SUPPLEMENTARY INFORMATION

Direct Transfer of Tri- and di- fluoroethanol Units Enabled by Radical Activation of Organosilicon Reagents

Chen et al.

Supplementary Methods

General information

Chromatography: HaiLang Silica Flash P60 size 40~63 μ m (200~300 mesh), TLC: HaiLang silica gel 60 (0.25mm). Visualization of the chromatogram was performed by UV, phosphomolybdic acid and KMnO₄ staining. Mass spectra were recorded on Bruker UltiMate3000 & Compact, Thermo ISQ LT, LTQ XL and VELOS pro & ORBITRIP mass spectrometers. ¹H, ¹³C, ¹⁹F were recorded on Bruker 400, Bruker 600 and JNM–ECZ 400 using CDCl₃ or DMSO-d6 as solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CDCl₃: δ 7.26 for ¹H, δ 77.16 for ¹³C). Data are reported as follows: chemical shifts, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, m = multiplet), coupling constants (Hz), and integration. Infrared spectra were recorded on an Agilent Technologies Cary 630 FTIR and wavelengths are reported in cm⁻¹. Melting point was measured by INESA SGW X–4. All reagents were used as received and solvents were dried and degassed according to standard procedure. If no special description, all reactions were conducted under nitrogen. MnF₃, MnPO₄ hydrate and Mn(OAc)₃·2H₂O was purchased from Alfa, Mn(OAc)₂·4H₂O was purchased from adamas, L(–)-menthol, Epiandrosterone, Estrone, (8a)-Estradiol for preparation of **7ai**, **7ao**, **7ap** were purchased from adamas. Vitamin E for preparation of **7n** was purchased from TCI. Other alcohols and ketones were purchased from Bidepharm and Meryer. Cinnamic acids **12a~12l** were purchased from adamas and used without further purification.

Synthesis of *a*-silyl trifluoroethanols

Synthesis of 1-((dimethyl)(phenyl)silyl)-2,2,2-trifluoroethan-1-ol (1a)

$$CF_{3} OH \xrightarrow{LDA, CISiPhMe_{2}, HMPA, THF} -78 °C to rt, then CISiEt_{3}, 0 °C to rt$$

$$3 F \xrightarrow{O} SiPhMe_{2}$$

$$4 84\%$$

$$Selectfluor \xrightarrow{O} CF_{3} SiPhMe_{2} \xrightarrow{MaBH_{4} (1.0 equiv.)} F \xrightarrow{O} SiPhMe_{2}$$

$$F \xrightarrow{O} SiPhMe_{2}$$

$$4 84\%$$

$$CF_{3} SiPhMe_{2} \xrightarrow{MaBH_{4} (1.0 equiv.)} F \xrightarrow{O} F \xrightarrow{O} SiPhMe_{2}$$

$$F \xrightarrow{O} SiP$$

Supplementary Figure. 1 Synthesis of 1-((dimethyl)(phenyl)silyl)-2,2,2-trifluoroethan-1-ol (1a)

1-((Dimethyl)(phenyl)silyl)-2,2,2-trifluoroethan-1-ol was synthesized according to Welch's protocol with slightly variation and modification.^[1] To a stirring solution of 2,2,2-trifluoroethanol (6.0 g, 60 mmol) and phenyldimethylchlorosilane (10.2 g, 60 mmol, 1.0 equiv.) and HMPA (6.0 mL) in dry THF (60 mL) in low temperature bath under -78 °C, was added LDA (prepared by Diisopropylamine with *n*-BuLi in THF, 3.5 equiv.) dropwise with syringe. The mixture was kept for 4 h under -78 °C and allowed to rt, after which the mixture was stirred for another 15 h. After addition of triethylchlorosilane (15 mL, 90 mmol, 1.5 equiv.) to the mixture at 0 °C, the mixture was stirred for 4 h, and then quenched by the addition of a saturated aqueous solution of NH₄Cl (20 mL), **4** was isolated by silica gel column chromatography (siliga: 200~300 mesh) using PE as eluent (colorless oil, 16.5 g, 50.4 mmol, 84% yield).

To a solution of Selectfluor (5.4 g, 15 mmol, 1.5 equiv.) in 40 mL of MeCN was added a solution of compound **4** (3.3 g, 10 mmol) in 10 mL of DCM at 0 °C. The resulting mixture was stirred at room temperature for 24 h and quenched by the addition of 20 mL water, then extracted with DCM. The organic layer was dried over Na_2SO_4 , filtered and concentrated. Product **5** was purified by either silica gel column chromatography (siliga: 200~300 mesh) using PE as eluent (slight yellow oil, 1.9 g, 8.2 mmol, 82% yield).

To a stirring solution of **5** (0.46 g, 2.0 mmol) in MeOH (0.05 M) at 0 °C was added NaBH₄ (0.074 g, 2.0 mmol, 1.0 equiv.) in portions, the resulting mixture was stirred for 0.5 h and quenched by water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated, 1-((dimethyl)(phenyl)silyl)-2,2,2-trifluoroethan-1-ol (**1a**) was further purified by silica gel column chromatography (siliga: 200~300 mesh) using PE/EA (50/1, v/v) (colorless oil, 0.40 g, 1.72 mmol, 86% yield).

1-(dimethyl(phenyl)silyl)-2,2,2-trifluoroethan-1-one (5) NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 6.7 Hz, 2H), 7.49–7.40 (m, 3H), 0.65 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 222.4 (q, *J* = 36.4 Hz), 134.3, 131.2, 130.9, 128.5, 116.0 (q, *J* = 294.7 Hz), -5.0; ¹⁹F NMR (375 MHz, CDCl₃) δ -79.4 (s, 3F). IR (ATR): 3075, 1689, 1431, 1271, 1193, 1133, 738, 697 cm⁻¹. HRMS (EI+, m/z): calcd for C₁₀H₁₁F₃OSi⁺ (M)⁺: 232.0531; Found: 232.0533.

I-((*Dimethyl*)(*phenyl*)*silyl*)-2,2,2-*trifluoroethanol* (*1a*) NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 6.1 Hz, 2H), 7.47–7.39 (m, 3H), 3.84 (q, *J* = 11.1 Hz, 1H), 0.49 (d, *J* = 3.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 134.2, 130.3, 128.2, 127.1 (q, *J* = 278.4 Hz), 65.3 (q, *J* = 33.1 Hz), -4.7, -5.4; ¹⁹F NMR (375 MHz, CDCl₃) δ -70.6 (d, *J* = 8.9 Hz, 3F). IR (ATR): 3441, 2963, 2919, 1428, 1253, 1148, 1085, 1044, 738, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₃F₃NaO⁺ (M+Na)⁺: 257.0580; Found: 257.0570.

Synthesis of 1-((methyl)(diphenyl)silyl)-2,2,2-trifluoroethan-1-ol (1b)

Supplementary Figure. 2 Synthesis of 1-((methyl)(diphenyl)silyl)-2,2,2-trifluoroethan-1-ol (1b)

1-((Diphenyl)(methyl)silyl)-2,2,2-trifluoroethan-1-ol was synthesized according to Welch's protocol with slightly variation and modification.^[1] To a stirring solution of 2,2,2-trifluoroethanol (3.0 g, 30 mmol) and methyldiphenylchlorosilane (6.96 g, 30 mmol, 1.0 equiv.) and HMPA (3 mL) in dry THF (30 mL) in low temperature bath under -78 °C, was added LDA (2.0 M in THF, 3.5 equiv.) dropwise with syringe, the mixture was kept for 4 h under -78 °C and allowed to RT, after which the mixture was stirred for 15 h. After addition of triethylchlorosilane (7.5 mL, 45 mmol, 1.5 equiv.) to the mixture under 0 °C, the resulting mixture was stirred for 4 h and then quenched by the addition of a saturated aqueous solution of NH₄Cl (20 mL), compound **4b** was coarsely isolated by silica gel column chromatography (siliga: 200~300 mesh) using PE as eluent (colorless oil, 7.9 g, 20.1 mmol, 67% yield).

To a solution of Selectfluor (5.4 g, 15 mmol, 1.5 equiv.) in 40 mL of MeCN was added a solution of compound **4b** (3.9 g, 10 mmol) in 10 mL of DCM under 0 °C. The resulting mixture was stirred at room temperature for 24 h and quenched by the addition of 20 mL water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated. Product **5b** was purified by silica gel column chromatography (siliga: 200~300 mesh) using PE as eluent (slight yellow oil, 1.0 g, 3.3 mmol, 66% yield).

To a stirring solution of **5b** (0.58 g, 2.0 mmol) in MeOH (0.05 M) under 0 °C was added NaBH₄ (0.074 g, 2.0 mmol, 1.0 equiv.) in portions, the resulting mixture was stirred for 0.5 h and quenched by water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated, 1-((Diphenyl)(methyl)silyl)-2,2,2-trifluoroethan-1-ol (**1b**) was further purified by silica gel column chromatography (siliga: 200~300 mesh) using PE/EA (50/1, v/v) (colorless oil, 0.35 g, 1.2 mmol, 61% yield).

Trifluoroacetyldiphenylmethylsilane (5b) NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 6.7 Hz, 4H), 7.53 (t, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 4H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 221.1 (q, J = 34.8 Hz), 135.2, 131.1, 129.9, 128.6, 115.9 (q, J = 295.2 Hz), -5.5; ¹⁹F NMR (375 MHz, CDCl₃) δ -78.9 (s, 3F). IR (ATR): 3075, 1685, 1431, 1267, 1193, 1137, 731, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₃F₃NaOSi⁺ (M+Na)⁺: 317.0580; Found: 317.0570.

I-((*methyl*)(*Diphenyl*)*silyl*)-2,2,2-*trifluoroethanol* (*1b*) NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.64 (m, 4H), 7.48–7.40 (m, 6H), 4.23 (q, *J* = 11.1 Hz, 1H), 0.78 (s, 3H), 2.00 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 135.0, 132.8, 132.0, 130.5, 130.4, 128.3, 128.3, 126.8 (q, *J* = 278.6 Hz), 64.9 (q, *J* = 32.8 Hz), -5.9; ¹⁹F NMR (375 MHz, CDCl₃) δ –69.8 (d, *J* = 11.9 Hz, 3F). IR (ATR): 3429, 2919, 1428, 1256, 1152, 1085, 1044, 731, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₅F₃NaOSi⁺ (M+Na)⁺: 319.0736; Found: 319.0739.

Synthesis of 2,2,2-trifluoro-1-((triethyl)silyl)ethan-1-ol (1c)

Supplementary Figure. 3 Synthesis of 2,2,2-trifluoro-1-((triethyl)silyl)ethan-1-ol (1c)

2,2,2-trifluoro-1-((triethyl)silyl)-ethan-1-ol was synthesized according to Welch's protocol with slightly variation and modification.^[1] To a stirring solution of 2,2,2-trifluoroethanol (3.0 g, 30 mmol) and triethylchlorosilane (5.0 mL, 30 mmol, 1.0 equiv.) in dry THF (30 mL) in low temperature bath under -78 °C, was added LDA (2.0 M in THF, 3.5 equiv.) dropwise with syringe, the mixture was kept for 2 h under -78 °C and allowed to rt, after which the mixture was stirred for 3 h. After addition of triethylchlorosilane (7.5 mL, 45 mmol, 1.5 equiv.) to the mixture at 0 °C, the resulting mixture was stirred for 4 h and then quenched by the addition of a saturated aqueous solution of NH₄Cl (20 mL), compound **4c** was coarsely isolated with 67% yield (colorless oil, 6.2 g, 20.1 mmol) by silica gel column chromatography using PE as eluent.

To a solution of Selectfluor (2.66 g, 7.5 mmol) in 50 mL of MeCN was added a solution of compound 4c (5 mmol) in 12.5 mL of DCM at 0 °C. The resulting mixture was stirred at room temperature for 12 h and quenched by the addition of 20 mL water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated. Product **5c** was purified by distillation under reduced pressure using cold trap (slight yellow oil, 0.5 g, 2.4 mmol, 48% yield).

To a stirring solution of **5c** (0.42 g, 2.0 mmol) in MeOH (0.05 M) at 0 °C was added NaBH₄ (0.148 g, 4.0 mmol, 2.0 equiv.) in portions, the resulting mixture was stirred for 0.5 h and quenched by water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated, 2,2,2-trifluoro-1-((triethyl)silylethan-1-ol (**1c**) was further purified by silica gel column chromatography using PE/EA (10/1, v/v) (colorless oil, 0.32 g, 1.5 mmol, 75% yield).

1-((triethyl)silyl)-2,2,2-trifluoroethanol (1c) NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.79 (q, J = 11.5 Hz, 1H), 1.01 (t, J = 7.8 Hz, 9H), 0.76–0.69 (m, 6H), 1.82 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 127.5 (q, J = 278.4 Hz), 64.1 (q, J = 33.1 Hz), 7.2, 1.9; ¹⁹F NMR (375 MHz, CDCl₃) δ –71.0 (d, J = 8.9 Hz, 3F). IR(ATR): 3429, 2960, 2881, 1461, 1264, 1152, 1085, 723, 686 cm⁻¹. HRMS (EI, m/z): calcd for C₆H₁₂F₃OSi⁺ (M–Et)⁺: 185.0610; Found: 185.0607.

Supplementary Figure. 4 Synthesis of 1-triphenylsilyl-2,2,2-trifluoroethanol (1d)

2,2,2-Trifluoro-1-(triphenylsilyl)-ethan-1-ol was synthesized according to Welch's protocol with slightly variation and modification.^[1] To a stirring solution of 2,2,2-trifluoroethanol (3.0 g, 30 mmol) and triphenylchlorosilane (8.82 g, 30 mmol, 1.0 equiv.) and HMPA (3 mL) in dry THF (30 mL) in low temperature bath under -78 °C, was added LDA (2.0 M in THF, 3.5 equiv.) dropwise with syringe. The mixture was kept for 4 h under -78 °C and allowed to rt, after which the mixture was stirred for 15 h. After addition of triethylchlorosilane (7.5 mL, 45 mmol, 1.5 equiv.) to the mixture at 0 °C, the mixture was stirred for 4 h, and then quenched by the addition of a saturated solution of NH₄Cl (20 mL), compound **4d** was coarsely isolated by silica gel column chromatography (siliga: 200~300 mesh) using PE as eluent (colorless oil, 9.1 g, 20.1 mmol, 67% yield).

To a solution of Selectfluor (5.40 g, 15 mmol, 1.5 equiv.) in 40 mL of MeCN was added a solution of compound **4d** (4.5 g, 10 mmol) in 10 mL of DCM at 0 °C. The resulting mixture was stirred at room temperature for 12 h and quenched by the addition of water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated. Product **5d** was purified by silica gel column chromatography (siliga: 200~300 mesh) using PE as eluent (white solid, 2.0 g, 5.6 mmol, 56% yield).

To a stirring solution of **5d** (0.71 g, 2.0 mmol) in MeOH (0.05 M) at 0 $^{\circ}$ C was added NaBH₄ (0.074 g, 2.0 mmol, 1.0 equiv.) in portions, the resulting mixture was stirred for 0.5 h and quenched by water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated, 2,2,2-trifluoro-1-(triphenylsilyl)ethan-1-ol (**1d**) was further purified by silica gel column chromatography (siliga: 200~300 mesh) using PE/EA (50/1, v/v) (white solid, 0.54 g, 1.5 mmol, 75% yield).

I-((*Triphenyl*)*silyl*)-2,2,2-*trifluoroethanol* (*1d*), white solid, mp: 127 °C–130 °C. NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, *J* = 7.9, 1.2 Hz, 6H), 7.52–7.47 (m, 3H), 7.44–7.40 (m, 6H), 4.55 (q, *J* = 11.1 Hz, 1H), 2.13 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 130.9, 130.6, 130.6, 128.3, 126.7 (q, *J* = 278.4 Hz), 65.4 (q, *J* = 33.1 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –68.4 (d, *J* = 11.9 Hz, 3F). IR (ATR): 3470, 2922, 1379, 1260, 1148, 1111, 737, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₀H₁₈F₃O⁺ (M+H)⁺: 359.1074; Found: 359.1066.

Synthesis of 1-phenyldimethylsilyl-2,2-difluoroethanol (2a)

Supplementary Figure. 5 Synthesis of 1-phenyldimethylsilyl-2,2-difluoroethanol (2a)

To a stirring solution of **4** (15.7g, 48 mmol, 1.0 equiv.) in dry THF (10 mL) at 0 °C was added con. HCl (20 mL), the reaction medium was brought to room temperature and stirred for 3.0 h, then extracted with EA. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated. Product **6** was purified by silica gel column chromatography (siliga: 200~300 mesh) using PE as eluent (light yellow oil, 8.1 g, 37.9 mmol, 79% yield).

To a stirring solution of **6** (0.43 g, 2.0 mmol) in MeOH (0.05 M) at 0 °C was added NaBH₄ (0.074 g, 2.0 mmol, 1.0 equiv.) in portions, the resulting mixture was stirred for 0.5 h and quenched by water, then extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated, 2,2-difluoro-1-(phenyldimethylsilyl)ethan-1-ol (**2a**) was further purified by silica gel column chromatography (siliga: 200~300 mesh) using PE/EA (50/1, v/v) (colorless oil, 0.38 g, 1.8 mmol, 88% yield).

Difluoroacetylphenyldimethylsilane (6) NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 6.4 Hz, 2H), 7.45–7.39 (m, 3H), 5.39 (t, *J* = 54.9 Hz, 1H), 0.62 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 233.0 (t, *J* = 32.0 Hz), 134.3 132.4, 130.5, 128.4, 112.2 (t, *J* = 249.9 Hz), -4.7; ¹⁹F NMR (375 MHz, CDCl₃) δ -125.3 (d, *J* = 53.6 Hz, 3F). IR (ATR): 3071, 2960, 1670, 1428, 1252, 1118, 1044, 828, 787, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₃F₂OSi⁺ (M+H)⁺: 215.0698; Found: 215.0693.

