
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Mendonca AG et al., The impact of learning on perceptual decisions and its implication for speed-

accuracy trade-offs 

 

The authors describe a study in which rats carried out odor identification and categorization tasks, 

under varying information levels. Accuracy and reaction time performance in the tasks was quantified 

using a series of models. First, it was found that a standard DDM with collapsing bounds could not 

predict RT and accuracy across tasks with a single set of parameters. The authors then developed a 

model that included a term that accounted for spatial/odor preferences, across trials, in the animal’s 

choice behavior. They found that this model could account well for both accuracy and reaction times, 

across all conditions. The further compared this model to a series of simpler models and found that 

the simpler models were not able to account well for the behavior. 

 

This paper addresses an important question about the sources of variability in odor discrimination 

tasks in the rat. This is an important paradigm used by a large number of labs, and having detailed 

models of the behavior is critical to understanding the neural systems that give rise to this behavior. 

The experiments were carefully carried out, the paper is clearly written, and the modeling is developed 

in detail. I have a few comments which if addressed could increase the clarity of the outcome. 

 

Comments 

1. My main comment is that the results are written as if the effect is a change in the perceptual 

decision boundary. However, the odor identify is confounded with the motor response in this 

paradigm. This does not really affect any of the results or the modeling. And the interpretation as 

presented could be correct. However, I think another possible interpretation is that the animals are 

integrating both a location preference that tracks rewarded locations, and information about the odor. 

Rodents in particular are strongly spatial, and learn spatial preferences very effectively. So I think the 

discussion should mention the fact that, the animals may not be shifting their perceptual boundary. 

Rather they are integrating perception and the reinforced spatial location of choices. 

 

2. My second comment has to do with the assumption that the mean of the perceptual stimulus is 

given by the exponential function in equation 1. What is the means are fit to the data? What do they 

look like? Is it possible that a more complex equation 1 could give rise to some of the effects seen in 

the data? This equation seems like a strong assumption, and it is only backed up by 1 reference. 

Particularly for mixed odors there might be interactions between the odors? 

 

3. Fig. 6 was unfortunately not very high resolution. It was a bit hard to see the details. Also, in the 

results it says there should be some red arrows, but my figure is grey scale. 

 

4. The methods that describe the training sequence were a bit unclear. The methods state that, 

“During training, in phases V-VII, we used…” Was VII testing, as in data collection for the paper, or 

was this truly training, and all testing followed? Also, the names of the tasks are not completely 

consistent throughout the paper. It would be useful if one name was adopted for each of the 3 tasks 

and it was used consistently. 

 

Typos: 

 

“and minimizing least the least square” 

 

The reference, “using the method described in Simpson, Turner, …” should be just the numbered 

reference. 

 



“these two steps on hand of making…” 

 

Equation 31 seems to have an error. Or maybe the w is subscript and shouldn’t be? 

 

 

Bruno Averbeck 

 

 

Reviewer #2 (Remarks to the Author): 

 

This is a well-written paper on a topic of general interest, with solid experimental data used to 

test/validate distinct models of decision making. The model comparisons are a strength of the paper 

and the findings are beyond what could be anticipated without such modeling work. It is particularly 

valuable that the authors were able to account for secondary features of the data after fitting a model 

to the primary features. 

 

It would be good to see more discussion about the similarity/difference in the dot motion task, where 

the number of dots is constant and total dot-wise motion is conserved, but proportion that move in 

one direction over the other varies. In some ways, this is superficially similar to the category task 

(total number of inputs conserved) but behaves more like the identification task (That is, comment on 

why lots of dots moving randomly is like a minimal odor signal rather than a 50% mixture of strong, 

opposing signals/stimuli). 

 

p. 17 “learns less when it is less confident” 

I think it difficult to claim this is intuitive given the nature of reward prediction errors and also seems 

counter to the point made on page 33 in the Methods about the modulation of alphas. Certainly, for a 

correct response (and the analyzed data in this paper are only based on correct responses in prior 

trials) reward prediction errors and hence learning would be greater when there is more uncertainty 

(i.e. less confidence) in the outcome prior to reward delivery. Some further clarification is needed 

here. 

 

Finally, I think it is worth commenting on whether a 2-dimensional model of decision-making with 

fixed bounds on the individual variables (such as the leaky-competing accumulator model, LCA, or any 

simplification of a neural circuit with two competing groups of neurons) could account for the main 

differences in outcomes across the two sets of stimuli in the task. That is, the reduced 1D model 

(DDM) is essentially measuring the “difference” in the accumulated evidence associated with each of 

the two stimuli. However, models such as the LCA, where a bound can be reached when an individual 

variable accumulating evidence for one of the stimuli hits threshold, are likely to show an inability to 

reduce response times when the evidence (stimulus-difference) is near zero if each stimulus 

individually remains strong. Since this is the simplest explanation that would first come to the mind of 

most readers, it should be addressed as fully as possible. 

 

Fig. 8 is pretty hard to follow. I think it would be helpful if (as I understand it) mu_1 and mu_2 were 

defined as estimated drift for the correct/stronger stimulus and estimated drift for the 

incorrect/weaker stimulus, *irrespective of absolute identity*. The connection made to Fig.2A where 

the axes are Odor A and Odor B is a bit confusing unless we are told in Fig 8(c-f) that we are only 

looking at trials where Odor A is the correct choice. Also, use of fluctuating “bound” as the titles in this 

figure when it is the weights that fluctuate and hence the corresponding integration rates that 

fluctuate is also confusing, since “bound” is so suggestive of the “decision boundary” which could 

fluctuate but does not do so in this model. If another term other than “bound” can be used please do 

so, or at least alter to “category boundary”. 

