pr, as much as possible to generate piezoelectric voltage enough to modulate the drain 

current. In AiS-TSO, on the other hand, i) triboelectrification between skin and polyimide substrate 

(described as receptive part in the manuscript) generates triboelectric charges and ii) coupled capacitive 

effect in the receptive part induces the partial dipole switching in ferroelectric material and, in turn, change 

in the drain current (Supplementary Figure 18b). Therefore, mechanisms of generating and transduction of 

energy are different, in which the POSFET sensor uses piezoelectric effect while our AiS-TSO uses 

triboelectric-capacitive coupling effect between skin and receptive part. Those mechanisms have studied by 

theoretical analyses on triboelectric effect45,52–54 or tribotronics45,55,56 although AiS-TSO has uniqueness in 

intrinsic-synaptic function and structure mimicking MCNCs. 

Secondly, the functions of sensor have differences. Both sensors have a common function with 

energy transducer from mechanical to electrical as a device of mimicking mechanoreceptors, but AiS-TSO 

adds intrinsic synaptic functions and enhances the functionalities for mimicking mechanoreceptors 

(mimicking synaptic functions of Merkel cell neurite complex). Differently from POSFET, we do not carry 

out intended poling process to generate Pr in ferroelectric material. Instead, we induce modulation of 

polarization with touch stimuli causing dipole switching depending on nature of stimuli. Therefore, due to 

the characteristics of ferroelectric material, the conductivity changes in the channel changes are inherently 

endowed with information of touch stimuli. In conclusion, we could induce SW through the modulation of 

polarization switching in ferroelectric layer under varying stimuli of touch resulting in inherent change in 

post-synaptic current and, in turn, modulation of SW. Thus, AiS-TSO has the advantages of a simple 

structure and manufacturing process, and unlike other mechanoreceptor-mimetic sensors whose only 

detection function has been reported, AiS-TSO has an intrinsic synaptic function that mimics the Merkel cell 

neurite complex. 
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