I-((*Phenyl*)(*dimethyl*)*silyl*)-2,2-*difluoroethanol* (2*a*) NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.59 (m, 2H), 7.44–7.40 (m, 3H), 5.77 (td, *J* = 56.4, 4.1 Hz, 1H), 3.70 (ddd, *J* = 21.5, 14.4, 4.1 Hz, 1H), 0.47 (d, *J* = 2.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 134.7, 134.3, 130.1, 128.3, 117.7 (t, *J* = 242.3 Hz), 66.2 (t, *J* = 24.1 Hz), -5.01, -5.14; ¹⁹F NMR (375 MHz, CDCl₃) δ –121.1– –123.1 (m, 2F). IR (ATR): 3567, 3422, 3071, 2960, 2915, 1457, 1428, 1379, 1252, 1110, 1059, 1014, 962, 820, 783, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₄F₂NaOSi⁺ (M+Na)⁺: 239.0674; Found: 239.0668.

Preparation of substituted allylic sulfone.

Synthesis of phenyl-2-acylallylic sulfone

Phenyl-2-acylallilic sulfones (7b~7i, 7k~7p, 7ah) were synthesized according to reported procedure ^[2].

Synthesis of 2-((Phenylsulfonyl)methyl)acrylate

2-((Phenylsulfonyl)methyl)acryloyl chloride was prepared according to reported procedure.^[3] 4-bromobut-2-en-1-ol was prepared by reduction of methyl 4-bromocrotonate with DIBAL-H.^[4] Estradiol was protected with benzyl group before esterification.^[5] Allylic sulfone (**7j**, **7r~7z**, **7ae**, **7ai~7ap**) were prepared following the general esterification procedure shown below:

$$PhO_2S$$
 CI CI DCM PhO_2S O O OR

Supplementary Figure. 6 Synthesis of 2-((Phenylsulfonyl)methyl)acrylate

Under N₂ atmosphere, to a solution of corresponding alcohol (4.0 mmol) and triethylamine (505 mg, 5 mmol, 1.25 equiv.) in DCM (10 mL) was added acryl chloride (1220.0 mg, 5 mmol, 1.25 equiv.) in 5 mL DCM at 0 °C. Then the resulting mixture was stirred at room temperature overnight. The reaction was quenched by addition of water (10 mL), and the resulting mixture was extracted three times with DCM (3×30 mL) and the combined organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified with column chromatography on silica gel (siliga: 200~300 mesh; PE/EA) to afford the desired product.

4-Bromo-but-2-en-1-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7j)

 $R_f = 0.14$ (PE/EA = 4/1, v/v). Colorless oil, (1.0 g, 3.2 mmol, 46% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.85 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.65–7.53 (m, 2H), 6.54 (s, 1H), 5.95 (s, 1H), 5.88–5.72 (m, 2H), 4.49–4.48 (m, 2H), 4.16 (s, 2H), 4.06–4.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 138.4, 134.1, 134.0, 130.2,

129.2, 128.9, 127.9, 64.7, 57.6, 43.9. IR (ATR): 2960, 2922, 2855, 1722, 1446, 1260, 1085, 1010, 790, 734 cm⁻¹. HRMS (ESI, m/z): calcd for $C_{14}H_{15}BrO_4NaS^+$ (M+Na)⁺: 380.9767; Found: 380.9767.

Methoxyprop-2-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7r)

R_f = 0.16 (PE/EA = 4:1, v/v). Colorless oil (1.0 g, 3.3 mmol, 83% yield). NMR spectroscopy:¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.55–7.51 (m, 2H), 6.50 (s, 1H), 5.91 (s, 1H), 5.03–4.82 (m, 1H), 4.23–4.08 (m, 2H), 3.43–3.28 (m, 5H), 1.11 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 138.4, 134.0, 133.6, 129.2, 129.1, 128.9, 74.8, 70.8, 59.2, 57.4, 16.4. IR (ATR): 2982, 2937, 2885, 1718, 1446, 1308, 1148, 1085, 727 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₄H₁₈NaO₅S⁺ (M+Na)⁺: 321.0767; Found: 321.0776.

2,3-Dihydro-1H-inden-1-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7s)

 $\begin{array}{l} R_{\rm f} = 0.16 \; ({\rm PE/EA} = 8:1, \, v/v). \; \mbox{White solid, mp:70 °C-72 °C, (1.0 g, 2.6 mmol, 87\% yield). NMR spectroscopy: 1H NMR (400 MHz, CDCl_3) $$\delta$ 7.84 (d, J = 7.6 Hz, 2H), 7.64–7.48 (m, 3H), 7.32–7.19 (m, 4H), 6.49 (s, 1H), 6.08–6.05 (m, 1H), 5.91 (s, 1H), 4.17 (s, 2H), 3.10–3.03 (m, 1H), 2.90–2.82 (m, 1H), 2.48–2.39 (m, 1H), 1.99–1.91 (m, 1H); $^{13}C NMR (100 MHz, CDCl_3) $$\delta$ 164.9, 144.5, 140.5, 138.5, 133.9, 133.7, 129.2, 129.2, 128.9, 126.9, 125.7, 124.9, 79.8, 57.5, 32.2, 30.3. IR (ATR): 2989, 2937, 1703, 1446, 1293, 1141, 1085, 757, 690 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₉H₁₈NaO₄S⁺ (M+Na)⁺: 365.0818; Found: 365.0829. \end{array}$

Benzo[d][1,3]dioxol-5-ylmethyl 2-(((phenyl)sulfonyl)methyl)acrylate (7t)

R_f = 0.19 (PE/EA = 4:1, v/v). White solid, mp: 87 °C–90 °C, (1.4 g, 3.9 mmol, 78% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.3 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 6.81–6.71 (m, 3H), 6.53 (s, 1H), 5.98 (s, 2H), 5.95 (s, 1H), 4.89 (s, 2H), 4.16 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 147.9, 138.3, 134.1, 134.0, 129.2, 129.1, 128.9, 128.9, 122.5, 109.2, 108.4, 101.4, 67.3, 57.5. IR (ATR): 2960, 2926, 1715, 1491, 1256, 1141, 1085, 1036, 798, 731 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₁₆NaO₆S⁺ (M+Na)⁺: 383.0560; Found: 383.0570.

2-Idobenzyl 2-(((phenyl)sulfonyl)methyl)acrylate (7u)

R_f = 0.24 (PE/EA = 4/1, v/v). White solid, mp: 85 °C-86 °C, (1.1 g, 2.6 mmol, 88% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, *J* = 6.9 Hz, 3H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.28 (d, *J* = 6.7 Hz, 1H), 7.04 (t, *J* = 7.0 Hz, 1H), 6.61 (s, 1H), 6.00 (s, 1H), 5.02 (s, 2H), 4.19 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 139.7, 137.9, 134.4, 134.0, 130.2, 129.9, 129.2, 128.9, 128.8, 128.5, 98.6, 70.9, 57.5. IR (ATR): 2982, 2933, 1718, 1305, 1148, 1407, 760, 690 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₇H₁₅INaO₄S⁺ (M+Na)⁺: 464.9628; Found: 464.9646.

4-Bromobenzyl 2-(((phenyl)sulfonyl)methyl)acrylate (7v)

 $R_f = 0.47$ (PE/EA = 2/1, v/v). White solid, mp: 64 °C-66 °C, (1.1 g, 2.7 mmol, 68% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.50–7.47 (m, 4H), 7.16 (d, *J* = 7.9 Hz, 2H), 6.54 (s, 1H), 5.94 (s, 1H), 4.97 (s, 2H), 4.16 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 138.4, 134.4, 134.2, 134.0, 131.9, 130.1, 129.2, 128.9, 128.8, 122.6, 77.5, 77.2, 76.8, 66.6, 57.5. IR (ATR): 2933, 2930, 1715, 1446, 1293, 1337, 1085, 753, 686 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₇H₁₅BrNaO₅S⁺ (M+Na)⁺: 416.9767; Found: 416.9783.

Cyclohexylpropyl 2-(((phenyl)sulfonyl)methyl)acrylate (7x)

R_f = 0.59 (DCM). White solid, mp: 57 °C–59 °C, (1.2 g, 3.5 mmol, 69% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 6.49 (s, 1H), 5.90 (s, 1H), 4.15 (s, 2H), 3.90 (t, J = 6.8 Hz, 2H), 1.73–1.60 (m, 5H), 1.58–1.47 (m, 2H), 1.27–1.08 (m, 6H), 0.94–0.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 138.4, 134.0, 133.4, 129.1, 128.8, 66.1, 57.6, 37.3, 33.5, 33.3, 26.7, 26.4, 25.8. IR (ATR): 2930, 2848, 1715, 1472, 1320, 1148, 1085 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₉H₂₆NaO₄S⁺ (M+Na)⁺: 373.1444; Found: 373.1450.

Adamantan-2-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7y)

 $R_f = 0.46$ (PE/EA = 4/1, v/v). White solid, mp: 75 °C-78 °C, (1.3 g, 3.5 mmol, 88% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.3 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.55 (s, 1H), 5.95 (s, 1H), 4.79 (s, 1H), 4.19 (s, 2H), 1.98-1.48 (m, 14H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 138.4, 133.9, 133.2, 129.6, 129.1, 128.9, 78.5, 57.4, 37.3, 36.3, 32.0, 31.7, 27.2, 26.9. IR (ATR): 2907, 2855, 1707, 1446, 1297, 1141, 984, 895, 757, 686 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₀H₂₄NaO₄S⁺ (M+Na)⁺: 383.1288; Found: 383.1303.

N,N-diphenyl 2-(((phenyl)sulfonyl)methyl)acrylamide (7z)

 R_f = 0.28 (PE/EA = 2/1, v/v). White solid, mp: 154 °C−155 °C, (0.9 g, 2.4 mmol, 60% yield after recrystallization). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.37−7.33 (m, 4H), 7.27−7.24 (m, 6H), 5.69 (s, 1H), 5.33 (s, 1H), 3.84 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 143.3, 138.5, 134.0, 133.7, 131.4, 129.5, 129.2, 128.7, 127.6, 127.0, 60.1. IR (ATR): 1651, 1625, 1364, 1305, 1148, 1081, 760, 690 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₂H₁₉NNaO₃S⁺ (M+Na)⁺: 400.0978; Found: 400.0991.

Cyclobutyl 2-(((phenyl)sulfonyl)methyl)acrylate (7ae)

 $R_{\rm f} = 0.14 \text{ (PE/EA} = 8:1, v/v). \text{ White solid, mp: 43 °C-45 °C, (0.5 g, 1.7 mmol, 57% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.84 (d, J = 7.5 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 6.50 (s, 1H), 5.92 (s, 1H), 4.76 (p, J = 7.5 Hz, 1H), 4.14 (s, 2H), 2.30–2.16 (m, 2H), 2.01–1.84 (m, 2H), 1.81–1.68 (m, 1H), 1.63–1.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 138.4, 134.0, 133.7, 129.2, 129.1, 128.9, 69.9, 57.5, 30.1, 13.5. IR (ATR): 2989, 2937,

1722, 1450, 1323, 1249, 1144, 1070, 753, 686 cm⁻¹. HRMS (ESI, m/z): calcd for $C_{14}H_{18}NaO_4S^+$ (M+Na)⁺: 303.0662; Found: 303.0668.

(1S,2R,5S)-2-Isopropyl-5-methylcyclohexyl 2-((phenylsulfonyl)methyl)acrylate (7ai)

 R_f = 0.50 (PE/EA = 4:1, v/v). Colorless oil, (1.2 g, 3.2 mmol, 79% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dt, *J* = 8.2, 1.6 Hz, 2H), 7.64–7.60 (m, 1H), 7.52 (t, *J* = 7.5 Hz, 2H), 6.48 (d, *J* = 0.6 Hz, 1H), 5.96 (d, *J* = 0.6 Hz, 1H), 4.58–4.52 (m, 1H), 4.17 (s, 2H), 1.77–1.69 (m, 2H), 1.67–1.62 (m, 2H), 1.45–1.33 (m, 2H), 1.05–0.95 (m, 1H), 0.88–0.77 (m, 8H), 0.67 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 138.5, 134.0, 133.1, 129.4, 129.2, 128.9, 75.8, 57.3, 47.0, 40.6, 34.2, 31.4, 26.5, 23.6, 22.1, 20.8, 16.6. IR (ATR): 2952, 2930, 2870, 1711, 1446, 1312, 1245, 1193, 1144, 1085, 794, 753 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₀H₂₈NaO₄S⁺ (M+Na)⁺: 387.1601; Found: 387.1599.

(3S,5S,9S,10R,13S,14S)-5,13-Dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-((phenylsulfonyl)methyl)acrylate (7aj)

 R_f = 0.43 (PE/EA = 2:1, v/v). White solid, mp: 147 °C−148 °C, (1.0 g, 2.0 mmol, 90% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.87−7.84 (m, 2H), 7.65−7.61 (m, 1H), 7.55−7.51 (m, 2H), 6.48 (d, J = 0.6 Hz, 1H), 5.88 (d, J = 0.6 Hz, 1H), 4.60−4.52 (m, 1H), 4.15 (s, 2H), 2.46−2.40 (m, 1H), 2.11−2.01 (m, 1H), 1.95−1.89 (m, 1H), 1.81−1.77 (m, 2H), 1.74−1.62 (m, 3H), 1.58−1.39 (m, 4H), 1.37−1.13 (m, 7H), 1.02−0.94 (m, 2H), 0.85 (s, 3H), 0.83 (s, 3H), 0.72−0.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 221.4, 164.4, 138.6, 134.0, 133.2, 129.5, 129.2, 128.9, 75.0, 57.6, 54.4, 51.5, 47.9, 44.7, 36.7, 36.0, 35.7, 35.1, 33.8, 31.6, 30.9, 28.4, 27.3, 21.9, 20.6, 13.9, 12.4. IR (ATR): 2933, 2851, 1733, 1715, 1305, 1241, 1189, 1141, 1085, 1014, 764, 705 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₉H₃₈NaO₅S⁺ (M+Na)⁺: 521.2332; Found: 521.2329.

(8R,9S,10R,13S,14S,17S)-10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclo-penta[a]phenanthren-17-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7al)

R_f = 0.21 (PE/EA = 2:1, v/v). White solid, mp: 133 °C-135 °C, (0.9 g, 2.6 mmol, 66% yield after recrystallization). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.6 Hz, 2H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 6.48 (s, 1H), 5.86 (s, 1H), 5.72 (s, 1H), 4.49 (t, *J* = 8.1 Hz, 1H), 4.19–4.10 (m, 2H), 2.41–2.25 (m, 4H), 2.09–2.00 (m, 2H), 1.85–1.54 (m, 6H), 1.42–1.30 (m, 3H), 1.18 (s, 3H), 1.15–0.89 (m, 4H), 0.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 170.9, 164.8, 138.5, 133.9, 133.2, 129.3, 129.2, 128.9, 124.1, 83.8, 57.5, 53.8, 50.3, 42.8, 38.7, 36.7, 35.8, 35.5, 34.0, 32.8, 31.6, 27.4, 23.6, 20.6, 17.5, 12.3. IR (ATR): 2956, 2930, 1726, 1659, 1305, 1193, 1156, 898, 708 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₉H₃₆NaO₅S⁺ (M+Na)⁺: 519.2176; Found: 519.2195.

(4S,5'R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5',6a,8a,9-Tetramethyl-1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,1 2,12a,12b-icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7am)

 R_f = 0.10 (PE/EA = 10/1, v/v). Slight yellow solid, mp: 197 °C−199 °C, (2.0 g, 3.0 mmol, 76% yield after recrystallization). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.3 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 6.49 (s, 1H), 5.91 (s, 1H), 5.33–5.29 (m, 1H), 4.49–4.38 (m, 2H), 4.16 (s, 2H), 3.48–3.34 (m, 2H), 2.22–2.16 (m, 2H), 2.01–1.95 (m, 2H), 1.88–1.71 (m, 6H), 1.68–1.57 (m, 5H), 1.53–1.43 (m, 3H), 1.32–1.06 (m, 5H), 1.02–0.91 (m, 7H), 0.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 139.5, 138.6, 134.0, 133.3, 129.5, 129.2, 129.0, 122.7, 109.4, 80.9, 75.4, 67.0, 62.2, 57.6, 56.5, 50.0, 41.7, 40.4, 39.8, 37.9, 36.9, 36.8, 32.2, 32.0, 31.5, 30.4, 28.9, 27.6, 20.9, 19.5, 17.3, 16.4, 14.7. IR (ATR): 2941, 2855, 1711, 1446, 1331, 1193, 1051, 731, 686 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₇H₅₀NaO₆S⁺ (M+Na)⁺: 645.3220; Found: 645.3210.

(R)-2,5,7,8-Tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 2-((phenylsulfonyl)methyl)acrylate (7an)

R_f = 0.50 (PE/EA = 4:1, v/v). White solid, mp: 43 °C–45 °C, (1.7 g, 2.6 mmol, 88% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 6.84 (s, 1H), 6.20 (s, 1H), 4.30 (s, 2H), 2.55 (t, *J* = 6.6 Hz, 2H), 2.06 (s, 3H), 1.85 (s, 3H), 1.83 (s, 3H), 1.80–1.71 (m, 2H), 1.52–1.07 (m, 23H), 0.88–0.84 (m, 13H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 149.7, 140.4, 138.6, 134.5, 134.1, 129.3, 128.8, 128.4, 126.8, 125.1, 123.3, 117.6, 75.2, 57.1, 39.5, 37.6, 37.4, 32.9, 28.1, 24.9, 24.6, 22.9, 22.8, 21.2, 20.7, 19.9, 19.8, 13.0, 12.1, 11.9. IR (ATR): 2922, 2863, 1733, 1446, 1320.0, 1152, 1103, 753 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₉H₅₈NaO₅S⁺ (M+Na)⁺: 661.3897; Found: 661.3906.