 

 

Minor/typos: 



First mention of “DDMs” in the intro (p.2 l.4) would benefit from the words “drift-diffusion models” 

used later in the text. 

 

p.3 should be “mechanisms are specific” (remove “that”) 

 

p.3 “boundary” when talking about the classification boundary: would be easier to follow if a different 

term is used, given the “bounds” on decision making models. Or at least (like later usage) use 

“category boundary” whenever using this term. 

 

p.4 should be “situations in which those conditions do not hold” 

 

p.7 On optimality of DDMs: given this paper addresses internal noise it might be worth mentioning 

that the optimality of DDM assumes noise is external and DDMs are often not optimal when there is 

internal noise that accumulates (see e.g. Miller & Katz 2013). 

 

p.9 final line I think “effect of” as the mixture contrast is always modulated (i.e. changed) in the 

expts. 

 

p.12 final line. I think “fit well” is a bit of an overstatement, especially for the right-hand panel 

showing Response Times of the intermediate difficulties (one curve only passes through 1 of 4 error 

bars, which already allow for a lot of slack). I think “fit qualitatively” is more appropriate – and is 

indeed fine for data points not explicitly included in the fitting procedure. 

 

p.14 should be “neither data nor” (not “no”) 

 

p.15 should be “multiple terms whose” (not “who”) 

 

p. 26 Eq. 10 has a typo 

 

p.31 Please define “lapse bias” in terms of the symbol “l_b” as I assume they are not the same. 

 

p.33 Eq 31 seems wrong 

 

p.39 “foxed” should be “fixed” 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

 

 

 

The present manuscript details an accumulator model with a Bayesian front end to adjust trial-by-trial 

decision weights according to the stimulus/feedback history. I think this is important work, and the 

field is already moving in this direction to build better models of trial-to-trial effects. It is good to see 

that this pattern of behavior occurs in rats, where hopefully we can soon understand the neural 

circuits that relate to these sequential adjustments. 

 

That said, the message of the article can be expressed as “a front end that is sensitive to experimental 

information is better than one that is not”. Basically, the authors embed a learning rule on decision 

weights that are then used in the stochastic integration process of a Wiener diffusion model. The 

learning rule is “Bayesian” in the sense that it updates expectations in terms of reward (and there is 

some leakiness to this process). They then show that this model does better than models that (1) are 



standard DDM applications with only variance in the momentary integration, (2) assume random 

weight sampling from trial to trial, (3) assume Bayesian updating of bias terms, or (4) an RL-DDM 

structure with point estimates not full distributions over weights. Honestly, I didn’t find the set of 

comparison models to be particularly exciting. For (1), I don’t think anyone in this field would 

seriously use a model of choice RT that didn’t assume some form of between-trial variability. So, the 

conclusion that the “DDM” doesn’t capture the pattern of data can be ignored, in my opinion. The full 

DDM that they cite actually has three sources of between-trial variability, which have been shown to 

be important in capturing the typical SAT pattern. Moving on to (2), the authors incorporate some 

component of trial-to-trial variability in the base model, and conclude that it can capture the key 

effects in the choice RT data. However, it does not capture the sequential dependencies. The author 

acknowledge that this shouldn’t happen as the model is insensitive to the task and response 

information, unlike the Bayes-DDM. So, again, we can probably rule this out as a fair comparison 

given that the metric for success has moved from capturing the data to capturing sequential 

dependencies (which is unfair to their compared DDM). (3) gets more interesting, although it’s really 

difficult for me to tell that bias alone is causing the differences that are clearly observed in the RT data 

across the two tasks. It seems much more likely that drift should change, or potentially both, so it is 

good that (3) confirms this. Finally, (4) is interesting as it shows that the full distribution of weight 

uncertainty is important in the trial-to-trial adjustments. This was sort of anticipated (by me at least) 

as those initial trials would suffer from having strong adjustments in response to very little data. The 

uncertainty in the weights is probably what drive this effect (although I don’t see an analysis of trial-

level fit, which might help to unravel the contribution of the full weights rather than the point 

estimates). 

 

There are several good models already that included trial-to-trial dependencies, such as adjusting the 

threshold, drift rate, or drift criterion. For example, the RL-DDM work that Michael Frank has done 

really helps to guide the drift rates through time (and some starting points with neural covariates). 

There are also several papers on sequential effects in choice RT data (only listing a few of these 

below). Perhaps more importantly is that there are already Bayesian-like models of category 

representations that evolve with experience (stimulus and feedback). These models show the benefits 

of trial-to-trial adjustments in the representations of the stimuli, rather than simply adjusting decision 

weights. For example, a new paper by Brandon Turner explicitly compares the types of evolving 

representations in dynamic environments. So I’m not sure if there is a harsh citation limit in this 

format or not, but it would be good to acknowledge this other work or use their models as the starting 

point for comparing the contribution of the Bayes-DDM. 