(8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7ao)

 R_f = 0.23 (PE/EA = 2/1, v/v). Slight yellow solid, mp: 203 °C−205 °C, (1.5 g, 3.2 mmol, 79% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 10.4 Hz, 1H), 6.72−6.63 (m, 3H), 6.08 (s, 1H), 4.26 (s, 2H), 2.88−2.86 (m, 2H), 2.54−2.47 (m, 1H), 2.41−2.38 (m, 1H), 2.29−2.27 (m, 1H), 2.17−1.95 (m, 4H), 1.66−1.41 (m, 6H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 220.8, 163.9, 148.4, 138.5, 138.2, 137.8, 135.0, 134.1, 129.3, 129.0, 128.8, 126.5, 121.4, 118.5, 57.7, 50.5, 48.1, 44.3, 38.1, 36.0, 31.7, 29.5, 26.4, 25.9, 21.7, 14.0. IR (ATR): 2933, 2881, 1722, 1495, 1301, 1245, 1133, 760, 686 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₈H₃₀KO₅S⁺ (M+K)⁺: 517.1446; Found: 517.1462.

(8R,9S,13S,14S,17S)-3-(Benzyloxy)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-1 7-yl 2-(((phenyl)sulfonyl)methyl)acrylate (7ap)

 $R_f = 0.26$ (PE/EA = 4/1, v/v). Slight yellow solid, mp: 127 °C-128 °C, (1.9 g, 3.3 mmol, 83% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.9 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.49–7.29 (m, 5H), 7.21 (d, J = 8.6 Hz, 1H), 6.80 (dd, J = 8.5, 2.3 Hz, 1H), 6.73 (bs, 1H), 6.53 (s, 1H), 5.93 (s, 1H), 5.04 (s, 2H), 4.67–4.50 (m, 1H), 4.19 (q, J = 13.8 Hz, 2H), 2.99–2.76 (m, 2H), 2.35–2.02 (m, 3H), 1.93–1.69 (m, 3H), 1.51–1.22 (m, 2H), 2.99–2.76 (m, 2H), 2.99–2.

7H), 0.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 156.8, 138.4, 138.0, 137.3, 133.9, 133.3, 132.7, 129.3, 129.2, 128.9, 128.7, 127.9, 127.5, 126.4, 114.9, 112.4, 84.0, 70.0, 57.4, 49.7, 43.8, 43.2, 38.6, 36.9, 29.8, 27.5, 27.3, 26.2, 23.3, 12.3. IR (ATR): 2945, 2848, 1711, 1495, 1312, 1189, 1152, 1085, 727 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₅H₃₈NaO₅S⁺ (M+Na)⁺: 593.2332; Found: 593.2349.

3.3 Synthesis of phenyl-2-(tolsulfonyl)allylic sulfone (7ab)

Phenyl-2-(tolsulfonyl)allylic sulfone **7ab** was synthesized according to reported protocol.^[6] *Phenyl-2-(tolsulfonyl)allylic sulfone (7ab)*

 R_f = 0.30 (PE/EA = 2/1). White solid, mp: 125 °C−127 °C, (8.4 mmol, 84% yield for 3 steps from phenyl propargyl sulfide). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.77−7.74 (m, 2H), 7.66 (tt, *J* = 7.5, 1.4 Hz, 1H), 7.60 (dt, *J* = 8.3, 1.8 Hz, 2H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.64 (d, *J* = 0.9 Hz, 1H), 6.50 (d, *J* = 1.2 Hz, 1H), 4.05 (s, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 139.8, 137.9, 134.8, 134.4, 130.8, 130.2, 129.4, 128.7, 128.6, 54.3, 21.8. IR (ATR): 2956, 2922, 2855, 1595, 1446, 1312, 1141, 1081, 727 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₁₆O₄NaS₂⁺ (M+Na)⁺: 359.0382; Found: 359.0383.

Preparation of ((3-methyl-2-metnylene-3-phenylbutyl)sulfonyl)benzene (7ad)

((3-Methyl-2-methylene-3-phenylbutyl)sulfonyl)benzene (**7ad**) was prepared according to reported methods.^[7,8] Synthetic routine is shown as below:

Supplementary Figure 7 Preparation of ((3-methyl-2-metnylene-3-phenylbutyl)sulfonyl)benzene (7ad)

To a solution of 2-methyl-2-phenylpropionic acid (4.92 g, 30 mmol) in diethyl ether at -30 °C was added a solution of methyl lithium (1.6 M, 56.0 mL, 3.0 equiv.) dropwise with syringe pump, after which the resulting mixture was allowed to RT and kept stirring for 1.5 h. The reaction was cooled to 0 °C and poured into iced hydrogen chloride solution, extracted with PE (3×100 mL), the organic phase was combined, concentrated under reduced pressure and purified with column chromatography on silica gel (siliga: 200~300 mesh) and PE as eluent to afford the colorless oil **S2** (3.0 g, 18.6 mmol, 62% yield).

To a solution of Wittig reagent prepared by Ph₃PMeBr (8.92 g, 25 mmol, 2.1 equiv.) and NaO'Bu (2.8 g, 25 mmol, 2.1 equiv.) in THF (70 mL) stirring for 2 h at room temperature in Schlenk tube was added **S2** (1.82 g, 12 mmol) slowly. Then the resulting mixture was stirred at 60 °C. Upon full consumption of **S2** (monitored by TLC), the mixture was cooled to ambient temperature and filtered under reduced pressure, the filtrate was extracted with PE (3×50 mL), the organic phase was dried over Na₂SO₄, filtrated and removed the solvent, purification was conducted with column chromatography on silica gel (siliga: 200~300 mesh) and PE as eluent to afford the colorless oil **S3** (1.57 g, 9.84 mmol, 82% yield).

To a 10 mL tube was added **S3** (0.7 g, 4.3 mmol), NBS (0.84 g, 4.73 mmol, 1.1 equiv.) and chloroform (2 M), then the tube was sealed, the resulting mixture was stirred at 100 °C till NBS was completely dissolved, then the mixture was moved to ambient temperature and filtered under reduced pressure, the filtrate was washed with brine, dried over Na_2SO_4 , removed solvent and purified with column chromatography on silica gel (siliga: 200~300 mesh) and PE as eluent to

afford the slight yellow oil S4 (0.72 g, 3.0 mmol, 70% yield).

To a 50 mL round bottom flask was added **S4** (0.7g, 3.0 mmol) and phenylsulfinate (0.98 g, 6.0 mmol) and DMF (0.25 M), the resulting mixture was stirred at 60 °C for 12 h, then washed with water and brine, dried over Na₂SO₄, purified with column chromatography on silica gel (200~300 mesh) and PE/EA ($20/1 \sim 5/1$, v/v) as eluent to afford the white solid **7ad** (0.45 g, 1.5 mmol, 50% yield).

((3-methyl-2-metnylene-3-phenylbutyl)sulfonyl)benzene (7ad) mp: 47 °C–49 °C. NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.3 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.26–7.13 (m, 5H), 5.70 (s, 1H), 5.53 (s, 1H), 3.50 (s, 2H), 1.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 143.2, 139.6, 133.7, 129.2, 128.6, 128.6, 126.4, 126.2, 116.7, 58.7, 44.7, 27.8. IR (ATR): 2971, 2930, 1305, 1148, 1085, 913, 768, 723, 686 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₂₀NaO₂S⁺ (M+Na)⁺: 323.1076; Found: 323.1085.

Preparation of 6-hydroxylhexyl 2-(((phenyl)sulfonyl)methyl)acrylate (7af)

6-Hydroxylhexyl 2-(((phenyl)sulfonyl)methyl)acrylate was prepared according to reported method.^[9]

6-Hydroxyhexyl 2-(((phenyl)sulfonyl)methyl)acrylate (7af)

R_f = 0.26 (PE/EA = 1/1, v/v). Colorless oil, (1.8 g, 5.7 mmol, 57% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.3 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 6.47 (s, 1H), 5.86 (s, 1H), 4.14 (s, 2H), 3.96 (t, J = 6.7 Hz, 2H), 3.61 (t, J = 6.6 Hz, 2H), 1.75 (s, 1H), 1.55 (t, J = 6.7 Hz, 4H), 1.34–1.31 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 138.4, 134.0, 133.4, 129.2, 128.8, 65.6, 62.7, 57.6, 32.6, 28.4, 25.7, 25.4. IR (ATR): 3541, 3422, 2933, 2859, 1715, 1308, 1189, 1148, 1085, 913, 731 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₂₂NaO₅S⁺ (M+Na)⁺: 349.1080; Found: 349.1078.

Preparation of 6-oxohexyl 2-(((phenyl)sulfonyl)methyl)acrylate (7ag)

6-Oxohexyl 2-(((phenyl)sulfonyl)methyl)acrylate was prepared via oxidation of **4ax** with DMP (3.0 equiv.) in DCM at ambient temperature.

6-Oxohexyl 2-(((phenyl)sulfonyl)methyl)acrylate (7ag)

R_f = 0.16 (PE/EA = 2/1, v/v). Colorless oil, (298 mg, 0.92 mmol, 46% yield). NMR spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 9.75 (t, *J* = 1.4 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 6.47 (s, 1H), 5.86 (s, 1H), 4.14 (s, 2H), 3.97 (t, *J* = 6.6 Hz, 2H), 2.44 (td, *J* = 7.3, 1.4 Hz, 2H), 1.66–1.54 (m, 4H), 1.38–1.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 164.9, 138.5, 134.0, 133.4, 129.2, 129.1, 128.8, 65.3, 57.6, 43.8, 28.3, 25.5, 21.7. IR (ATR): 2937, 2863, 1715, 1446, 1308, 1245, 1185, 1144, 1085, 757 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₂₀NaO₅S⁺ (M+Na)⁺: 347.0924; Found: 347.0922.

synthesis of other starting materials

synthesis of acrylamides 10

Acrylamides **10a~10i** was synthesized via condensation of corresponding amine and acyl chloride according to reported reference.^[10]

Synthesis of dimethyl 4-(3-(3-methyl-4-hydroxyphenyl)propyl)phthalate 15

Dimethyl 4-(3-(3-methyl-4-hydroxyphenyl)propyl)phthalate 15 was synthesized according to reported reference^[11]

Supplementary Figure 8 Synthesis of S6

Under N₂ atmosphere, to a stirring mixture of NaH (3.5 g, 87 mmol, 1.1 equiv.) in DMF (30 mL) was added a solution of 4-bromo-2-methylphenol **S5** (14.8 g, 79 mmol) in DMF (100 mL) slowly, the resulting mixture was kept stirring for 0.5 h then ethoxymethyl chloride (EOMCl) (9.0 g, 95.7 mmol, 1.1 equiv) was added slowly in 10 min, the reaction medium was stirred for another 5 h and quenched by addition of water, the mixture was extracted with EA (200 mL×3 times), the combined organic phase was washed with water, dried over Na₂SO₄, concentrated under reduced pressure, the residue was purified through a silica plug, a yellow oil was obtained (15.3 g, 60.0 mmol, 76% yield).

The product (7.4 g, 30.0 mmol) was dissolved in DMF (65 mL), to which was added allyltributyltin (14.3 mL, 45.0 mmol, 1.5 equiv.), then the mixture is degassed, then 900 mg of dichlorobis(triphenylphosphino)palladium was added, the resulting mixture was stirred at 120 °C for 10 h. the reaction was quenched by addition of water, and extracted with EA, the combined organic layer was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by chromatography on a 10% wt K₂CO₃-silica column with PE as an eluent.^[12] A yellow oil **S6** is obtained (5.0 g, 24 mmol, 81% yield).

Supplementary Figure 9 Synthesis of S8

Under N₂ atmosphere, to a stirring solution of **S7** (8.4 g, 40 mmol), NEt₃ (8.4 mL, 62mmol, 1.55 equiv.) and DCM (200 mL) was added Tf₂O (11.8 g, 42 mmol, 1.05 equiv.) slowly in 10 min at 0 °C, the resulting mixture was brought to room temperature and stirred for 2 h, and then quenched by addition of water and extracted with DCM (100 mL×3 times), the organic phase was washed with dilute sodium bicarbonate and dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by chromatography on a silica column with PE/EA (8/1, v/v) as an eluent. A yellow oil **S8** is obtained (12.3 g, 36.0 mmol, 90% yield).

Supplementary Figure 10 Synthesis of S9

Under N₂ atmosphere, 3.5 g (16 mmol) of **S6** was dissolved in 40 mL anhydrous THF, the resulting mixture was cooled to 0 °C, 40.8 mL 9-BBN (0.5 M, 1.3 equiv.) was added, and the medium was brought to room temperature and stirred for 12 h. A solution of **S8** in 70 mL DMF was added, as well as 4.7 g (34 mmol, 2.1 equiv.) of potassium carbonate and Pd(dppf)Cl₂ (652.8 mg, 0.8 mmol, 5 mol%), the reaction mixture was degassed, heated to 50 °C for 3 h and quenched with ammonium chloride solution. The mixture was extracted with EA, the organic phase was washed with dilute sodium bicarbonate and dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by chromatography on a silica column with PE/EA (8/1, v/v) as an eluent. A colorless oil **S9** is obtained (4.1 g, 10.2 mmol, 64% yield).

Supplementary Figure 11 Synthesis of 15

Under air atmosphere, to a solution of **S5** (2.9 g, 7.3 mmol) in MeOH (30 mL) was added con. HCl (30 mL) slowly at room temperature, the resulting mixture was stirred for 3 h and monitored by TLC, upon completion, extracted with EA, the organic phase was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by chromatography on a silica column with PE/ EA (4/1, v/v) as an eluent. A colorless oil **15** is obtained (2.3 g, 6.9 mmol, 94% yield).

Investigation of reaction conditions Investigation of metallic salts

Supplementary Table 1 Investigation of metallic salts

OH F ₃ C SiPhMe ₂ 1a	+ CO ₂ Et SO ₂ Ph 7a	Metallic salt (2.0 equiv.) 70 °C, N ₂ , 36 h DCM (0.1 M)	CF ₃ Me ₂ PhSiO	COOEt
 entry	me	etallic salt	yield /% ^{b,c}	c.r. /% ^c
1	Ce(NH ₄)(NO ₃) ₆		0	100
2	Ce(SO ₄) ₂ ·4H ₂ O		0	100
3	Fe(NO ₃) ₃ ⋅9H ₂ O		0	100
4	Fe ₂ (SO ₄) ₃ •xH ₂ O		0	100
5	Cu(OAc) ₂		0	6
6	Co(acac) ₃		0	10
7			0	5
8	Mn(OAc)₃•2H₂O		68	92
9	Ν	/InF ₃	0	0
10	Mn	(PO ₄) ₃	0	0
11	Mn	(acac) ₃	8	12

a) reaction condition: **1a** (0.1 mmol), **7a** (1.2 equiv.), metallic salt (2.0 equiv.), DCM, 70 $^{\circ}$ C, N₂, 36 h; b) yield by ¹⁹F NMR with PhCF₃ as internal standard.

Investigation of solvents

Supplementary Table 2 Investigation of solvents

$F_{3}C$ SiPhMe ₂ + $CO_{2}Et$ SO ₂ Pr		Mn(OAc) ₃ ·2H ₂ O (2.0 equiv. 70 °C, N ₂ , 36 h solvent (0.1 M)	De2PhSiO	► CF ₃ COOEt Me ₂ PhSiO	
1a	7a	· · · · · ·	8		
entry		solvent	yield /% ^b	c.r. /%	
1		DCM	70 (67) ^c	90 (98) ^c	
2		Chloroform	10	82	
3		Hexane	47	83	
4		Decalin	56	62	
5		DMAc	60	84	
6		DMF	11	59	
7		NMP	10	47	
8		MeCN	38	70	
9		CyHexane	26	48	
10		MCPE	28	50	
11		EA	33	65	

a) reaction condition: **1a** (0.1 mmol), **7a** (1.2 equiv.), $Mn(OAc)_3 \cdot 2H_2O$ (2.0 equiv.), solvent (0.1 M) ,70 °C, N₂, 36 h; b) yield by ¹⁹F NMR with PhCF₃ as internal standard; c) repeated reaction. MCPE = methyl cyclopentyl ether.

Investigation of oxidant for catalytic reaction conditions

Supplementary Table 3 Investigation of oxidant for catalytic reaction conditions

ОН	Mn(OAc) ₃ •2H	$\frac{\ln(OAc)_{3} \cdot 2H_{2}O(20 \text{ mol}\%)}{O(1000000000000000000000000000000000000$	
F ₃ C SiPhMe ₂	EtO_2C SO_2Ph $Oxidant (DCM, 7)$	$\sim 0^{\circ}$ C, N ₂ Me ₂ PhSi	CO ₂ Et
1a	7a		8
Entry	Oxidant	Yield (%)	c.r (%)
1	WO ₃	12	11
2	NCS	32	34
3	TEAPC		
4	<i>p</i> -NPO	0	0
5	TBPB	60	75
6 ^c	DCP	0	0
7 ^c	ТВРВ	0	0
8 ^d	ТВРВ	39	41
9 ^e	ТВРВ	59	60
10 ^f	ТВРВ	64	81
11	PIDA	8	100
12	PIDTFA	0	100
13	I ₂	0	0
14	NBS	16	100
15	MnO ₂	14	34
16	NaBrO ₃	20	55
17	DQ	6	31
18	DMP	0	100

a) reaction condition: **1a** (0.1 mmol), **7a** (1.2 equiv.), Mn(OAc)₃ 2H₂O (2.0 equiv.), DCM (0.1 M) ,70 °C, N₂, 12 h; b) yield by ¹⁹F NMR with TMFB as interior label; c) absence of Mn^{III}; d) 1.0 equiv of TBPB was used; e) 1.5 equiv. of TBPB was used; f) 2.5 equiv. of TBPB was used; g) TEAPC = tetraethylammonium perchlorate, PIDTFA = [Bis(trifluoroacetoxy)iodo]benzene, *p*-NPO = 4-Nitropyridine N-oxide.

Supplementary Figure 12 Radical inhibition experiments

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7b** (257.4 mg, 0.9 mmol, 3.0 equiv.) and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) (45.7 mg, 0.3 mmol, 1.0 equiv.) or BHT (butylated hydroxytoluene) (66.1 mg, 0.3 mmol, 1.0 equiv.) was added DCM (3.0 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (146.0 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was stirred at 70 °C in heating block for 14 h. After the mixture was cooled to ambient temperature, yield of **20** and conversion ratio of **1a** were determined via ¹⁹F NMR with PhCF₃ as an internal standard. Recovery of **7b** was determined via ¹H NMR with 1,3,5-trimethoxylbenzene as an internal standard. We found reaction was totally inhibited when radical scavenger (TEMPO or BHT) was added to the mixture and compound **21** was detected by HRMS. HRMS (ESI, m/z): calcd for $C_{19}H_{30}F_3NaNO_2Si^+$ (M+Na)⁺: 412.1890; Found:412.1899; calcd for $C_{19}H_{31}F_3NO_2Si^+$ (M+H)⁺: 390.2071; Found:390.2059.