 

Finally, I couldn’t really figure out how the models were being fit to data. They were apparently 

simulated for 100,000 trials, but how did this match up to the data? They are using some Monte Carlo 

method, but it would be good to know more about this without tracking down the other paper. It 

would also be good to fit the model to the full RT distribution rather than just the mean, but this is 

challenging (but not impossible! There are methods out there for this). 

 

RL-DDM 

http://ski.clps.brown.edu/papers/CollinsEtAl_RLWMPST.pdf 

http://ski.clps.brown.edu/papers/FrankEtAl_RLDDM_fMRIEEG.pdf 

http://ski.clps.brown.edu/papers/CockburnEtAl_ChoiceBias.pdf 

 

category learning 

http://catlab.psy.vanderbilt.edu/wp-content/uploads/NP-PsyRev1997.pdf 

https://turnermbcn.files.wordpress.com/2017/08/turnervanzandtbrown2011.pdf 

https://psycnet.apa.org/record/2019-20305-001 

 

absolute identification 

https://psycnet.apa.org/record/2008-04236-005 

 



sequential effects: 

https://link.springer.com/article/10.1007/s11336-010-9172-6 

https://amstat.tandfonline.com/doi/abs/10.1080/01621459.2016.1194844#.XLdg95NKjBI 



Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

Mendonca AG et al., The impact of learning on perceptual 

decisions and its implication for speed-accuracy trade-offs  

 

The authors describe a study in which rats carried out odor 

identification and categorization tasks, under varying information 

levels. Accuracy and reaction time performance in the tasks was 

quantified using a series of models. First, it was found that a 

standard DDM with collapsing bounds could not predict RT and 

accuracy across tasks with a single set of parameters. The authors 

then developed a model that included a term that accounted for 

spatial/odor preferences, across trials, in the animal’s choice 

behavior. They found that this model could account well for both 

accuracy and reaction times, across all conditions. The further 

compared this model to a series of simpler models and found that 

the simpler models were not able to account well for the behavior.  

 

This paper addresses an important question about the sources of 

variability in odor discrimination tasks in the rat. This is an 

important paradigm used by a large number of labs, and having 

detailed models of the behavior is critical to understanding the 

neural systems that give rise to this behavior. The experiments 

were carefully carried out, the paper is clearly written, and the 

modeling is developed in detail. I have a few comments which if 

addressed could increase the clarity of the outcome.  

 

We thank the reviewer for the positive words and hope to have addressed 

the comments below and in our revised manuscript. 

 

Comments  

1. My main comment is that the results are written as if the effect 

is a change in the perceptual decision boundary. However, the 

odor identify is confounded with the motor response in this 

paradigm. This does not really affect any of the results or the 

modeling. And the interpretation as presented could be correct. 

However, I think another possible interpretation is that the 

animals are integrating both a location preference that tracks 

rewarded locations, and information about the odor. Rodents in 



particular are strongly spatial, and learn spatial preferences very 

effectively. So I think the discussion should mention the fact that, 

the animals may not be shifting their perceptual boundary. Rather 

they are integrating perception and the reinforced spatial location 

of choices.  

 

The reviewer is correct that there is a location preference that tracks 

rewarded locations. This is in fact reflected in our modeling by having a 

bias term that tracks recent rewards regardless of stimulus quality. 

However, the effect of this bias is insufficient to explain the results seen 

in categorization task for both changes in RTs (the model is too slow) and 

choice bias, as they are not modulated by stimulus quality (Suppl. Fig. 

15). Adding random weight fluctuations helps explain categorization 

performance and RTs (Suppl. Fig. 18) but doesn’t explain the changes 

seen in choice bias for each stimulus (Suppl. Fig. 18g). Thus the need to 

combine both reinforced spatial location (through bias) and category 

boundary fluctuations through learning (Fig. 5). We have made this point 

clearer in the discussion, pg. 21 and 22:  

 

In both tasks, rats feature a location preference that tracks 

rewarded locations (Fig. 6).  However, this location preference does 

not appear to simply follow a general reward bias, as such a reward 

bias is insufficient to explain the behavior seen in categorization 

task (Suppl. Fig. 15). Adding random weight fluctuations helped 

explain categorization performance and RTs (Suppl. Fig. 18) but 

did not match the stimulus-dependent choice bias pattern (Suppl. 

Fig. 18g). We could explain the whole set of behaviors by 

combining both reinforced spatial location (through bias) and 

category boundary fluctuations through learning (Fig. 5). 

 

 

2. My second comment has to do with the assumption that the 

mean of the perceptual stimulus is given by the exponential 

function in equation 1. What is the means are fit to the data? 

What do they look like? Is it possible that a more complex 

equation 1 could give rise to some of the effects seen in the data? 

This equation seems like a strong assumption, and it is only 

backed up by 1 reference. Particularly for mixed odors there might 

be interactions between the odors?  

 



One possible way of fitting the data (and what we believe the reviewer is 

alluding to here) is to consider each drift rate separately and fit the mean 

performance and reaction time of each stimulus. However, in this case, 

the number of free parameters increases dramatically, as each stimulus 

would then be attributed a rate. This, in our view, brings two problems: 

one is related to computational power, as the increased number of 

parameters would make the convergence to a solution even slower. This 

will be even more troublesome when considering the conditional effects. 

Clearly drift rates (i.e., the process within the integration) alone cannot 

explain these. Secondly, by adding more parameters, we fall the risk of 

overfitting the data, as we would be adding 6 additional parameters per 

task. 