Proposed mechanism for allylation, alkylation and alkenylation via radical C-Si bond activation

Supplementary Figure 13 Proposed Mechanism for allylation via radical C-Si activation

The radical inhibitation experiments indicate that a radical process might be involved. We found that Mn(OAc)₃•2H₂O is able to mediate the reaction without external oxidant, but Mn(OAc)₂•4H₂O can not mediate the reaction without TBPB (Table 1, entries 1 and 8 in the manuscript). The HRMS analysis of the reaction mixture of **1a** and **7a** suggests the generation of benzenesulfonyl benzoic anhydride, *tert*-butyl benzenesulfonate, benzesulfonic acid and benzenesulfinic acid as by-products. Based on these experimental results and literature about allylation from allylic sulfones,^[13,14] we propose a possible mechanism (Fig. S2). Ligand exchange between Mn(III) species and alcohol **1a** might generate intermediate **I**, which undergoes homolysis to produce alkoxyl radical **II** and Mn(II) intermediate. Carbon radical **III** would be generated through Brook rearrangement, and then undergo radical addition reaction to generate intermediate

IV. Compound V would be generated after β -elimination of sulfonyl radical. The alcohol product TM would be generated after the desilylation step. Mn(III) catalyst is likely to be regenerated by the oxidation of Mn(II) by TBPB. The sulfonyl radical is likely to be captured by TBPB, generating the side-product benzenesulfonyl benzoic anhydride. The sulfonyl radical might also be oxidized and captured by PhCO₂⁻ to generate benzenesulfonyl benzoic anhydride. Meanwhile, sulfonyl radical could react with TBPB or *tert*-butoxy radical to form *tert*-butyl benzenesulfonate. Benzenesulfonyl benzoic anhydride and *tert*-butyl benzenesulfonate could be hydrolyzed to generate benzenesulfonic acid. Moreover, the sulfonyl radical could be transformed to sulfinic acid via H atom abstraction reaction under the reaction condition.

Benzenesulfonyl benzoic anhydride: HRMS (ESI, m/z): calcd for $C_{13}H_{10}NaO_4S^+$ (M+Na)⁺: 285.0192; Found: 285.0195. *tert*-Butyl benzenesulfonate: HRMS (ESI, m/z): calcd for $C_{10}H_{14}NaO_3S^+$ (M+Na)⁺: 237.0556; Found: 237.0561 Benzenesulfinic acid: HRMS (ESI, m/z): calcd for $C_6H_6NaO_2S^+$ (M+Na)⁺: 164.9981; Found: 164.9975. Benzenesulfonic acid: HRMS (ESI, m/z): calcd for $C_6H_7O_3S^+$ (M+H)⁺: 159.0110; Found: 159.0115.

Supplementary Figure 14. Proposed Mechanism for alkylation via radical C-Si activation

For the alkylation reaction, we propose that radical **III** would be generated following similar mechanism as that in the allylation reaction (Fig. S3.). When an acryl amide was used as the radical acceptor instead of an allylic sulfone, we propose that radical **III** could undergo addition reaction to generate intermediate **IV'**, which undergo intramolecular addition to generate intermediate **V'**. Aromatization reaction via radical oxidation and deprotonation then would generate compound **VI'**. The alcohol product **TM'** would be generated after the desilylation step. Mn(III) catalyst is likely to be regenerated by the oxidation of Mn(II) by TBPB. Similar oxdative aromatization process was also proposed in the Fe and Ag catalyzed radical reactions of acryl amides. ^[15,16]

Supplementary Figure 15 Proposed Mechanism for alkenylation via radical C-Si activation

There are reports on radical decarboxylative alkenylation with α,β -unsaturated carboxylic acids.^[17,18] Based on our experimental results and literature reports,^[17,18] we propose a possible mechanism for our reaction as shown in Fig. S4. Ligand exchange between Mn(III) species and alcohol **1a** might generate intermediate **I**, which undergoes homolysis to produce alkoxyl radical **II** and Mn(II) intermediate. Carbon radical **III** would be generated through Brook rearrangement, and then undergo radical addition reaction via two possible pathways to generate **TM''**.

Pathway a: addition of radical **III** to the α -position of the double bond in an α,β -unsaturated carboxylic acid would generate intermediate **IV**". Intermediate IV" was oxidized to cation intermediate **V**" which then eliminated carbon dioxide and proton to generate the product **VI**". Similar proposal was proposed in Ni-catalyzed radical alkenylation with α,β -unsaturated carboxylic acids.^[17] The alcohol product **TM**" would be generated after the desilylation step.

Pathway b: compound **A** could be transformed to compound **B** via ligand exchange process. Addition of radical **III** to the α -position of the double bond in compound **B** would generate intermediate **IV**^{**}, which then eliminate carbon dioxide and Mn(II) to generate compound **VI**^{**}. Similar proposal was proposed in Cu-catalyzed alkenylation with α , β -unsaturated carboxylic acids. The alcohol product **TM**^{**} would be generated after the desilylation step. Mn(III) catalyst is likely to be regenerated by the oxidation of Mn(II) by TBPB.

Synthesis of a-CF3 substituted homoallylic alcohols

Ethyl 5,5,5-trifluoro-4-(((dimethyl)(phenyl)silyl)oxy)-2-methylenepentanoate (8a)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing $Mn(OAc)_2 \cdot 4H_2O$ (4.9 mg, 0.02 mmol, 20 mol%) was added DCM (1 mL, 0.1 M), **1a** (23.4 mg, 0.1 mmol), **7a** (50.8 mg, 0.2 mmol, 2.0 equiv.) and TBPB (48.6 mg, 0.25 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. The reaction mixture was quenched with water (2 mL), extracted with DCM

 $(3\times10 \text{ mL})$ and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with flash column chromatography on silica gel (200~300 mesh) and PE/EA (50/1~20/1, v/v) as eluent to afford 22.1 mg of the title compound as a colorless oil (64% yield).

R_f = 0.60 (PE/EA = 20/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 6.4 Hz, 2H), 7.43–7.35 (m, 3H), 6.26 (s, 1H), 5.65 (s, 1H), 4.23–4.09 (m, 3H), 2.78–2.42 (m, 2H), 1.24 (t, *J* = 7.3 Hz, 3H), 0.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 136.1, 134.9, 133.8, 130.1, 130.0, 128.0, 125.0 (q, *J* = 281.0 Hz), 70.1 (q, *J* = 30.7 Hz), 61.0, 34.6, 14.2, -1.27, -1.47; ¹⁹F NMR (375 MHz, CDCl₃) δ -78.5 (bs, 3F). IR (ATR): 2956, 2922, 2855, 1715, 1260, 1170, 1129, 1018, 790, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₂₂F₃O₃Si⁺ (M+H)⁺: 347.1289; Found: 347.1273.

4-((Dimethyl(phenyl)silyl)oxy)-5,5,5-trifluoro-2-methylene-1-phenylpentan-1-one (20)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (26.8 mg, 0.1 mmol, 20 mol%), **7b** (429.5 mg, 1.5 mmol, 3.0 equiv.) was added DCM (5 mL), **1a** (117.1mg, 0.5 mmol) and TBPB (242.7 mg, 1.25 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 149.4 mg of the title compound as a colorless oil (79% yield).

R_f = 0.30 (PE/EA = 80/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.5 Hz, 2H), 7.45–7.41 (m, 3H), 7.32–7.23 (m, 5H), 5.88 (s, 1H), 5.64 (s, 1H), 4.30–4.22 (m, 1H), 2.88–2.53 (m, 2H), 0.29–0.28 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 141.8, 137.5, 136.5, 133.7, 132.3, 131.4, 130.1, 129.6, 128.3, 128.0, 127.8, 125.1 (q, *J* = 281.7 Hz), 70.0 (q, *J* = 30.7 Hz), 34.9, -1.2, -1.7; ¹⁹F NMR (375 MHz, CDCl₃) δ –77.6 (d, *J* = 6.0 Hz, 3F). IR(ATR): 3071, 2960, 1655, 1446, 1338, 1282, 1163, 1126, 1051, 790 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₀H₂₁F₃NaO₂Si⁺ (M+Na)⁺: 401.1155; Found: 401.1161.

Ethyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9a)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol), **7a** (152.4 mg, 0.6 mmol, 2.0 equiv.) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. The mixture was then cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 40.0 mg of the title compound as a colorless oil (62% yield).

R_f = 0.23 (PE/EA = 8/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.35 (s, 1H), 5.80 (s, 1H), 4.25 (q, J = 7.2 Hz, 2H), 4.16–4.08 (m, 1H), 3.63 (s, 1H), 2.78–2.57 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 135.2, 129.8, 124.9 (q, J = 280.5 Hz), 70.0 (q, J = 30.7 Hz), 61.8, 33.5, 14.2; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, J = 6.0 Hz, 3F). IR (ATR): 3444, 2986, 2937, 1700, 1633, 1413, 1316, 1275, 1163, 1126, 1021, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₈H₁₁F₃NaO₃⁺ (M+Na)⁺: 235.0552; Found: 235.0556.

5,5,5-Trifluoro-4-hydroxy-2-methylene-1-phenylpentan-1-one (9b)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7b** (257.4 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 53.0 mg of the title compound as a yellow oil (71% yield).

R_f = 0.40 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.3 Hz, 2H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 6.16 (s, 1H), 5.90 (s, 1H), 4.32 (d, *J* = 5.2 Hz, 1H), 4.15–4.14 (m, 1H), 2.90–2.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 142.2, 136.7, 133.2, 131.9, 130.1, 128.5, 125.0 (q, *J* = 280.6 Hz), 70.5 (q, *J* = 31.2 Hz), 33.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.3 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3418, 3064, 2933, 1648, 1446, 1338, 1275, 1223, 1163, 1036, 753 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₂F₃O₂⁺ (M+H)⁺: 245.0784; Found: 245.0778.

1-([1,1'-Biphenyl]-4-yl)-5,5,5-trifluoro-4-hydroxy-2-methylenepentan-1-one (9c)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7c** (326.2 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA ($20/1 \sim 10/1$, v/v) as eluent to afford 74.9 mg of the title compound as a white solid (78% yield).

Gram scale experiment

Under N₂ atmosphere, to a dried 100 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (321.7 mg, 1.2 mmol, 20 mol%) and **7c** (6.52 g, 18.0 mmol, 3.0 equiv.) was added DCM (50 mL), **1a** (1.41 g, 6 mmol) and TBPB (2.91 g, 15 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in oil bath for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 7.2 mL, 7.2 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (20 mL) and extracted with DCM (3×100 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 1.25 g of the title compound as a white solid (65% yield) and starting material **7c** was 61% recovered (3.97 g, 11.0 mmol).

 $R_f = 0.50$ (PE/EA = 5/1, v/v). mp: 69 °C-71 °C (from PE and EA). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz,

2H), 7.69 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.3 Hz, 2H), 7.49 (t, J = 7.3 Hz, 2H), 7.42 (t, J = 7.2 Hz, 1H), 6.18 (s, 1H), 5.95 (s, 1H), 4.38 (d, J = 4.9 Hz, 1H), 4.18–4.17 (m, 1H), 2.92–2.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 146.1, 142.3, 139.8, 135.3, 131.5, 130.8, 129.1, 128.5, 127.4, 127.2, 125.0 (q, J = 280.8 Hz), 70.6 (q, J = 30.7 Hz), 33.9; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.3 (d, J = 6.0 Hz, 3F). IR (ATR): 3392, 3060, 2926, 1640, 1599, 1409, 1344, 1275, 1163, 1129, 1029, 757 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₁₆F₃O₂+ (M+H)+: 321.1097; Found: 321.1096.

5,5,5-Trifluoro-1-(4-fluorophenyl)-4-hydroxy-2-methylenepentan-1-one (9d)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7d** (273.6 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 49.0 mg of the title compound as a yellow oil (62% yield).

R_f = 0.50 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.81 (m, 2H), 7.17–7.12 (m, 2H), 6.14 (s, 1H), 5.86 (s, 1H), 4.15 (bs, 2H), 2.89–2.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 165.9 (d, J = 255.3 Hz), 142.2, 132.9 (d, J = 2.9 Hz), 132.7 (d, J = 8.7 Hz), 131.4, 124.9 (q, J = 280.8 Hz), 115.8 (d, J = 22.2 Hz), 70.4 (q, J = 30.8 Hz), 33.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, J = 6.0 Hz, 3F), –104.6 (s, 1F). IR (ATR): 3425, 2930, 1644, 1416, 1338, 1275, 1156, 1129, 1029, 850 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₁F₄O₂+ (M+H)+: 263.0690; Found: 263.0684.

1-(4-Chlorophenyl)-5,5,5-trifluoro-4-hydroxy-2-methylenepentan-1-one (9e)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7e** (288.0 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol), TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 57.2 mg of the title compound as a yellow oil (69% yield).

R_f = 0.40 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 6.16 (s, 1H), 5.87 (s, 1H), 4.15 (s, 1H), 3.96 (s, 1H), 2.90–2.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 142.1, 139.7, 135.0, 131.7, 131.4, 128.9, 124.9 (q, J = 281.8 Hz), 70.4 (q, J = 30.7 Hz), 33.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, J = 8.9 Hz, 3F). IR (ATR): 3437, 2930, 1651, 1588, 1478, 1402, 1334, 1275, 1163, 1129, 1092, 790 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₁ClF₃O₂⁺ (M+H)⁺: 279.0394; Found: 279.0389.

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7f** (288.0 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol), TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 65.1 mg of the title compound as a yellow oil (78% yield).

R_f = 0.40 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 6.19 (s, 1H), 5.90 (s, 1H), 4.19–4.13 (m, 1H), 3.85 (d, *J* = 5.8 Hz, 1H), 2.91–2.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 142.0, 138.5, 134.8, 133.0, 132.3, 129.9, 129.9, 128.0, 124.9 (q, *J* = 280.8 Hz), 70.2 (q, *J* = 30.9 Hz), 33.6; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3418, 3071, 2930, 1651, 1420, 1334, 1275, 1163, 1129, 1033, 768 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₀ClF₃NaO₂⁺ (M+Na)⁺: 301.0214; Found: 301.0216.

1-(2-Chlorophenyl)-5,5,5-trifluoro-4-hydroxy-2-methylenepentan-1-one (9g)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7g** (288.0 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 69.4 mg of the title compound as a yellow oil (83% yield).

 $R_{\rm f} = 0.40 \text{ (PE/EA} = 5/1, \text{ v/v)}. {}^{1}\text{H NMR} (400 \text{ MHz, CDCl}_{3}) \delta 7.42-7.41 \text{ (m, 2H)}, 7.36-7.28 \text{ (m, 2H)}, 6.24 \text{ (s, 1H)}, 5.84 \text{ (s, 1H)}, 4.26-4.18 \text{ (m, 1H)}, 3.44 \text{ (s, 1H)}, 2.96-2.71 \text{ (m, 2H)}; {}^{13}\text{C NMR} (100 \text{ MHz, CDCl}_{3}) \delta 198.4, 143.1, 137.7, 135.4, 131.5, 131.2, 130.2, 129.0, 126.7, 125.0 \text{ (q, } J = 280.5 \text{ Hz}), 69.7 \text{ (q, } J = 31.2 \text{ Hz}), 32.3; {}^{19}\text{F NMR} (375 \text{ MHz, CDCl}_{3}) \delta -79.4 \text{ (d, } J = 6.0 \text{ Hz}, 3\text{F}). \text{ IR}(\text{ATR}): 3429, 3071, 2937, 1655, 1435, 1342, 1275, 1163, 1129, 1033, 746 \text{ cm}^{-1}. \text{ HRMS} \text{ (ESI, m/z): calcd for } C_{12}H_{11}\text{CIF}_{3}O_{2}^{+} \text{ (M+H)}^{+}: 279.0394; \text{ Found: } 279.0388.$

1-(4-Bromophenyl)-5,5,5-trifluoro-4-hydroxy-2-methylenepentan-1-one (9h)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7h** (329.0 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 78.9 mg of the title compound as a slight yellow oil (81% yield).

R_f = 0.50 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.60 (m, 4H), 6.17 (s, 1H), 5.87 (s, 1H), 4.15–4.14 (m, 1H), 3.92–3.91 (m, 1H), 2.90–2.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 142.1, 135.5, 131.9, 131.8, 131.5, 128.4, 124.9 (q, J = 280.8 Hz), 70.4 (q, J = 30.9 Hz), 33.7; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, J = 6.0 Hz, 3F). IR (ATR): 3422, 2920, 2855, 1648, 1584, 1398, 1275, 1167, 1133, 1074, 790 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₁BrF₃O₂⁺ (M+H)⁺: 322.9889; Found: 322.9888.

5,5,5-Trifluoro-4-hydroxy-1-(4-iodophenyl)-2-methylenepentan-1-one (9i)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7i** (370.8 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 72.0 mg of the title compound as a colorless oil (65% yield).

R_f = 0.50 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 6.16 (s, 1H), 5.86 (s, 1H), 4.14 (s, 1H), 3.95 (d, J = 4.6 Hz, 1H), 2.89–2.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 142.1, 137.9, 136.0, 131.8, 131.4, 124.9 (q, J = 280.8 Hz), 101.0, 70.3 (q, J = 31.1 Hz), 33.8; ¹⁹F NMR (375 MHz, CDCl₃) δ -79.4 (d, J = 6.0 Hz, 3F). IR (ATR): 3429, 2926, 2855, 1648, 1480, 1390, 1275, 1163, 1126, 1100, 787 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₀F₃INaO₂⁺ (M+Na)⁺: 392.9570; Found: 392.9560.