In that light, our decision to have a power law relationship was based on 

various factors. The first one is a purely behavioral one and has to do with 

the fact that our stimulus design suggests a logarithmic relationship 

between stimulus and response, as each step of concentration dilution is a 

logarithmic one. One suggestion could be to use a purely logarithmic 

function, but this has a problematic issue in our view: what to do when 

the input is zero? A second factor we took into account is the usefulness 

of power laws in exploring logarithmic relationships, without the 

constraint of non-zero concentration. Power laws allow for the 

linearization of the relation between drift and concentration in log-log 

space. Thirdly, power laws are scale-invariant, that is, that by scaling in a 

log-step we allow proportional scaling of drift rate, which when 

considering the interleaved scaling seems to make perfect sense (Fig. 3). 

Lastly, power law scaling is the bread and butter of DDM models seen in 

the literature and in a multitude of different behavioral paradigms (Ratcliff 

& Rouder, 1998; Palmer, Huk & Shadlen, 2005; Ditterich, 2006; Ratcliff & McKoon, 

2008; Brunton, Botvinick & Brody, 2013). We added the following clarification 

to the main text regarding our usage of a power law relationship (pg. 7): 

 

We implemented a power law relationship between stimulus and 

drift for two reasons: one is purely behavioral as our stimulus 

design suggests a logarithmic relationship between stimulus and 

response, with each step of concentration dilution being a 

logarithmic one; two is the usefulness of power laws in exploring 

logarithmic relationships, without the constraint of non-zero 

concentration. Power laws allow for the linearization of the relation 

between drift and concentration in a log-log space.  

 



Considering the case of interaction between odors, we know from past 

work that, in the categorization task, odor mixtures are classified 

predictably and simply by the ratio of these two odorants, invariant of 

intensity (Uchida & Mainen, 2008). As discussed in that work, this rules 

out at least gross interactions between the chosen odorants.  

 

 

3. Fig. 6 was unfortunately not very high resolution. It was a bit 

hard to see the details. Also, in the results it says there should be 

some red arrows, but my figure is grey scale.  

 

We apologize for the low resolution and hope that the figures are clearer 

in the revised manuscript. Additionally, the text should have read “black 

arrows” and not “red arrows” - a typo that we have now corrected. 

 

4. The methods that describe the training sequence were a bit 

unclear. The methods state that, “During training, in phases V-

VII, we used…” Was VII testing, as in data collection for the 

paper, or was this truly training, and all testing followed? Also, 

the names of the tasks are not completely consistent throughout 

the paper. It would be useful if one name was adopted for each of 

the 3 tasks and it was used consistently.  

 

This was a typo from our part and for that, we apologize. Training phases 

in which we used adaptive algorithms were V and VI. Testing for each 

task was done immediately after training. We have corrected this in 

Methods so to avoid ambiguity. 

 

We thank the reviewer for pointing out some inconsistent naming 

throughout the manuscript. We have reviewed and made the naming 

consistent. 

 

 

Typos:  

 

“and minimizing least the least square”  

 

The reference, “using the method described in Simpson, Turner, 

…” should be just the numbered reference.  

 

“these two steps on hand of making…”  



 

Equation 31 seems to have an error. Or maybe the w is subscript 

and shouldn’t be?  

 

Thank you for pointing out these typos. We have corrected them. 

 

 

Reviewer #2 (Remarks to the Author):  

 

This is a well-written paper on a topic of general interest, with 

solid experimental data used to test/validate distinct models of 

decision making. The model comparisons are a strength of the 

paper and the findings are beyond what could be anticipated 

without such modeling work. It is particularly valuable that the 

authors were able to account for secondary features of the data 

after fitting a model to the primary features.  

 

We appreciate the reviewer's remarks. We agree that one of the strongest 

suits of our work is the ability to account for secondary features of the 

data while focusing on primary features. 

 

It would be good to see more discussion about the 

similarity/difference in the dot motion task, where the number of 

dots is constant and total dot-wise motion is conserved, but 

proportion that move in one direction over the other varies. In 

some ways, this is superficially similar to the category task (total 

number of inputs conserved) but behaves more like the 

identification task (That is, comment on why lots of dots moving 

randomly is like a minimal odor signal rather than a 50% mixture 

of strong, opposing signals/stimuli).  

 

We agree with the reviewer's assessment that intuitively the dot motion 

task (RDM) seems to share some properties with the categorization task 

due to, as stated, “total number of inputs conserved”. However, we would 

like to point out that in the RDM the stimulus is a mixture of (1-coh)% 

randomly moving dots, and coh% coherently moving dots, but only the 

latter is informative about the choice. The odor categorization task also 

has two components, but both are "informative" (i.e., have an associated 

choice), and the question is which one is stronger. In the odor 

identification task, only a single component is presented (+ background 

noise). We believe that in that sense, the identification task is more 



similar to RDM, as the reviewer points out. We thank the reviewer for 

pointing out this interesting question and added the following paragraph 

to the manuscript, pg. 21: 

 

The weak RT modulation in the categorization task raises the 

interesting question regarding its relation to the random dot motion 

(RDM) discrimination task frequently used in primates1,2,49,50. The 

degree at which they differ has been a long-time debate in the field 

of olfactory discrimination 15–17,51. More specifically, the RDM task 

requires identifying the coherent motion of a subset of coherently 

moving dots that are masked by otherwise randomly moving dots, 

such that only those coherently moving dots are informative about 

the correct choice. The odor categorization task also has two 

stimulus components, but they are both informative, as the 

decision-maker needs to compare their strength, which makes it 

conceptually different from RMD.  