4-Bromobut-2-en-1-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9j)

Under N₂ atmosphere, to a dried Schlenk tube containing Mn(OAc)₃•2H₂O (168.0 mg, 0.6 mmol, 2.0 equiv.), **7j** (323.1 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 6 h. After which the mixture was cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at -10 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude

product was purified with column chromatography on silica gel ($200 \sim 300$ mesh) and PE/EA ($20/1 \sim 5/1$, v/v) as eluent to afford 45.7 mg of the title compound as a colorless oil (48% yield).

R_f = 0.57 (PE/EA = 4/1 v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.39 (s, 1H), 5.95–5.92 (m, 2H), 5.85 (s, 1H), 4.71 (d, J = 4.3 Hz, 2H), 4.18–4.07 (m, 3H), 3.28 (s, 1H), 2.80–2.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 134.9, 130.4, 130.3, 127.9, 124.9 (q, *J* = 281.2 Hz), 69.9 (q, *J* = 31.2 Hz), 64.7, 43.9, 33.5. ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, *J* = 8.9 Hz, 3F). IR (ATR): 3429, 2922, 2855, 2359, 2259, 1715, 1126, 783 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₂F₃O₃⁺ (M–Br)⁺: 237.0733; Found: 237.0726.

5,5,5-Trifluoro-4-hydroxy-1-(4-methoxyphenyl)-2-methylenepentan-1-one (9k)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7k** (284.4 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 56.0 mg of the title compound as a colorless oil (68% yield).

R_f = 0.30 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 9.2 Hz, 2H), 6.08 (s, 1H), 5.83 (s, 1H), 4.78 (d, *J* = 3.4 Hz, 1H), 4.11 (s, 1H), 3.88 (s, 3H), 2.85–2.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 164.1, 142.2, 132.7, 130.0, 129.0, 125.0 (q, *J* = 280.5 Hz), 113.9, 70.8 (q, *J* = 30.9 Hz), 55.7, 34.1; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, *J* = 6.0 Hz, 3F). IR(ATR): 3414, 2937, 2844, 1636, 1595, 1424, 1260, 1163, 1129, 1029, 794 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₄F₃O₃⁺ (M + H)⁺: 275.0890; Found: 275.0880.

5,5,5-Trifluoro-4-hydroxy-2-methylene-1-(4-nitrophenyl)pentan-1-one (9l)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7l** (297.9mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 69.4 mg of the title compound as a yellow oil (80% yield).

R_f = 0.30 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 9.0 Hz, 2H), 7.89 (d, J = 9.0 Hz, 2H), 6.27 (s, 1H), 5.88 (s, 1H), 4.21–4.20 (m, 1H), 3.37 (s, 1H), 2.96–2.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 150.1, 142.3, 142.2, 133.2, 130.6, 124.6 (q, J = 281.0 Hz), 123.7, 69.9 (q, J = 31.1 Hz), 33.2; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, J = 6.0 Hz, 3F). IR (ATR): 3444, 3109, 2930, 1655, 1416, 1349, 1275, 1163, 1129, 1029, 753 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₀F₃NaNO₃⁺ (M+Na)⁺: 312.0454; Found: 312.0450.

4-(5,5,5-Trifluoro-4-hydroxy-2-methylenepentanoyl)benzonitrile (9m)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7m** (280.2 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 65.0 mg of the title compound as a yellow oil (80% yield).

R_f = 0.30 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.6 Hz, 2H), 7.77 (d, J = 8.6 Hz, 2H), 6.24 (s, 1H), 5.86 (s, 1H), 4.23–4.15 (m, 1H), 3.42 (s, 1H), 2.95–2.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 142.0, 140.7, 132.9, 132.4, 130.2, 124.9 (q, J = 280.3 Hz), 118.0, 116.1, 69.9 (q, J = 30.9 Hz), 33.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, J = 6.0 Hz, 3F). IR (ATR): 3448, 2922, 2851, 2233, 1655, 1402, 1275, 1163, 1129, 1029, 798 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₀F₃NNaO₂⁺ (M+Na)⁺: 292.0556; Found: 292.0567.

5,5,5-Trifluoro-1-(furan-2-yl)-4-hydroxy-2-methylenepentan-1-one (9n)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃+2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7n** (248.7 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 56.0 mg of the title compound as a yellow oil (80% yield).

 $R_{\rm f} = 0.40 \text{ (PE/EA} = 5/1, \text{ v/v)}. ^{1}\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 7.71-7.70 \text{ (m, 1H)}, 7.26-7.25 \text{ (m, 1H)}, 6.59-6.58 \text{ (m, 1H)}, 6.27 \text{ (s, 1H)}, 6.07 \text{ (s, 1H)}, 4.15-4.07 \text{ (m, 1H)}, 2.83-2.65 \text{ (m, 2H)}; ^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 184.7, 151.4, 148.3, 141.8, 130.0, 124.9 \text{ (q, } J = 280.8 \text{ Hz}), 121.9, 112.6, 70.5 \text{ (q, } J = 31.2 \text{ Hz}), 34.0; ^{19}\text{F NMR} (375 \text{ MHz, CDCl}_3) \delta -79.4 \text{ (d, } J = 6.0 \text{ Hz}, 3\text{F}). \text{ IR (ATR)}: 3407, 3142, 2933, 1618, 1465, 1394, 1275, 1163, 1129, 1029, 768 \text{ cm}^{-1}. \text{ HRMS} \text{ (ESI, m/z)}: calcd for C_{10}H_{10}F_3O_3^+ (M + H)^+: 235.0577; Found: 235.0575.$

5,5,5-Trifluoro-4-hydroxy-2-methylene-1-(thiophen-2-yl)pentan-1-one (90)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing $Mn(OAc)_3 \cdot 2H_2O$ (16.1 mg, 0.06 mmol, 20 mol%), **70** (261.0 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3

mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA ($20/1\sim10/1$, v/v) as eluent to afford 61.4 mg of the title compound as a yellow solid (82% yield).

R_f = 0.40 (PE/EA = 5/1, v/v). mp: 42 °C-44 °C (from PE and EA). ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.72 (m, 2H), 7.18-7.16 (m, 1H), 6.10 (s, 1H), 6.05 (s, 1H), 4.46 (s, 1H), 4.14-4.11 (m, 1H), 2.85-2.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 142.4, 142.2, 135.8, 135.6, 129.3, 128.4, 124.9 (q, J = 280.8 Hz), 70.7 (q, J = 30.7 Hz), 34.1; ¹⁹F NMR (375 MHz, CDCl₃) δ -79.3 (d, J = 6.0 Hz, 3F). IR (ATR): 3418, 3101, 2930, 1614, 1513, 1413, 1357, 1275, 1163, 1129, 1055, 727 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₀F₃O₂S⁺ (M+H)⁺: 251.0348; Found: 251.0341.

5,5,5-Trifluoro-4-hydroxy-2-methylene-1-(naphthalen-2-yl)pentan-1-one (9p)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7p** (302.4 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 63.0 mg of the title compound as a white solid (72% yield).

R_f = 0.40 (PE/EA = 5/1, v/v). mp: 42 °C–44 °C (from PE and EA). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.95–7.85 (m, 4H), 7.65–7.55 (m, 2H), 6.21 (s, 1H), 5.97 (s, 1H), 4.42 (d, J = 5.2 Hz, 1H), 4.25–4.15 (m, 1H), 2.96–2.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 142.4, 135.7, 133.9, 132.2, 132.1, 131.7, 129.6, 128.8, 128.7, 128.0, 127.1, 125.5, 125.0 (q, J = 280.7 Hz), 70.6 (q, J = 30.9 Hz), 34.0; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.3 (d, J = 6.0 Hz, 3F). IR (ATR): 3411, 3060, 2933, 1644, 1469, 1357, 1275, 1167, 1126, 1033, 746 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₁₄F₃O₂⁺ (M+H)⁺: 295.0940; Found: 295.0932.

N,N-diphenyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanamide (9q)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7q** (279.0 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (8/1, v/v) as eluent to afford 46.0 mg of the title compound as

a colorless oil (57% yield).

R_f = 0.24 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.39 (s, 1H), 5.80 (s, 1H), 4.31–4.09 (m, 4H), 3.92–3.78 (m, 2H), 2.78–2.61 (m, 2H), 2.08–1.92 (m, 3H), 1.69–1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 135.1, 130.2, 125.0 (q, *J* = 281.0 Hz), 76.5, 76.4 (C'), 70.1 (q, *J* = 30.7 Hz, C), 70.1 (q, *J* = 30.7 Hz, C'), 68.6, 68.6 (C'), 67.4, 67.3 (C'), 33.6, 28.0, 25.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, *J* = 6.0 Hz, 3F), –79.7 (d, *J* = 6.0 Hz, 3F'). IR (ATR): 3384, 2956, 2878, 1715, 1633, 1413, 1316, 1275, 1167, 1126, 1021, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₁H₁₅F₃NaO₄⁺ (M+Na)⁺: 290.0815; Found: 290.0810.

1-Methoxypropan-2-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9r)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (24.5 mg, 0.1 mmol, 20 mol%), **7r** (298.4 mg, 1.5 mmol, 3.0 equiv.) was added DCM (5 mL, 0.1 M), **1a** (117.1 mg, 0.5 mmol) and TBPB (242.7 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 18 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.60 mL, 0.60 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 93.0 mg of the title compound as a colorless oil (73% yield).

R_f = 0.40 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 6.35–6.34 (m, 1H), 5.77–5.74 (m, 1H), 5.19–5.10 (m, 1H), 4.20–4.00 (m, 1H), 3.52–3.36 (m, 6H), 2.88–2.81 (m, 2H), 1.28 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 167.2 (C'), 135.8, 135.3 (C'), 130.0, 129.4 (C'), 125.0 (q, J = 281.5 Hz), 75.0, 75.0 (C'), 70.8, 70.7, 70.6 (q, J = 28.7 Hz), 69.7 (q, J = 29.2 Hz, C'), 59.2, 59.1 (C'), 33.6, 33.3 (C'), 16.5, 16.5 (C'); ¹⁹F NMR (375 MHz, CDCl₃) δ –77.0 (d, J = 8.9 Hz, 3F), –77.4 (d, J = 8.9 Hz, 3F'). IR (ATR): 3422, 2986, 2937, 2889, 1711, 1633, 1454, 1275, 1170, 1126, 1033, 708 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₅F₃NaO₄⁺ (M+Na)⁺: 279.0814; Found: 279.0808.

2,3-Dihydro-1H-inden-1-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9s)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7s** (205.2 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1, v/v) as eluent to afford 66.0 mg of the title compound as a colorless oil (73 % yield).

R_f = 0.30 (PE/EA = 8/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.3 Hz, 1H), 7.35–7.31 (m, 2H), 7.25 (t, J = 6.3 Hz, 1H), 6.32–6.28 (m, 2H), 5.79 (s, 1H), 4.14–4.12 (m, 1H), 3.67 (s, 1H), 3.18–3.11 (m, 1H), 2.96–2.89 (m, 1H), 2.80–2.76 (m, 1H), 2.66–2.52 (m, 2H), 2.20–2.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 144.6, 140.6, 135.3, 130.1, 130.0 (C'), 129.4, 127.0, 125.8, 125.7 (C'), 125.0, 124.9 (q, J = 280.8 Hz), 79.9, 71.2 (q, J = 30.9 Hz, C), 70.1 (q, J = 31.2 Hz, C'), 33.6, 32.4, 30.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5–79.5 (m, 3F, 3F'). IR

(ATR): 3425, 2941, 2855, 1703, 1633, 1435, 1320, 1275, 1170, 1126, 1014, 708 cm⁻¹. HRMS (ESI, m/z): calcd for $C_{15}H_{15}F_3NaO_3^+$ (M+Na)⁺: 323.0866; Found: 323.0867.

Benzo[d][1,3]dioxol-5-ylmethyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9t)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7t** (216 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (8/1, v/v) as eluent to afford 61.0 mg of the title compound as a colorless oil (64% yield).

R_f = 0.33 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.85–6.77 (m, 3H), 6.35 (s, 1H), 5.96 (s, 2H), 5.81 (s, 1H), 5.11 (s, 2H), 4.15–4.07 (m, 1H), 3.10 (s, 1H), 2.78–2.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 148.0, 147.8, 135.0, 130.2, 129.2, 124.9 (q, J = 280.0 Hz), 122.5, 109.1, 108.4, 101.4, 69.9 (q, J = 31.1 Hz), 67.4, 33.5; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, J = 6.0 Hz, 3F). IR (ATR): 3422, 2900, 1707, 1633, 1491, 1446, 1327, 1252, 1167, 1122, 1036, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₄H₁₃F₃NaO₅⁺ (M+Na)⁺: 341.0607; Found: 341.0594.

2-Iodobenzyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9u)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7u** (406.8 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (12/1, v/v) as eluent to afford 83.0 mg of the title compound as a colorless oil (68 % yield).

R_f = 0.31 (PE/EA = 8/1 v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 1H), 7.39–7.34 (m, 2n), 7.06–7.02 (m, 1H), 6.44 (s, 1H), 5.85 (s, 1H), 5.24 (s, 2H), 4.18–4.12 (m, 1H), 3.22 (s, 1H), 2.82–2.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 139.8, 137.9, 134.7, 130.7, 130.3, 130.0, 128.6, 124.9 (q, *J* = 280.7 Hz), 98.7, 71.0, 69.9 (q, *J* = 69.9 Hz), 33.5; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3291, 2919, 2848, 1707, 1633, 1439, 1327, 1275, 1167, 1122, 1036, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₂F₃INaO₃⁺ (M+Na)⁺: 422.9675; Found: 422.9664.

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing with Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7v** (355.5 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (8/1, v/v) as eluent to afford 60.0 mg of the title compound as a colorless oil (56% yield).

R_f = 0.23 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 6.39 (s, 1H), 5.85 (s, 1H), 5.17 (s, 2H), 4.17–4.09 (m, 1H), 2.81–2.59 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 134.8, 134.5, 132.0, 130.4, 130.1, 124.9 (q, J = 279.8 Hz), 122.7, 69.9 (q, J = 31.1 Hz), 66.6, 33.4; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, J = 6.0 Hz, 3F). IR (ATR): 3422, 3528, 2498, 1715, 1633, 1439, 1331, 1275, 1170, 1126, 1014, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₂BrF₃NaO₃⁺ (M+Na)⁺: 374.9814; Found:374.9807.

Naphthalen-1-ylmethyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9w)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7w** (329.8 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol)and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 70.0 mg of the title compound as a colorless oil (72% yield).

R_f = 0.3 (PE/EA = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.9 Hz, 1H), 7.89 (t, *J* = 8.9 Hz, 2H), 7.60–7.52 (m, 3H), 7.47 (t, *J* = 7.5 Hz, 1H), 6.35 (s, 1H), 5.80 (s, 1H), 5.70 (s, 2H), 4.17–4.09 (m, 1H), 3.31 (s, 1H), 2.81–2.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 134.9, 133.9, 131.8, 131.0, 130.5, 129.7, 128.95, 127.87, 126.86, 126.19, 125.40, 124.9 (q, *J* = 280.8 Hz), 123.5, 69.9 (q, *J* = 30.7 Hz), 65.8, 33.5; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, *J* = 6.0 Hz, 3F). IR(ATR): 3444, 3049, 2937, 1707, 1633, 1413, 1320, 1271, 1167, 1126, 1029, 775 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₇H₁₅F₃NaO₃⁺ (M+Na)⁺: 347.0866; Found: 347.0875.

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7x** (210.0 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (15/1, v/v) as eluent to afford 61.0 mg of the title compound as a colorless oil (66% yield).

R_f = 0.54 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.34 (s, 1H), 5.80 (s, 1H), 4.18–4.08 (m, 3H), 2.79–2.58 (m, 3H), 1.71–1.64 (m, 7H), 1.26–1.12 (m, 6H), 0.92–0.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 135.3, 129.8, 124.9 (q, J = 280.5 Hz), 70.1 (q, J = 31.1 Hz), 66.3, 37.4, 33.7, 33.6, 33.4, 26.7, 26.4, 26.0; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, J = 6.0 Hz, 3F). IR (ATR): 3422, 2922, 2851, 1711, 1633, 1413, 1320, 1275, 1174, 1129, 1033, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₂₄F₃O₃⁺ (M+H)⁺: 309.1672; Found: 309.1665.

Adamantan-2-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9y)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7y** (216.0 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1, v/v) as eluent to afford 78.0 mg of the title compound as a colorless oil (82 % yield).

R_f = 0.43 (PE/EA = 8/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.40 (s, 1H), 5.81 (s, 1H), 5.03 (s, 1H), 4.15–4.12 (m, 1H), 3.66 (s, 1H), 2.81–2.60 (m, 2H), 2.06–2.00 (m, 4H), 1.90–1.76 (m, 8H), 1.63–1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 135.9, 129.5, 125.0 (q, *J* = 280.8 Hz), 78.7, 70.2 (q, *J* = 30.7 Hz), 37.4, 36.4, 33.6, 32.1, 32.0, 27.3, 27.1; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3444, 2907, 2855, 1696, 1633, 1413, 1316, 1275, 1174, 1129, 1044, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₂₁F₃NaO₃⁺ (M+Na)⁺: 341.1335; Found: 341.1330.

N,N-diphenyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanamide (9z)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7z** (339.3 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (8/1, v/v) as eluent to afford 54.0 mg of the title compound as a colorless oil (54% yield).

R_f = 0.27 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, *J* = 7.8 Hz, 4H), 7.29–7.25 (m, 2H), 7.19–7.17 (m, 4H), 5.45 (s, 1H), 5.32 (s, 1H), 4.15–4.07 (m, 1H), 2.64–2.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 143.2, 138.6, 129.5, 127.3, 127.2, 125.8, 125.0 (q, *J* = 280.3 Hz), 71.1 (q, *J* = 30.7 Hz), 34.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3288, 2963, 2930, 1644, 1592, 1491, 1364, 1275, 1163, 1126, 1029, 693 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₁₇F₃NO₂⁺ (M+H)⁺: 336.1206; Found: 336.1197.

5,5,5-Trifluoro-4-hydroxy-N,N-dimethyl-2-methylenepentanamide (9aa)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7aa** (227.9 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 40.0 mg of the title compound as a colorless oil (63% yield).