 

 

p. 17 “learns less when it is less confident”  

I think it difficult to claim this is intuitive given the nature of 

reward prediction errors and also seems counter to the point 

made on page 33 in the Methods about the modulation of alphas. 

Certainly, for a correct response (and the analyzed data in this 

paper are only based on correct responses in prior trials) reward 

prediction errors and hence learning would be greater when there 

is more uncertainty (i.e. less confidence) in the outcome prior to 

reward delivery. Some further clarification is needed here.  

 

The reviewer is correct in pointing out this oversimplification from our 

part. What we meant was that when an error trial occurs for long trials 

the subject is less confident and thus learns less than when fast and 

confident. But this only occurs for incorrect trials, meaning that what we 

depicted here is the incomplete picture. We have re-written the paragraph 

and hope it is clearer now, pg. 17 and 18: 

 

Therefore, for incorrect trials, the error term in this learning rule is 

decreasing as confidence decreases over time, which is to say the 

model learns less when it is less confident. Interestingly, for correct 

trials, the relationship is inverted, as the model learns more 



strongly when less confident, which makes intuitive sense: in 

confident correct trials there is no more information to be gained.  

 

 

Finally, I think it is worth commenting on whether a 2-

dimensional model of decision-making with fixed bounds on the 

individual variables (such as the leaky-competing accumulator 

model, LCA, or any simplification of a neural circuit with two 

competing groups of neurons) could account for the main 

differences in outcomes across the two sets of stimuli in the task. 

That is, the reduced 1D model (DDM) is essentially measuring the 

“difference” in the accumulated evidence associated with each of 

the two stimuli. However, models such as the LCA, where a bound 

can be reached when an individual variable accumulating evidence 

for one of the stimuli hits threshold, are likely to show an inability 

to reduce response times when the evidence (stimulus-difference) 

is near zero if each stimulus individually remains strong. Since 

this is the simplest explanation that would first come to the mind 

of most readers, it should be addressed as fully as possible.  

 

We thank the reviewer for pointing out this possibility. To test it we have 

implemented two LCA variants (following Usher & McClelland, 2001): (i) 

time-invariant boundaries (8 parameters with lapses, etc.), and (ii) 

linearly collapsing boundaries (9 parameters). The model doesn't update 

the input weights across trials, but its parameters are tuned to best 

match overall psychometric and chronometric curves across both 

conditions. Both variants are able to fit both conditions with the same set 

of parameters (Supplementary Figs. 7,8). However, they fail to capture 

the trial-by-trial changes in choice bias (Supplementary Figs. 

7d,7g,8d,8g). 

This indicates that some form of learning is essential to capture this 

property of our data. We could have derived learning rules for LCA 

models, but decided against it, as - for our task - the optimal decision 

model was the DDM. Nonetheless, we believe that adding some sort of 

reinforcement learning rule with LCA (as the kind done in RL-DDM) might 

be able to replicate most of our data. However, we hope that the reviewer 

agrees that, due to the already large number of compared model variants, 

adding yet another heuristic model is beyond the scope of this study. 

We have added these models to our supplementary data 

(Supplementary Figs. 4,7,8). 

 



 

 

Fig. 8 is pretty hard to follow. I think it would be helpful if (as I 

understand it) mu_1 and mu_2 were defined as estimated drift for 

the correct/stronger stimulus and estimated drift for the 

incorrect/weaker stimulus, *irrespective of absolute identity*. 

The connection made to Fig.2A where the axes are Odor A and 

Odor B is a bit confusing unless we are told in Fig 8(c-f) that we 

are only looking at trials where Odor A is the correct choice. 

 

Fig. 8 are in fact trials that Odor A was the correct choice. We agree that 

this analysis is a bit hard to follow, thus, for clarity, re-wrote both the 

main text and figure captions. Hopefully, these corrections will make the 

figures easier to understand. 

 

 

 

Also, use of fluctuating “bound” as the titles in this figure when it 

is the weights that fluctuate and hence the corresponding 

integration rates that fluctuate is also confusing, since “bound” is 

so suggestive of the “decision boundary” which could fluctuate 

but does not do so in this model. If another term other than 

“bound” can be used please do so, or at least alter to “category 

boundary”.  

 

We agree with the author that the usage of the word bound might mislead 

the readers and confuse them as to whether we refer to the “decision 

boundary” or the “category boundary”. We reviewed and reinforced the 

correct naming to avoid further confusion. 

 

 

Minor/typos:  

First mention of “DDMs” in the intro (p.2 l.4) would benefit from 

the words “drift-diffusion models” used later in the text.  

 

p.3 should be “mechanisms are specific” (remove “that”)  

 

p.3 “boundary” when talking about the classification boundary: 

would be easier to follow if a different term is used, given the 

“bounds” on decision making models. Or at least (like later usage) 

use “category boundary” whenever using this term.  



 

p.4 should be “situations in which those conditions do not hold”  

 

Thank you for these suggestions. We have implemented them in the 

revised manuscript. 

 

p.7 On optimality of DDMs: given this paper addresses internal 

noise it might be worth mentioning that the optimality of DDM 

assumes noise is external and DDMs are often not optimal when 

there is internal noise that accumulates (see e.g. Miller & Katz 

2013).  