 $R_{\rm f} = 0.30 \text{ (PE/EA} = 2/1, \text{ v/v)}. \ ^{\rm H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \ \delta 5.58 \text{ (s, 1H)}, 5.37 \text{ (s, 1H)}, 4.10-4.02 \text{ (m, 1H)}, 3.14 \text{ (s, 3H)}, 3.03 \text{ (s, 3H)}, 2.64-2.41 \text{ (m, 2H)}; \ ^{\rm 13}\text{C} \text{ NMR} (100 \text{ MHz, CDCl}_3) \ \delta 172.4, 137.6, 125.1 \text{ (q, } J = 280.3 \text{ Hz)}, 121.8, 71.1 \text{ (q, } J = 30.7 \text{ Hz}), 39.8, 35.5, 34.8; \ ^{\rm 19}\text{F} \text{ NMR} (375 \text{ MHz, CDCl}_3) \ \delta -79.4 \text{ (d, } J = 6.0 \text{ Hz}, 3\text{F}). \text{ IR} (\text{ATR}): 3329, 2930, 1610, 1454, 1264, 1167, 1118, 1029, 734 \text{ cm}^{-1}. \text{ HRMS} (\text{ESI, m/z}): \text{calcd for } C_8H_{12}\text{F}_3\text{NNaO}_2^+ \text{ (M+Na)}^+: 234.0712; \text{ Found: } 234.0707.$

1,1,1-Trifluoro-4-tosylpent-4-en-2-ol (9ab)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%), **7ab** (302.7 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column

chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 63.5 mg of the title compound as a colorless oil (72% yield).

R_f = 0.30 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 6.47 (s, 1H), 5.96 (s, 1H), 4.30–4.22 (m, 1H), 2.63–2.46 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 145.0, 134.7, 130.3, 128.6, 128.3, 124.6 (q, J = 277.9 Hz), 69.1 (q, J =31.4 Hz), 31.2, 21.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.7 (d, J = 6.0 Hz, 3F). IR(ATR): 3474, 2930, 2855, 1595, 1431, 1279, 1137, 1081, 734 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₃F₃NaO₃S⁺ (M+Na)⁺: 317.0430; Found: 317.0432.

1,1,1-Trifluoro-4-phenylpent-4-en-2-ol (9ac)

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%) and **7ac** (465.0 mg, 1.8 mmol, 3.0 equiv.) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol), and TBPB (291.3 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 18 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.72 mL, 0.72 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (10 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (30/1~20/1, v/v) as eluent to afford 56.0 mg of the title compound as a colorless oil (43% yield).

R_f = 0.47 (PE/EA = 8/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.31 (m, 5H), 5.49 (s, 1H), 5.28 (s, 1H), 4.00 (bs, 1H), 3.11–2.67 (m, 2H), 2.21 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 139.4, 128.8, 128.3, 126.3, 125.2 (q, *J* = 279.8 Hz), 121.1, 117.0, 68.7 (q, *J* = 30.9 Hz), 36.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3422, 3086, 3030, 2960, 2930, 1633, 1446, 1390, 1029, 701 cm⁻¹. HRMS (ESI, m/z): calcd for $C_{11}H_{12}F_{3}O^{+}$ (M+H)⁺: 217.0835; Found: 217.0828.

1,1,1-Trifluoro-5-methyl-5-phenylhex-4-en-2-ol (9ad)

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%) and **7ad** (540.0 mg, 1.8 mmol, 3.0 equiv.) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol), and TBPB (291.3 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.72 mL, 0.72 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (10 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA ($30/1 \sim 20/1$, v/v) as eluent to afford 62.0 mg of the title compound as a colorless oil (40% yield).

R_f = 0.42 (PE/EA = 8/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.31 (m, 4H), 7.24–7.19 (m, 1H), 5.37 (s, 1H), 5.15 (s, 1H), 3.81–3.73 (m, 1H), 2.28–2.00 (m, 2H), 1.79 (s, 1H), 1.48–1.47 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 146.9, 128.6, 126.5, 126.2, 125.0 (q, *J* = 280.3 Hz), 111.5, 69.4 (q, *J* = 30.7 Hz), 44.4, 32.9, 28.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –80.0 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3444, 2974, 2878, 1640, 1446, 1383, 1275, 1167, 1126, 1029, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₄H₁₇F₃NaO⁺ (M+Na)⁺: 281.1124; Found: 281.1121.

Cyclobutyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9ae)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **4ae** (252.0 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **3a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (15/1~ 8/1, v/v) as eluent to afford 50.0 mg of the title compound as a colorless oil (70% yield).

R_f = 0.36 (PE/EA = 8/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.35 (s, 1H), 5.80 (s, 1H), 5.09–5.02 (m, 1H), 4.15–4.07 (m, 1H), 2.77–2.56 (m, 2H), 2.42–2.35 (m, 2H), 2.18–2.07 (m, 2H), 1.87–1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 135.4, 129.8, 124.9 (q, J = 283.4 Hz), 70.1 (q, J = 30.9 Hz), 70.1, 33.48, 30.34, 13.6; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (bs, 3F). IR (ATR): 3444, 2993, 2952, 1700, 1633, 1435, 1320, 1275, 1163, 1126, 1029, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₄F₃O₃⁺ (M+H)⁺: 239.0890; Found: 239.0881.

6-Hydroxyhexyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9af)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7af** (302.4 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1 ~2/1, v/v) as eluent to afford 40.0 mg of the title compound as a colorless oil (45 % yield).

R_f = 0.45 (PE/EA = 1/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.33 (s, 1H), 5.79 (s, 1H), 4.22–4.09 (m, 3H), 3.65 (t, *J* = 6.4 Hz, 2H), 2.79–2.56 (m, 2H), 2.30 (s, 2H), 1.73–1.70 (m, 2H), 1.59–1.56 (m, 2H), 1.42–1.40 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 135.2, 129.7, 125.0 (q, *J* = 280.8 Hz), 69.8 (q, *J* = 30.9 Hz), 65.6, 62.9, 33.5, 32.6, 28.5, 25.8, 25.4; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3384, 2937, 2863, 1707, 1633, 1435, 1316, 1275, 1167, 1126, 1033, 708 cm⁻¹. HRMS (ESI, m/z): calcd for $C_{12}H_{19}F_3NaO_4^+$ (M+Na)⁺: 307.1128; Found: 307.1117.

6-Oxohexyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9ag)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O

(14.7 mg, 0.06 mmol, 20 mol%), **7ag** (291.6 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1-2/1, v/v) as eluent to afford 39.0 mg of the title compound as a colorless oil (46 % yield).

R_f = 0.61 (PE/EA = 2/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 9.77 (t, J = 1.5 Hz, 1H), 6.33 (s, 1H), 5.80 (s, 1H), 4.22–4.09 (m, 3H), 2.79–2.57 (m, 2H), 2.47 (td, J = 7.2, 1.3 Hz, 2H), 1.76–1.64 (m, 4H), 1.46–1.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 167.9, 135.2, 129.8, 124.9 (q, J = 281.1 Hz), 69.9 (q, J = 30.7 Hz), 65.3, 43.8, 33.5, 28.4, 25.6, 21.7; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.6 (d, J = 6.0 Hz, 3F). IR (ATR): 3425, 2930, 2859, 1711, 1275, 1167, 1126, 1029, 734 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₇F₃NaO₄⁺ (M+Na)⁺: 305.0971; Found: 305.0970.

1-Cyclopropyl-5,5,5-trifluoro-4-hydroxy-2-methylenepentan-1-one (9ah)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃+2H₂O (16.1 mg, 0.06 mmol, 20 mol%) was added DCM (3 mL), **1a** (70.2 mg, 0.3 mmol), **7ah** (225.0 mg, 0.9 mmol, 3.0 equiv.) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 38.7 mg of the title compound as a yellow oil (62% yield).

R_f = 0.50 (PE/EA = 5/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 6.38 (s, 1H), 6.04 (s, 1H), 4.27 (s, 1H), 4.00 (s, 1H), 2.71–2.57 (m, 2H), 2.49–2.43 (m, 1H), 1.16–1.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 204.5, 144.3, 129.3, 125.0 (q, J = 280.8 Hz), 70.5 (q, J = 30.7 Hz), 33.4, 16.8, 12.7, 12.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, J = 6.0 Hz, 3F). IR(ATR): 3437, 3012, 2922, 2855, 1651, 1443, 1398, 1275, 1163, 1129, 1062, 746 cm⁻¹. HRMS (ESI, m/z): calcd for C₉H₁₂F₃O₂⁺ (M+H)⁺: 209.0784; Found: 209.0784.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9ai)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7ai** (218.4 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column

chromatography on silica gel (200~300 mesh) and PE/EA ($15/1 \sim 8/1$, v/v) as eluent to afford 63.0 mg of the title compound as a colorless oil (65% yield).

R_f = 0.50 (PE/EA = 10/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.31 (s, 1H), 5.78 (s, 1H), 4.81–4.75 (m, 1H), 4.11–4.10 (m, 1H), 3.72–3.66 (m, 1H), 2.78–2.59 (m, 2H), 2.04–2.01 (m, 1H), 1.87–1.81 (m, 1H), 1.72–1.69 (m, 2H), 1.53–1.43 (m, 2H), 1.13–0.99 (m, 2H), 0.93–0.89 (m, 7H), 0.77–0.76 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 135.7, 129.4, 129.4 (C'), 124.9 (q, *J* = 272.4 Hz), 76.0, 70.2 (q, *J* = 30.7 Hz), 47.2, 40.8, 34.3, 33.7, 33.6 (C'), 31.6, 26.6, 23.7, 23.6 (C'), 22.1, 20.8, 20.8 (C'), 16.6, 16.5 (C'); ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F'). IR (ATR): 3444, 2960, 2870, 1707, 1633, 1457, 1316, 1275, 1178, 1129, 1036, 712 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₂₅F₃NaO₃⁺ (M+Na)⁺: 345.1648; Found: 345.1643.

(3S,5S,8R,9S,10S,13S,14S)-10,13-Dimethyl-17-oxohenadecahydro-1H-cyclopenta[a]pennanthren-3-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9aj)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7aj** (298.8 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (5/1, v/v) as eluent to afford 81.0 mg of the title compound as a white solid (59 % yield).

R_f = 0.24 (PE/EA = 2/1, v/v). mp: 95 °C–97 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.31 (s, 1H), 5.77 (s, 1H), 4.81–4.73 (m, 1H), 4.11–4.08 (m, 1H), 3.82 (s, 1H), 2.76–2.55 (m, 2H), 2.46–2.39 (m, 1H), 2.11–2.01 (m, 1H), 1.95–1.75 (m, 5H), 1.67–1.19 (m, 12H), 1.09–0.96 (m, 2H), 0.86 (s, 3H), 0.85 (s, 3H), 0.75–0.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 221.7, 167.5, 135.5, 129.5, 124.9 (q, J = 280.8 Hz), 75.1, 70.0 (q, J = 30.9 Hz), 54.3, 51.4, 47.9, 44.7, 36.7, 36.0, 35.7, 35.1, 33.9, 33.5, 31.6, 30.9, 28.3, 27.4, 21.9, 20.6, 13.9, 12.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5–-79.5 (m, 3F, 3F'). IR (ATR): 3370, 2933, 2855, 1718, 1633, 1405, 1312, 1291, 1178, 1122, 1014, 716 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₅H₃₅F₃NaO₄⁺ (M+Na)⁺: 479.2380; Found: 479.2370.

(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetrad ecahydro-1H-cyclopenta[a]pennanthren-3-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9ak)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **4ak** (357.6 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **3a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with

brine, dried over Na_2SO_4 , concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (5/1, v/v) as eluent to afford 99.5 mg of the title compound as a white solid (60 % yield).

R_f = 0.48 (PE/EA = 8/1, v/v). mp: 83 °C–85 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.33 (s, 1H), 5.78 (s, 1H), 5.40 (d, J = 4.3 Hz, 1H), 4.73–4.65 (m, 1H), 4.12–4.09 (m, 1H), 3.75 (s, 1H), 2.77–2.57 (m, 2H), 2.37 (d, J = 7.6 Hz, 2H), 2.03–1.95 (m, 2H), 1.92–1.79 (m, 3H), 1.70–1.43 (m, 7H), 1.40–1.25 (m, 4H), 1.20–1.08 (m, 7H), 1.03–0.95 (m, 6H), 0.91 (d, J = 6.4 Hz, 3H), 0.86 (dd, J = 6.7, 1.8 Hz, 6H), 0.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 139.4, 135.6, 129.6, 124.9 (q, J = 280.8 Hz), 123.2, 75.64, 70.1 (q, J = 30.7 Hz), 56.8, 56.2, 50.1, 42.4, 39.8, 39.6, 38.1, 37.0, 36.7, 36.3, 35.9, 33.6, 32.0, 31.9, 28.4, 28.1, 27.8, 24.4, 24.0, 23.0, 22.7, 21.2, 19.5, 18.8, 12.0; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (bs, 3F). IR (ATR): 3422, 2937, 2870, 1711, 1633, 1465, 1331, 1275, 1170, 1129, 1029, 734 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₃H₅₁F₃NaO₃⁺ (M+Na)⁺: 575.3683; Found: 575.3671.

(8R,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo--2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene-17-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9al)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing with Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7al** (297.6 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 g, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (8/1, v/v) as eluent to afford 86.0 mg of the title compound as a white solid (63% yield).

R_f = 0.43 (PE/EA = 2/1, v/v). mp: 105 °C-107 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.34 (s, 1H), 5.79 (s, 1H), 5.73 (s, 1H), 4.68 (t, *J* = 7.3 Hz, 1 H), 4.14–4.10 (m, 1H), 3.56 (s, 1H), 2.79–2.58 (m, 2H), 2.47–2.19 (m, 5H), 2.05–2.01 (m, 1H), 1.88–1.79 (m, 2H), 1.74–1.57 (m, 7H), 1.44–1.37 (m, 2H), 1.19 (s, 3H), 1.14–1.04 (m, 2H), 0.99–0.93 (m, 1H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 171.0, 167.9, 135.4, 129.7, 129.6 (C'), 125.0 (q, *J* = 276.5 Hz) 124.1, 83.9, 83.9 (C'), 70.1 (q, *J* = 32.4 Hz, C), 70.0 (q, *J* = 32.1 Hz, C'), 53.8, 50.3, 43.0, 38.7, 36.8, 35.8, 35.5, 34.0, 33.6, 33.5 (C'), 32.9, 31.6, 27.6, 23.7, 20.7, 17.5, 12.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F'). IR (ATR): 3355, 2937, 2855, 1711, 1659, 1435, 1376, 1275, 1170, 1126, 1036, 730 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₅H₃₄F₃O₄⁺ (M+H)⁺: 455.2404; Found: 455.2394.

(4S,5'R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5',6a,8a,9-tetramethyl-1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12 ,12a,12b-icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl

5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9am)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing $Mn(OAc)_2 \cdot 4H_2O$ (14.7 mg, 0.06 mmol, 20 mol%), **7am** (373.5 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg,
0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (12/1, v/v) as eluent to afford 108.0 mg of the title compound as a white solid (62 % yield).

R_f = 0.29 (PE/EA = 10/1, v/v). mp: 163 °C–165 °C (from EA and PE). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.33 (s, 1H), 5.79 (s, 1H), 5.40 (d, *J* = 4.0 Hz, 1H), 4.73–4.65 (m, 1H), 4.41 (q, *J* = 7.4 Hz, 1H), 4.12–4.09(m, 1H), 3.64 (s, 1H), 3.49–3.34 (m, 2H), 2.77–2.58 (m, 2H), 2.38 (d, *J* = 7.6 Hz, 2H), 2.03–1.96 (m, 2H), 1.90–1.84 (m, 3H), 1.80–1.42 (m, 12H), 1.33–1.12 (m, 4H), 1.05 (s, 3H), 0.98–0.96 (m, 4H), 0.79–0.78 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 139.5, 135.6, 129.5, 125.0 (q, *J* = 280.0 Hz), 122.9, 109.4, 81.0, 75.6, 70.2 (q, *J* = 30.1 Hz), 67.0, 62.2, 56.6, 50.1, 41.8, 40.4, 39.9, 38.1, 37.0, 36.9, 33.6, 33.6, 32.2, 32.0, 31.6, 30.4, 29.0, 27.8, 21.0, 19.5, 17.3, 16.4, 14.7; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.5 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3422, 2948, 2904, 1711, 1633, 1454, 1331, 1275, 1170, 1129, 1051, 734 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₃H₄₈F₃O₅⁺ (M+H)⁺: 581.3448; Found: 581.3435.

(*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9an)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7an** (297.6 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (15/1 ~ 10/1, v/v) as eluent to afford 131.0 mg of the title compound as a colorless oil (73% yield).

R_f = 0.41 (PE/EA = 8/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.68 (s, 1H), 6.01 (s, 1H), 4.23–4.20 (m, 1H), 2.91–2.72 (m, 3H), 2.62–2.59 (m, 2H), 2.11 (s, 3H), 2.01 (s, 3H), 1.97 (s, 3H), 1.87–1.77 (m, 2H), 1.56–1.06 (m, 23H), 0.88–0.84 (m, 13H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 149.8, 140.4, 134.8, 131.1, 126.7, 125.0, 124.9 (q, J = 280.0 Hz), 123.4, 117.7, 75.3, 70.1 (q, J = 30.8 Hz), 39.5, 37.6, 37.4, 33.8, 32.9, 31.2 (q, J = 27.5 Hz), 28.1, 24.9, 24.6, 22.9, 22.8, 21.1, 20.7, 19.9, 19.8, 13.0, 12.2, 12.0; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.3 (bs, 3F). IR (ATR): 3265, 2930, 2866, 1730, 1636, 1461, 1342, 1275, 1167, 1133, 1051, 731 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₅H₅₅F₃NaO₄⁺ (M+Na)⁺: 619.3945; Found: 619.3960.

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3-yl 5,5,5-trifluoro-4-((dimethyl(phenyl)silyl)oxy)-2-methylenepentanoate (9ao)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7ao** (286.8 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with flash column chromatography on silica gel (200~300 mesh) and PE/EA (6/1, v/v) as eluent to afford 80.0 mg of the title compound as a white solid (46% yield).

R_f = 0.23 (PE/EA = 4/1, v/v). mp: 82 °C–84 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 6.4 Hz, 2H), 7.42–7.36 (m, 3H), 7.30 (d, *J* = 8.6 Hz, 1H), 6.79 (d, *J* = 8.6 Hz, 1H), 6.74 (s, 1H), 6.49 (s, 1H), 5.85 (s, 1H), 4.31–4.25 (m, 1H), 2.93–2.85 (m, 3H), 2.59–2.49 (m, 2H), 2.44–2.41 (m, 1H), 2.33–2.29 (m, 1H), 2.21–1.97 (m, 4H), 1.70–1.44 (m, 6H), 0.93 (s, 3H), 0.42–0.42 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 221.0, 165.2, 148.5, 138.3, 137.7, 136.2, 134.3, 133.8, 131.8, 130.2, 128.08, 126.6, 124.9 (q, *J* = 275.5 Hz), 121.6, 118.7, 70.0 (q, *J* = 30.8 Hz), 50.5, 48.1, 44.3, 38.1, 36.0, 34.7, 31.7, 29.5, 26.6, 25.9, 21.7, 14.0, -1.2, -1.4; ¹⁹F NMR (375 MHz, CDCl₃) δ -78.4 (m, 3F). IR (ATR): 3425, 2922, 2855, 1733, 1636, 1405, 1334, 1282, 1155, 1118, 1044, 700 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₂H₃₇F₃NaO₄Si⁺ (M+Na)⁺: 593.2305; Found:593.2294.

(8R,9S,13S,14S,17S)-3-(benzyloxy)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-1 7-yl 5,5,5-trifluoro-4-hydroxy-2-methylenepentanoate (9ap)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7ap** (342.0 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **1a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (15/1~ 8/1, v/v) as eluent to afford 112.0 mg of the title compound as a white solid (71% yield).

R_f = 0.20 (PE/EA = 8/1 v/v). mp: 106 °C-108 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.37 (m, 4H), 7.35–7.31 (m, 1H), 7.21 (d, J = 8.6 Hz, 1H), 6.80 (dd, J = 8.6, 2.8 Hz, 1H), 6.74 (d, J = 2.8 Hz, 1H), 6.37 (s, 1H), 5.81 (s, 1H), 5.04 (s, 2H), 4.81–4.76 (m, 1H), 4.19–4.11 (m, 1H), 2.90–2.60 (m, 4H), 2.34–2.21 (m, 3H), 1.93–1.89 (m, 2H), 1.84–1.76 (m, 1H), 1.67–1.58 (m, 1H), 1.55–1.27 (m, 6H), 0.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 168.0 (C'), 156.9, 138.0, 137.4, 135.4, 132.7, 129.7, 129.6 (C'), 128.67, 127.98, 127.57, 126.48, 124.9 (q, J = 280.8 Hz), 114.9, 112.4, 84.2, 84.2 (C'), 70.1 (q, J = 30.9 Hz, C), 70.1 (q, J = 30.9 Hz, C'), 70.1, 69.6, 49.8, 43.9, 43.4, 38.6, 37.1, 37.1 (C'), 33.5, 27.7, 27.3, 26.3, 23.4, 12.4 12.3 (C'); ¹⁹F NMR (375 MHz, CDCl₃) δ –79.4 (d, J = 6.0 Hz, 3F'). IR (ATR): 3422, 2922, 2851, 1707, 1610, 1453, 1312, 1275, 1170, 1129, 1025, 731 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₁H₃₅F₃NaO₄⁺ (M+Na)⁺: 551.2380; Found: 551.2389.

3-Methyl-1-phenyl-3-(3,3,3-trifluoro-2-hydroxypropyl)indolin-2-one (11a)

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%), **10a** (170.7 mg, 0.72 mmol, 1.2 equiv.) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (10/1~5/1, v/v) as eluent to afford 183.0 mg of the title compound as a white solid (91% yield, the yield of two diastereomers).

More polar diastereomer: $R_f = 0.32$ (PE/EA = 5/1 v/v). mp: 116 °C–118 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.49 (m, 2H), 7.43–7.39 (m, 3H), 7.26–7.22 (m, 2H), 7.16–7.12 (m, 1H), 6.85–6.82 (m, 1H), 3.66–3.57 (m, 1H), 2.53–2.22 (m, 2H), 1.91 (s, 1H), 1.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.4, 143.8, 134.6, 131.6, 129.8, 128.6, 128.3, 126.8, 124.8 (q, *J* = 280.3 Hz), 123.4, 122.9, 110.0, 68.7 (q, *J* = 31.2 Hz), 46.1, 37.8, 25.8; ¹⁹F NMR NMR (375 MHz, CDCl₃) δ –80.0 (d, *J* = 7.2 Hz, 3F). IR (ATR): 3377, 3056, 2967, 2926, 1703, 1610, 1506, 1379, 1282, 1163, 1126, 1028, 854, 760 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₁₆F₃NO₂Na⁺ (M+Na)⁺: 358.1025; Found: 358.1012.

1,3-Dimethyl-3-(3,3,3-trifluoro-2-hydroxypropyl)indolin-2-one (11b)

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%), **10b** (126.1 mg, 0.72 mmol, 1.2 equiv.) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (5/1~2/1, v/v) as eluent to afford 124.6 mg of the title compound as a light yellow solid (76% yield, the yield of two diastereomers).

More polar diastereomer: $R_f = 0.34$ (PE/EA = 2/1 v/v). mp: 99 °C-100 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.32 (td, J = 7.7, 1.4 Hz, 1H), 7.19-7.16 (m, 1H), 7.10 (td, J = 7.5, 1.0 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 3.58–3.49 (m, 1H), 3.21 (s, 3H), 2.43–2.13 (m, 3H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.9, 143.6, 132.1, 128.7, 124.8 (q, J = 280.2 Hz), 123.0, 122.6, 108.8, 68.4 (q, J = 31.3 Hz), 46.0, 37.4, 26.6, 25.4.¹⁹F NMR (375 MHz, CDCl₃) δ -80.2 (d, J = 7.5 Hz, 3F). IR (ATR): 3377, 3056, 2967, 2930, 1696, 1614, 1495, 1379, 1353, 1308, 1279, 1167, 1122, 1028, 954, 757 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₅F₃NO₂⁺ (M+H)⁺: 274.1049; Found: 274.1041.

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol), **10c** (180.7 mg, 0.72 mmol, 1.2 equiv.) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (10/1~5/1, v/v) as eluent to afford 164.9 mg of the title compound as a light yellow solid (79% yield, The yield of two diastereomers).

More polar diastereomer: $R_f = 0.36$ (PE/EA = 5/1 v/v). mp: 110 °C-112 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.30 (m, 4H), 7.30–7.23 (m, 1H), 7.21–7.17 (m, 2H), 7.08–7.04 (m, 1H), 6.77–6.74 (m, 1H), 4.91 (d, *J* = 1.3 Hz, 2H), 3.66–3.56 (m, 1H), 2.50–2.18 (m, 3H), 1.47 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.9, 142.7, 135.9, 132.1, 128.9, 128.5, 127.8, 127.5, 124.8 (q, *J* = 280.4 Hz), 123.0, 122.7, 109.8, 68.4 (q, *J* = 31.0 Hz), 46.1, 44.1, 37.1, 26.0; ¹⁹F NMR (375 MHz, CDCl₃) δ –80.0 (d, *J* = 7.4 Hz, 3F). IR (ATR): 3384, 3064, 2930, 1692, 1610, 1491, 1383, 1308, 1275, 1163, 1126, 1029, 999, 954, 790 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₉H₁₉F₃NO₂⁺ (M+H)⁺: 350.1362; Found: 350.1357.

7-Fluoro-1,3-dimethyl-3-(3,3,3-trifluoro-2-hydroxypropyl)indolin-2-one (11d)

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol), **10d** (138.9 mg, 0.72 mmol, 1.2 equiv.) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (10/1~5/1, v/v) as eluent to afford 139.1 mg of the title compound as a white solid (80% yield, The yield of two diastereomers).

More polar diastereomer: $R_f = 0.26$ (PE/EA = 5/1 v/v). mp: 111 °C-113 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.06–7.00 (m, 2H), 6.98–6.93 (m, 1H), 3.60–3.47 (m, 1H), 3.41 (d, J = 2.6 Hz, 3H), 2.58 (d, J = 8.3 Hz, 1H), 2.43–2.10 (m, 2H), 1.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.5, 148.2 (d, J = 243.0 Hz), 135.1 (d, J = 3.2 Hz), 130.3 (d, J = 8.1 Hz), 124.7 (q, J = 280.2 Hz), 123.6 (d, J = 6.4 Hz), 118.4 (d, J = 3.1 Hz), 116.7 (d, J = 19.1 Hz), 68.3 (q, J = 31.3 Hz), 46.3 (d, J = 1.9 Hz), 37.5, 29.0 (d, J = 5.9 Hz), 25.5; ¹⁹F NMR (375 MHz, CDCl₃) δ –80.1 (d, J = 7.3 Hz, 3F), –135.5– –135.6 (m, 1F). IR (ATR): 3384, 2974, 2930, 1700, 1633, 1599, 1484, 1375, 1279, 1241, 1167, 1118, 1029, 910, 783, 738 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₃F₄NO₂Na⁺ (M+Na)⁺: 314.0775; Found: 314.0764.

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol), **10e** (138.9 mg, 0.72 mmol, 1.2 equiv.) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (10/1~2/1, v/v) as eluent to afford 147.4 mg of the title compound as a light yellow solid (84% yield, the yield of two diastereomers).

More polar diastereomer: $R_f = 0.21$ (PE/EA = 2/1 v/v). mp: 164 °C-166 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.05–7.00 (m, 1H), 6.94 (dd, J = 7.7, 2.6 Hz, 1H), 6.81 (dd, J = 8.5, 4.1 Hz, 1H), 3.65-3.50 (m, 1H), 3.20 (s, 3H), 2.47 (d, J = 8.4 Hz, 1H), 2.43–2.10 (m, 2H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.5, 159.6 (d, J = 240.2 Hz), 139.5 (d, J = 2.0 Hz), 133. 8 (d, J = 7.7 Hz), 124.7 (q, J = 280.4 Hz), 114.9 (d, J = 23.3 Hz), 110.9 (d, J = 24.4 Hz), 109.3 (d, J = 8.0 Hz), 68.3 (q, J = 31.2 Hz), 46.5 (d, J = 1.8 Hz), 37.3, 26.7, 25.2; ¹⁹F NMR (375 MHz, CDCl₃) δ -80.1 (d, J = 8.2 Hz, 3F), -119.8– -119.9 (m, 1F). IR (ATR): 3396, 2922, 2855, 1692, 1621, 1498, 1375, 1312, 1275, 1234, 1170, 1126, 1029, 898, 812, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₃F₄NO₂Na⁺ (M+Na)⁺: 314.0775; Found: 314.0765.

5-Iodo-1,3-dimethyl-3-(3,3,3-trifluoro-2-hydroxypropyl)indolin-2-one (11f)

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%), **10f** (216.7 mg, 0.72 mmol, 1.2 equiv.) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (10/1~2/1, v/v) as eluent to afford 172.6 mg of the title compound as a white solid (72% yield, the yield of two diastereomers).

More polar diastereomer: $R_f = 0.26$ (PE/EA = 2/1 v/v). mp: 176 °C–178 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.1, 1.7 Hz, 1H), 7.46 (d, J = 1.7 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 3.65–3.54 (m, 1H), 3.18 (s, 3H), 2.42–2.10 (m, 3H), 1.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.1, 143.3, 137.6, 134.6, 131.5, 124.7 (q, J = 280.1 Hz), 110.8, 85.4, 68.3 (q, J = 31.2 Hz), 46.0, 37.1, 26.6, 25.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –80.0 (d, J = 7.3 Hz, 3F). IR (ATR): 3332, 2967, 2926, 1700, 1603, 1491, 1454, 1416, 1349, 1275, 1174, 1126, 1021, 880, 809, 734 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₃F₃INO₂Na⁺ (M+Na)⁺: 421.9835; Found: 421.9829.

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol), **10g** (147.7 mg, 0.72 mmol, 1.2 equiv.) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (10/1~2/1, v/v) as eluent to afford 129.4 mg of the title compound as a white solid (71% yield, the yield of two diastereomers).

More polar diastereomer: $R_f = 0.17$ (PE/EA = 2/1 v/v). mp: 145 °C-147 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.84–6.82 (m, 1H), 6.80–6.78 (m, 2H), 3.81 (s, 3H), 3.62–3.53 (m, 1H), 3.19 (s, 3H), 2.57 (d, *J* = 8.4 Hz, 1H), 2.41–2.10 (m, 2H), 1.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.6, 156.4, 137.0, 133.6, 124.8 (q, *J* = 280.3 Hz), 112.4, 110.4, 109.1, 68.4 (q, *J* = 31.2 Hz), 56.0, 46.5, 37.4, 26.7, 25.4; ¹⁹F NMR (375 MHz, CDCl₃) δ –80.1(d, *J* = 6.4 Hz, 3F). IR (ATR): 3377, 2930, 1692, 1603, 1498, 1435, 1372, 1282, 1167, 1126, 1040, 805, 698 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₄H₁₇F₃NO₃⁺ (M+H)⁺: 304.1155; Found: 304.1143.

1-Methyl-1-(3,3,3-trifluoro-2-hydroxypropyl)-5,6-dihydro-1H-pyrrolo[3,2,1-ij]quinolin-2(4H)-one (11h)

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%), **10h** (144.8 mg, 0.72 mmol, 1.2 equiv.) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300–400 mesh) and PE/EA (10/1~1.5/1, v/v) as eluent to afford 138.1 mg of the title compound as a light yellow solid (77% yield, the yield of two diastereomers).

More polar diastereomer: $R_f = 0.48$ (PE/EA = 1.5/1 v/v). mp: 69 °C-72 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.07–6.96 (m, 3H), 3.76-3.64 (m, 2H), 3.61–3.53 (m, 1H), 2.81–2.78 (m, 2H), 2.41-2.12 (m, 2H), 2.05–1.98 (m, 2H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.8, 139.3, 130.6, 127.4, 124.9 (q, *J* = 280.3 Hz), 122.4, 120.9, 120.4, 68.4 (q, *J* = 31.0 Hz), 47.4, 39.1, 37.3, 25.1, 24.7, 21.2; ¹⁹F NMR (375 MHz, CDCl₃) δ -80.1 (d, *J* = 6.2 Hz, 3F). IR (ATR): 3377, 2963, 2930, 2874, 1692, 1638, 1484, 1394, 1361, 1279, 1163, 1126, 958, 783, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₇F₃NO₂⁺ (M+H)⁺: 300.1206; Found: 300.1201.

Under N₂ atmosphere, to a dried 25 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (29.4 mg, 0.12 mmol, 20 mol%), **10i** (167.8 mg, 0.72 mmol, 1.2 equiv.) was added DCM (6 mL, 0.1 M), **1a** (140.4 mg, 0.6 mmol) and TBPB (291.5 mg, 1.5 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. Then, the reaction was moved to 5 °C, and TBAF (188.3 mg, 0.72 mmol, 1.2 equiv.) was added, and the resulting mixture was stirred for 30 min. Then, the reaction mixture was quenched with water (8 mL), extracted with DCM (3×20 mL) and organic phase was combined and washed with saturated sodium carbonate solution and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (300 400 mesh) and PE/EA (10/1~1.5/1, v/v) as eluent to afford 125.1 mg of the title compound as a light yellow solid (63% yield, the yield of two diastereomers).

More polar diastereomer: $R_f = 0.39$ (PE/EA = 1.5/1, v/v). mp: 118 °C-120 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.2, 1.7 Hz, 1H), 7.85 (dd, J = 1.7, 0.5 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 3.91 (s, 3H), 3.59–3.49 (m, 1H), 3.23 (s, 3H), 2.67 (d, J = 8.3 Hz, 1H), 2.45–2.16 (m, 2H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 181.2, 166.9, 147.8, 132.1, 131.4, 124.8, 124.7 (q, J = 280.4 Hz), 124.0, 108.2, 68.3 (q, J = 31.2 Hz), 52.3, 45.8, 37.2, 26.8, 25.1; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.9 (d, J = 7.5 Hz, 3F). IR (ATR): 3422, 2956, 1707, 1618, 1498, 1457, 1375, 1286, 1256, 1167, 1126, 1025, 917, 835, 775, 738 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₇F₃NO₄⁺ (M+H)⁺: 332.1104; Found: 332.1099.

Synthesis of α-trifluoromethylated allylic alcohols

(E)-1,1,1-trifluoro-4-(2-fluorophenyl)but-3-en-2-ol (13a)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12a** (132.8 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 63.8 mg of the title compound as a colorless oil (73% yield).

R_f = 0.56 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.47 (t, *J* = 7.2 Hz, 1H), 7.31–7.26 (m, 1H), 7.15–7.00 (m, 3n), 6.31 (dd, *J* = 16.2, 6.4 Hz, 1H), 4.69–4.63 (m, 1H), 2.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7 (d, *J* = 250.5 Hz), 130.3 (d, *J* = 8.7 Hz), 129.0 (d, *J* = 2.9 Hz), 128.1 (d, *J* = 2.9 Hz), 124.4 (q, *J* = 273.4 Hz), 124.4 (d, *J* = 3.9 Hz), 123.4, 123.4 (d, *J* = 6.7 Hz), 116.1 (d, *J* = 22.2 Hz), 71.9 (q, *J* = 32.1 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ -78.9 (d, *J* = 6.0 Hz, 3F), -117.0– -117.0 (m, 1F). IR (ATR): 3396, 2922, 1659, 1491, 1457, 1267, 1174, 1125, 969, 883, 753 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₆F₄O⁻ (M–H)⁻: 219.0439; Found:219.0441.

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12b** (132.8 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 52.9 mg of the title compound as a colorless oil (60% yield).