 

We thank the reviewer for the suggested reference, as it is indeed related 

to our work, as we consider how variability impacts decision-making 

performance. The biggest difference between our work and that of Miller 

& Katz (2013) is the time-scale of this variability. In Miller & Katz (2013), 

variability emerges at the time-scale of individual decisions, making the 

DDM a suboptimal decision-making strategy. In our case, we do not 

assume internal variability at such time-scales, such that the DDM 

remains optimal (for a more detailed mathematical description, see 

Drugowitsch, Mendonça, Mainen & Pouget, 2019). Our variability instead 

emerges between individual decisions through a change in the category 

boundary. Such a change is rational if one assumes that the environment 

slowly changes, as the animals might. It only becomes sub-optimal in 

stationary environments, as that of our experiments. Therefore, while the 

decision-maker might be rational, they might not be optimal. It would be 

optimal to keep a fixed category boundary, but this would not result in 

the sequential choice dependencies observed in animal behavior. 

 

Given the different time-scales of internal variability, we hope that the 

reviewer agrees with not adding the suggested reference, in order to not 

side-track the reader 

 

p.9 final line I think “effect of” as the mixture contrast is always 

modulated (i.e. changed) in the expts.  

 

Thank you for pointing this out. We have corrected the wording. 

 

p.12 final line. I think “fit well” is a bit of an overstatement, 

especially for the right-hand panel showing Response Times of the 

intermediate difficulties (one curve only passes through 1 of 4 



error bars, which already allow for a lot of slack). I think “fit 

qualitatively” is more appropriate – and is indeed fine for data 

points not explicitly included in the fitting procedure.  

 

We have reworded the sentence in line with the reviewer’s suggestion. 

 

p.14 should be “neither data nor” (not “no”)  

 

p.15 should be “multiple terms whose” (not “who”)  

 

Both have been corrected. 

 

p. 26 Eq. 10 has a typo  

 

The equation is now corrected. 

 

p.31 Please define “lapse bias” in terms of the symbol “l_b” as I 

assume they are not the same.  

 

We thank the reviewer for pointing this inconsistency. We have renamed 

the parameters in both the main text and Supplementary material. 

 

p.33 Eq 31 seems wrong  

 

We have corrected Equation 31. 

 

p.39 “foxed” should be “fixed”  

 

Corrected. 

 

 

 

Reviewer #3 (Remarks to the Author):  

 

 

 

 

The present manuscript details an accumulator model with a 

Bayesian front end to adjust trial-by-trial decision weights 

according to the stimulus/feedback history. I think this is 

important work, and the field is already moving in this direction to 



build better models of trial-to-trial effects. It is good to see that 

this pattern of behavior occurs in rats, where hopefully we can 

soon understand the neural circuits that relate to these sequential 

adjustments.  

 

We appreciate the words and positive reaction from the reviewer. 

 

That said, the message of the article can be expressed as “a front 

end that is sensitive to experimental information is better than 

one that is not”. Basically, the authors embed a learning rule on 

decision weights that are then used in the stochastic integration 

process of a Wiener diffusion model. The learning rule is 

“Bayesian” in the sense that it updates expectations in terms of 

reward (and there is some leakiness to this process). They then 

show that this model does better than models that (1) are 

standard DDM applications with only variance in the momentary 

integration, (2) assume random weight sampling from trial to 

trial, (3) assume Bayesian updating of bias terms, or (4) an RL-

DDM structure with point estimates not full distributions over 

weights. Honestly, I didn’t find the set of comparison models to be 

particularly exciting. For (1), I don’t think anyone in this field 

would seriously use a model of choice RT that didn’t assume some 

form of between-trial variability. So, the conclusion that the 

“DDM” doesn’t capture the pattern of data can be ignored, in my 

opinion. The full DDM that they cite actually has three sources of 

between-trial variability, which have been shown to be important 

in capturing the typical SAT pattern.  

Moving on to (2), the authors incorporate some component of 

trial-to-trial variability in the base model, and conclude that it can 

capture the key effects in the choice RT data. However, it does not 

capture the sequential dependencies. The author acknowledge 

that this shouldn’t happen as the model is insensitive to the task 

and response information, unlike the Bayes-DDM. So, again, we 

can probably rule this out as a fair comparison given that the 

metric for success has moved from capturing the data to capturing 

sequential dependencies (which is unfair to their compared DDM). 

 

Regarding (1), we agree that a large body of work - in particular in 

human decision-making (e.g., the work of Ratcliff & colleagues) - uses 

DDM variants with different forms of between-trial variability. These are 

commonly motivated by empirical observations, such as slower error 



responses, rather than normative considerations. The (by now sizable) 

animal literature (e.g., the work of Shadlen & colleagues; also Palmer, 

Huk & Shadlen for human psychophysics), in contrast, routinely uses DDM 

variants without such variability, based on normative considerations and 

neurophysiological observations. Therefore, in context of the latter, it is 

indeed not a given that DDMs without such non-normative variabilities are 

unable to capture the observed behavior. Therefore, we do not consider 

vanilla DDMs as a “strawman”, as they have been seriously and 

successfully used in previous work, and so also deserve serious 

consideration in our work. 

 

Regarding (2), we would like to emphasize that it is suboptimal in our 

task to feature sequential choice dependencies. This is because the 

stimulus is drawn randomly and independently across consecutive trials, 

such that the stimulus and choice in the previous trial is completely 

uninformative about the stimulus and choice in the current trial. 

Therefore, a model that is “sensitive” to the task shouldn’t feature 

sequential choice dependencies. Only once we introduce the wrong 

assumption that the environment slowly changes across time do we 

recover these sequential choice dependencies. Thus, as for (1), a model 

that does not feature sequential choice dependencies is by no means a 

“strawman”, and requires serious consideration, as we do in our work. 

Nonetheless, we would like to emphasize that it wasn’t our goal to make 

an unfair comparison between a more structured model against a simpler 

yet useful model such as the DDM. On the contrary, we aimed to show 

that our apparent extra “source of noise” is actually quite well explained 

by the assumption that the world is ever-changing. We believe that this 

additional step does not reject, but in fact strengthens the role of DDM in 

discriminating stimuli. 

 

 (3) gets more interesting, although it’s really difficult for me to 

tell that bias alone is causing the differences that are clearly 

observed in the RT data across the two tasks. It seems much more 

likely that drift should change, or potentially both, so it is good 

that (3) confirms this.  

 

It is important to note that changes in bias alone do not cause by itself 

the observed differences in RT data. There is a need to add some form of 

variability in drift, in the form of random updating (Suppl. Fig. 18) or 

structured learning (Fig. 5). This is in agreement with the point brought 

forward by reviewer #1. We made this point clearer in the discussion. 



 

 

Finally, (4) is interesting as it shows that the full distribution of 

weight uncertainty is important in the trial-to-trial adjustments. 

This was sort of anticipated (by me at least) as those initial trials 

would suffer from having strong adjustments in response to very 

little data. The uncertainty in the weights is probably what drive 

this effect (although I don’t see an analysis of trial-level fit, which 

might help to unravel the contribution of the full weights rather 

than the point estimates).  

 

We are not completely sure what effects that are explained by weight 

uncertainty the reviewer is referring to. In fact, it is unlikely that changes 

in weight uncertainty play a major role in the pattern of sequential 

dependencies we observe, for multiple reasons. First, weight uncertainty 

in Bayes-DDM decreases with every received feedback (i.e., rewarded vs. 

non-rewarded choices), and subsequently increases again as the decision-

maker believes that these weights change across consecutive trials. Thus, 

the weight uncertainty will quickly reach a steady-state around which it 

hovers across consecutive trials. Second, we show that RL-DDM models 

the data as well as Bayes-DDM, even though RL-DDM only tracks weight 

point estimates. Both make weight uncertainty an unlikely contributor to 

explaining the sequential choice dependency pattern we observe. Instead, 

as we point out in the main text, it appears that decision confidence 

modulates the strength of the weight change (i.e., the magnitude, not 

necessarily its impact on the uncertainty), which results in this pattern.   

 

There are several good models already that included trial-to-trial 

dependencies, such as adjusting the threshold, drift rate, or drift 

criterion. For example, the RL-DDM work that Michael Frank has 

done really helps to guide the drift rates through time (and some 

starting points with neural covariates). There are also several 

papers on sequential effects in choice RT data (only listing a few 

of these below). Perhaps more importantly is that there are 

already Bayesian-like models of category representations that 

evolve with experience (stimulus and feedback). These models 

show the benefits of trial-to-trial adjustments in the 

representations of the stimuli, rather than simply adjusting 

decision weights. For example, a new paper by Brandon Turner 

explicitly compares the types of evolving representations in 

dynamic environments. So I’m not sure if there is a harsh citation 



limit in this format or not, but it would be good to acknowledge 

this other work or use their models as the starting point for 

comparing the contribution of the Bayes-DDM.  

 

We thank the reviewer for bringing these studies to our attention. After 

some close examination, we have some comments regarding the 

mentioned models. 

 

The RL-DDM model from Michael Frank does in fact combine 

reinforcement learning with the DDM model. However, there is a 

fundamental difference between their model and ours. In Michael Frank’s 

RL-DDM the DDM drives the decision process on top of a learning process 

that is learning decision values. This is different from our particular case, 

as the DDM in fact drives learning through the DDM. As an example, when 

we consider our own version of RL-DDM it is the decaying threshold that 

drives the prediction error component of RL. This two-lane interaction 

between RL and DDM is what distinguishes our own version with Michael 

Frank’s model. Additionally, it is important to note that in all cited 

experiments the subjects are not exposed to noisy ambiguous stimuli, but 

to environments in which subjects are still learning the true contingencies 

between actions and decision value. Our study is in fact similar but adds 

one extra layer to this question: the interaction between stimulus 

discrimination and learning. This is particularly striking when we consider 

that our dataset is focused on overall stabilized performance and not task 

learning. 

 

Regarding the 2011 work of Brandon Turner, we do agree that this model 

is in many ways relevant to our work and related to what we address 

here. However, it partially relies on signal detection theory, which doesn’t 

allow them to account for response times, whereas response times are 

essential in our modeling approach. In fact, in Turner, Van Zandt and 

Brown, page 609, they discuss: “A second major shortcoming of our 

model, and of the SDT framework in general, is that it fails to make 

predictions about response times.” Our model expands this by 

incorporating DDM and making predictions on how performance and RT 

interact. 

 

More recently this model has been upgraded, as the reviewer points out, 

in a review that compares multiple models (Turner, 2019). We would like 

to point out that in this comparison, both stimulus and environment are 

dynamic, which clearly does not apply to our behavioral data. In 



particular, the effects of learning are measured by manipulating a 

dynamic categorization task. Our model does assume, wrongly, a dynamic 

environment, making this study indeed relevant to our manuscript. 

However, it is unclear to us how this model would predict dynamic 

fluctuations of biases if the environment is not manipulated further. We 

believe our model expands on this by showing that even in stable 

environments one can still see the effects of learning by assuming 

nonstationarity. However, we do agree it is relevant to our study and 

have included it in our discussion. 

 

The remaining papers are in fact all relevant to our study, and for that, 

we appreciate the reviewer bringing them to our attention. However, 

these models do feel different in nature as they explore learning in 

dynamic environments (Turner, 2019) contrasting with our fixed odor 

discrimination environment, effects of long and short term trace 

memories (Brown et al, 2008; Collins et al, 2017; Kim et al, 2017) 

contrasting with our fixed equiprobable stimuli, and prediction of 

performance betterment as learning dissipates (Frank et al, 2015) which 

we don’t see in our data. All these small differences taken together make 

our model novel as it combines RTs, learning and stimulus categorization. 

 

We have incorporated some of these citations in our manuscripts and 

added discussion points that we believe are important, pg. 22 and 23: 

Previous work has combined learning with stimulus categorization in 

the field of decision-making, albeit in different contexts such as 

learning phases 52, dynamic environments 53 and manipulation of 

short term memory 54–56. In particular, in Frank et al. (2015), Frank 

and colleagues combined RL with DDM models, and called this 

combination RL-DDM 52,55,57, as we do in this work. However, there 

is a fundamental difference between the two models. In Frank et 

al.’s RL-DDM, the DDM drives the decision process on top of a 

reinforcement learning process that is learning decision values. This 

is different from our case, in which learning is happening within the 

DDM. Thus, rather than trying to learn the consequences of one’s 

action, our study focuses directly on learning how to perform good 

actions in the first place. This is particularly striking considering that 

our task itself doesn’t change over time, making continual learning 

unnecessary. Learning thus only emerges due to the faulty 

assumption that the task might change. This makes it similar to 

Turner et al. (2011), who also explored dynamic stimulus learning 
58. However, this study differs from ours as it relies on signal 



detection theory, which does not account for response times, 

whereas RTs are essential in our modelling approach. More recently, 

Turner extended this model to explore the role of learning in 

dynamic environments53. Our model expands on this by showing 

that it is possible to observe effects of learning even in stable 

environments as long as the decision-maker wrongly assumes the 

environment to be dynamic. 

 

 

 

 

Finally, I couldn’t really figure out how the models were being fit 

to data. They were apparently simulated for 100,000 trials, but 

how did this match up to the data? They are using some Monte 

Carlo method, but it would be good to know more about this 

without tracking down the other paper. It would also be good to 

fit the model to the full RT distribution rather than just the mean, 

but this is challenging (but not impossible! There are methods out 

there for this).  

 

We haven’t been very clear on how we fit the model to the observed 

behavior. In particular, we didn’t sufficiently distinguish which parts of the 

model fitting description referred to simulated, and which part to 

observed behavior. We have now added these qualifiers throughout the 

‘Model fitting’ section in methods. In this section, we are now furthermore 

referring back to how we generate the simulations, which is described in 

‘Drift-diffusion model for decision-making’ in Methods. We hope that this 

clarifies how we are performing the model fits. 

 

Regarding the full RT distribution, we would like to highlight that we are 

at the limit of what we can do with this dataset. We not only fit mean and 

standard deviations of RT distributions for all stimuli (8 per task), but 

furthermore perform these fits also for conditional distributions (8 stimuli 

conditioned over 8 = 64 conditions). In order to perform fits of the whole 

RT distribution across all conditions, we would require an extremely high 

number of trials. Additionally, we would like to highlight that our 

experiments are based on a randomized sequence of trials. Even if we 

considered the sequence of trials and their influence the RT distribution 

would be extremely difficult to analyze. This is a known problem when 

comparing influences of outcomes to RT distribution. For instance, in 

(Craigmile, Peruggia & Van Zandt, 2010), the authors designed the 



experiment (page 615) “so that the stimulus sequences were exactly the 

same regardless of which task a subject was to perform”. This ad-hoc 

strategy is extremely useful when one wants to compare effects on the 

same subjects with different contexts. However, when we designed our 

experiment we did not consider this design. Thus, we hope that the 

reviewer understands that data sparsity and computational considerations 

make it almost impossible for us to attempt to fit full RT distributions, 

even though we have done so in previous work (e.g., Drugowitsch et al., 

2012). Furthermore, we doubt that any of the main points would change, 

were we to do so. 
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REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed my concerns. I have no further comments. 

 

Bruno Averbeck 

 

Reviewer #2 (Remarks to the Author): 

 

All my previous positive statements remain, while my prior criticisms have been addressed well in this 

updated version. 

 

Reviewer #3 (Remarks to the Author): 

 

I'm happy with the revisions the authors have provided. The main issues I had with the previous 

round was the connection to other DDM-category learning RL models and the details of the methods. 

Both of these have been addressed well. I think this makes a very nice contribution to the literature. 