R_f = 0.64 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.28 (m, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 9.8 Hz, 1H), 6.99 (t, *J* = 8.3 Hz, 1H), 6.83 (d, *J* = 15.9 Hz, 1H), 6.20 (dd, *J* = 15.9, 6.1 Hz, 1H), 4.66–4.63 (m, 1H), 2.39 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 163.20 (d, *J* = 246.3 Hz), 137.8 (d, *J* = 8.0 Hz), 135.1 (d, *J* = 2.6 Hz), 130.4 (d, *J* = 8.5 Hz), 123.0 (d, *J* = 2.8 Hz), 124.3 (q, *J* = 280.4 Hz), 122.2, 115.7 (d, *J* = 21.5 Hz), 113.5 (d, *J* = 21.9 Hz), 71.5 (q, *J* = 32.5 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –79.0 (d, *J* = 6.0 Hz, 3F), –112.9– –113.0 (m, 1F). IR (ATR): 3418, 2904, 1588, 1491, 1267, 1178, 1129, 969, 783 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₆F₄O⁻ (M–H)⁻: 219.0439; Found: 219.0441.

(E)-1,1,1-Trifluoro-4-(4-fluorophenyl)but-3-en-2-ol (13c)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12c** (132.8 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 56.3 mg of the title compound as a colorless oil (64% yield).

R_f = 0.56 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 7.6, 5.8 Hz, 2H), 7.04 (t, J = 8.7 Hz, 2H), 6.81 (d, J = 15.9 Hz, 1H), 6.12 (dd, J = 15.9, 6.6 Hz, 1H), 4.66–4.59 (m, 1H), 2.78 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1 (d, J = 248.5 Hz), 135.2, 131.7, 128.7 (d, J = 8.7 Hz), 124.4 (d, J = 280.8 Hz), 120.5, 115.9 (d, J = 21.2 Hz), 71.7 (q, J = 32.4 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –78.9 (d, J = 6.0 Hz, 3F), –112.5–112.5 (m, 1F). IR (ATR): 3377, 2049, 2919, 1662, 1603, 1510, 1264, 1174, 1126, 969, 839, 693 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₆F₄O⁻ (M–H)⁻: 219.0439; Found: 219.0441.

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12d** (147.2 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 69.3 mg of the title compound as a colorless oil (67% yield).

R_f = 0.38 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.18 (m, 1H), 6.95–6.88 (m, 3H), 6.56 (dd, *J* = 16.2, 6.1 Hz, 1H), 4.66 (d, *J* = 5.8 Hz, 1H), 2.58 (d, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2 (dd, *J* = 252.9, 7.2 Hz), 129.6 (t, *J* = 11.1 Hz), 127.5 (t, *J* = 7.2 Hz), 124.3 (d, *J* = 280.8 Hz), 122.6, 113.0 (t, *J* = 14.9 Hz), 111.8 (dd, *J* = 19.7, 6.3 Hz), 72.15 (q, *J* = 32.4 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –78.9 (d, *J* = 6.0 Hz, 3F), –112.6 (t, J = 7.5 Hz, 2F). IR (ATR): 3358, 2907, 2851, 1621, 1461, 1267, 1200, 1118, 995, 876, 782 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₈F₅O⁺ (M+H)⁺: 239.0490; Found: 239.0481.

(E)-1,1,1-Trifluoro-4-(2,4-difluorophenyl)but-3-en-2-ol (13e)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12e** (147.2 mg, 0.8 mmol, 2.0 equiv.) was added DCM (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 60.1 mg of the title compound as a white solid (63% yield).

R_f = 0.68 (PE/EA = 4/1, v/v). mp: 47 °C–49 °C NMR Spectroscopy: ¹H NMR (600 MHz, CDCl₃) δ 7.45 (td, J = 8.6, 6.3 Hz, 2H), 6.95 (d, J = 16.2 Hz, 1H), 6.91–6.85 (m, 2H), 6.85–6.79 (m, 2H), 6.24 (dd, J = 16.1, 6.3 Hz, 2H), 4.68–4.62 (m, 2H), 2.44 (d, J = 5.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 163.1 (dd, J = 249.6, 12.0 Hz), 160.8 (dd, J = 251.8, 11.7 Hz), 129.0 (dd, J = 9.6, 5.0 Hz), 128.1–128.1 (m), 124.3 (q, J = 282.1 Hz), 123.0–122.9 (m), 119.8 (dd, J = 12.1, 4.1 Hz), 111.9 (dd, J = 21.3, 3.7 Hz), 104.5 (t, J = 25.4 Hz), 71.8 (q, J = 32.0 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –79.0 (d, J = 6.0 Hz, 3F), –108.9– –108.8 (m, 1F), –112.7– –112.6 (m, 1F). IR (ATR): 3358, 2915, 1659, 1614, 1502, 1431, 1274, 1174, 1126, 969, 854, 731 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₆F₅O⁻ (M–H)⁻: 237.0344; Found: 237.0346.

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12f** (147.2 mg, 0.8 mmol, 2.0 equiv.) was added DCM (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 71.5 mg of the title compound as a colorless oil (75% yield).

R_f = 0.25 (PE/EA = 10/1, v/v). NMR Spectroscopy: ¹H NMR (600 MHz, CDCl₃) δ 6.94–6.92 (m, 2H), 6.80 (d, *J* = 16.0 Hz, 1H), 6.75 (tt, *J* = 8.8, 2.3 Hz, 1H), 6.22 (dd, *J* = 15.9, 5.9 Hz, 1H), 4.72–4.61 (m, 1H), 2.55 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 163.4 (dd, *J* = 248.5, 13.0 Hz), 138.8 (t, *J* = 9.5 Hz), 134.0 (t, *J* = 2.8 Hz), 124.2 (q, *J* = 32.4 Hz), 123.5, 109.8 (dd, *J* = 20.4, 5.2 Hz), 104.1 (t, *J* = 25.5 Hz), 71.2 (q, *J* = 32.4 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ -78.9 (d, *J* = 6.0 Hz, 3F), -109.6 (t, *J* = 8.9 Hz, 2F). IR (ATR): 3384, 3094, 2904, 1621, 1595, 1439, 1267, 1118, 969, 854, 667 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₆F₅O⁻ (M–H)⁻: 237.0344; Found: 237.0335.

(E)-1,1,1-trifluoro-4-(4-chlorophenyl)but-3-en-2-ol (13g)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12g** (145.6 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 63.2 mg of the title compound as a white solid (67% yield).

R_f = 0.22 (PE/EA = 10/1, v/v). mp: 41 °C–42 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.31 (m, 4H), 6.82 (d, *J* = 15.9 Hz, 1H), 6.18 (dd, *J* = 15.9, 6.1 Hz, 1H), 4.65–4.63 (m, 1H), 2.44 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 134.7, 134.0, 129.1, 128.3, 124.3 (q, J = 279.4 Hz), 121.4, 71.6 (q, J = 32.1 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –79.0 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3399, 2911, 1491, 1267, 1129, 1092, 969, 831 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₇ClF₃O⁻ (M–H)⁻: 235.0143; Found: 237.0146.

(E)-1,1,1-trifluoro-4-(4-bromophenyl)but-3-en-2-ol (13h)

Under N2 atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)3•2H2O

(21.4 mg, 0.08 mmol, 20 mol%) and **5e** (181.6 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **3a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 68.6 mg of the title compound as a white solid (61% yield).

R_f = 0.23 (PE/EA = 10/1, v/v). mp: 55 °C–57 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 16.2 Hz, 1H), 6.19 (dd, *J* = 16.0, 6.3 Hz, 1H), 4.63 (bs, 1H), 2.46 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 134.5, 132.1, 128.5, 124.3 (q, *J* = 280.8 Hz), 122.8, 121.6, 71.6 (q, *J* = 32.4 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –78.9 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3340, 2926, 1655, 1487, 1267, 1178, 1126, 977, 823, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₇BrF₃O⁻ (M–H)⁻: 278.9638; Found: 278.9640.

(E)-1,1,1-trifluoro-4-(4-methyloxyphenyl)but-3-en-2-ol (13i)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12i** (142.4 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 50.1 mg of the title compound as a white solid (54% yield).

R_f = 0.38 (PE/EA = 4/1, v/v). mp: 47 °C–49 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 15.9 Hz, 1H), 6.06 (dd, *J* = 15.9, 6.7 Hz, 1H), 4.63–4.57 (m, 1H), 3.82 (s, 3H), 2.42 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 136.1, 128.4, 128.3, 124.5 (d, *J* = 280.8 Hz), 118.5, 114.3, 72.0 (q, *J* = 32.4 Hz, 03), 55.5; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.0 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3407, 3008, 2960, 2840, 1606, 1513, 1252, 1170, 1126, 1033, 969, 835, 693 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₁H₁₂F₃O₂⁺ (M+H)⁺: 233.0784; Found: 233.0783.

(E)-1,1,1-trifluoro-4-(4-benzyloxyphenyl)but-3-en-2-ol (13j)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12j** (203.2 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was

combined and washed with brine, dried over Na_2SO_4 , concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 62.9 mg of the title compound as a white solid (51% yield).

R_f = 0.40 (PE/EA = 4/1, v/v). mp: 89 °C–91 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.34 (m, 7H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 15.9 Hz, 1H), 6.07 (dd, *J* = 16.0, 6.9 Hz, 1H), 5.09 (s, 2H), 4.64–4.56 (m, 1H), 2.33 (d, *J* = 5.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 136.8, 136.1, 128.8, 128.5, 128.4, 128.2, 127.6, 124.5 (d, *J* = 279.9 Hz), 118.6, 115.2, 71.9 (q, *J* = 32.1 Hz), 70.2; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.0 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3373, 3037, 2922, 2855, 1610, 1513, 1454, 1264, 1170, 1125, 1036, 977, 738, 697 cm⁻¹. HRMS (ESI, m/z): calcd for $C_{17}H_{16}F_3O_2^+$ (M+H)⁺: 309.1097; Found: 309.1089.

(E)-1,1,1-trifluoro-4-((3-trifluoromethyl)phenyl)but-3-en-2-ol (13k)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12k** (172.8 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 70.6 mg of the title compound as a colorless oil (65% yield).

R_f = 0.46 (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.46 (m, 4H), 6.92 (d, *J* = 16.2 Hz, 1H), 6.28 (dd, *J* = 16.0, 6.0 Hz, 1H), 4.68 (d, *J* = 5.8 Hz, 1H), 2.48 (d, *J* = 4.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 136.3, 134.7, 131.4 (q, *J* = 32.1 Hz), 130.1, 129.4, 125.4 (q, *J* = 3.7 Hz), 124.3 (q, *J* = 280.4 Hz), 124.1 (q, *J* = 270.8 Hz), 123.7 (q, *J* = 3.8 Hz), 122.7, 71.4 (q, *J* = 32.1 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –62.8 (s, 3F), –78.9 (d, *J* = 6.0 Hz, 3F). IR (ATR): 3370, 3053, 2922, 1331, 1267, 1167, 1122, 1074, 794, 693 cm⁻¹. HRMS (ESI, m/z): calcd for $C_{11}H_7F_6O^-$ (M–H)⁻: 269.0407; Found: 269.0409.

(E)-1,1,1-trifluoro-4-((4-trifluoromethyl)phenyl)but-3-en-2-ol (13l)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (21.4 mg, 0.08 mmol, 20 mol%) and **12l** (172.8 mg, 0.8 mmol, 2.0 equiv.) was added hexane (1 mL, 0.4 M), TBPB (194.3 mg, 1.0 mmol, 2.5 equiv.) and **1a** (93.6 mg, 0.4 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 77.8 mg of the title compound as a colorless oil (72% yield).

 $R_f = 0.43$ (PE/EA = 4/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.9 Hz, 2H), 7.51 (d, J =

7.6 Hz, 2H), 6.91 (d, J = 15.9 Hz, 1H), 6.30 (dd, J = 15.9, 5.8 Hz, 1H), 4.70–4.67 (m, 1H), 2.66 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 134.7, 130.6 (q, J = 32.4 Hz), 127.2, 125.9 (q, J = 3.9 Hz), 124.3 (q, J = 280.5 Hz), 124.2 (q, J = 270.7 Hz), 123.4, 71.4 (q, J = 32.4 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –62.6 (s, 3F), –78.9 (d, J = 6.0 Hz, 3F). IR (ATR): 3377, 2922, 1618, 1416, 1323, 1167, 1122, 969, 835, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₁H₇F₆O⁻ (M–H)⁻: 269.0407; Found: 269.0407.

Synthesis of α -difluoromethylated alcohols

5,5-Difluoro-1-phenyl-4-hydroxy-2-methylenepentan-1-one (14a)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7b** (257.4 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1 v/v) as eluent to afford 54.3 mg of the title compound as a colorless oil (80% yield).

R_f = 0.25 (PE/EA = 10/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.3 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 6.11 (s, 1H), 5.86–5.58 (m, 2H), 3.98–3.91 (m, 1H), 3.83 (s, 1H), 2.84–2.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 143.1, 137.0, 133.0, 130.9, 130.0, 128.5, 116.1 (t, *J* = 244.2 Hz), 70.9 (t, *J* = 24.1 Hz), 33.7; ¹⁹F NMR (375 MHz, CDCl₃) δ –128.5– –131.2 (m, 2F). IR (ATR): 3452, 3064, 2941, 2292, 2251, 1655, 1446, 1409, 1375, 1330, 1219, 1174, 1140, 1059, 947, 757 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₃F₂O₂⁺ (M+H)⁺: 227.0878; Found: 227.0871.

5,5-Difluoro-1-(4-fluorophenyl)-4-hydroxy-2-methylenepentan-1-one (14b)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **7d** (273.6 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA ($20/1 \sim 10/1$, v/v) as eluent to afford 48.3 mg of the title compound as a colorless oil (66% yield).

R_f = 0.32 (PE/EA = 5/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.79 (m, 2H), 7.18–7.09 (m, 2H), 6.09 (s, 1H), 5.87–5.56 (m, 2H), 4.02–3.85 (m, 1H), 3.65 (m, 1H), 2.86–2.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 165.8 (d, *J* = 252.3 Hz), 143.1, 133.2 (d, *J* = 3.2 Hz), 132.7 (d, *J* = 9.1 Hz), 130.2, 116.1 (t, *J* = 242.0 Hz), 115.7 (d, *J* = 21.9 Hz), 70.9 (t, *J* = 23.7 Hz), 33.7 (t, *J* = 4.1 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –104.9 (m, 1F), –126.2–132.7 (m, 2F). IR (ATR): 3422, 2926, 1648, 1595, 1506, 1413, 1156, 1059, 939, 794 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₂F₃O₂⁺ (M+H)⁺: 267.0603; Found: 267.0604.

5,5-Difluoro-4-hydroxy-2-methylene-N,N-diphenylpentanamide (14c)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7z** (339.3 mg, 0.9 mmol, 3.0 equiv.) was added DCM (3 mL, 0.1 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (3/1, v/v) as eluent to afford 68.2 mg of the title compound as a pale yellow oil (72% yield).

R_f = 0.55 (PE/EA = 3/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.33 (m, 4H), 7.29–7.23 (m, 2H), 7.21–7.16 (m, 4H), 5.71 (td, *J* = 56.0, 4.0 Hz, 1H), 5.40 (s, 1H), 5.29 (s, 1H), 4.01–3.85 (m, 1H), 2.60–2.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 143.3, 139.6, 129.5, 127.3, 125.0, 116.1 (t, *J* = 241.8 Hz), 71.5 (t, *J* = 24.1 Hz), 34.7 (t, *J* = 4.3 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –127.5– –132.3 (m, 2F). IR (ATR): 3366, 2970, 1648, 1588, 1491, 1361, 1252, 1137, 760, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₁₈F₂NO₂⁺ (M+H)⁺: 318.1300; Found: 318.1298.

(8R,9S,10R,13S,14S,17S)-10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a] phenanthren-17-yl 5,5-difluoro-4-hydroxy-2-methylenepentanoate (14d)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing with Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7al** (297.6 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **2a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (8/1, v/v) as eluent to afford 109.0 mg of the title compound as a white solid (83% yield).

R_f = 0.37 (PE/EA = 2/1, v/v). mp: 87.3 °C–88.9 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.31 (s, 1H), 5.86–5.52 (m, 3H), 4.72–4.62 (m, 1H), 3.92 (q, *J* = 12.8, 11.4 Hz, 1H), 2.70 (dd, *J* = 13.3, 2.9 Hz, 1H), 2.51 (dd, *J* = 14.2, 8.6 Hz, 1H), 2.46–2.17 (m, 5H), 2.05–1.98 (m, 1H), 1.90–1.76 (m, 2H), 1.75–1.64 (m, 2H), 1.64–1.52 (m, 3H), 1.47–1.33 (m, 2H), 1.30–1.22 (m, 1H), 1.18 (s, 3H), 1.14–0.90 (m, 3H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 171.1, 167.8, 136.1, 129.0, 124.1, 116.0 (t, *J* = 241.8 Hz), 83.7, 70.4 (td, *J* = 23.7, 4.4 Hz), 53.8, 50.3, 42.9 (d, *J* = 3.0 Hz), 38.7, 36.8 (d, *J* = 2.8 Hz), 35.8, 35.5, 34.0, 33.3 (q, *J* = 3.5 Hz), 32.8, 31.6, 27.6, 23.6, 20.6, 17.5, 12.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –128.5– –131.6 (m, 2F). IR (ATR): 3422, 2945, 1715, 1435, 1312, 1200, 1156, 1058, 943, 731 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₅H₃₄F₂O₄Na⁺ (M+Na)⁺: 459.2317; Found: 459.2315.

(4S,5'R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5',6a,8a,9-Tetramethyl-1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,1 2,12a,12b-icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl

5,5-difluoro-4-hydroxy-2-methylenepentanoatee (14e)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₂•4H₂O (14.7 mg, 0.06 mmol, 20 mol%), **7am** (373.5 mg, 0.6 mmol, 2.0 equiv.) was added DCM (3 mL, 0.1 M), **2a** (70.2 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 18 h. After which the mixture was cooled to 5 °C with ice bath, TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (12/1, v/v) as eluent to afford 112.9 mg of the title compound as a white solid (67 % yield).

R_f = 0.42 (PE/EA = 5/1, v/v). mp: 126.1 °C-127.4 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.29 (d, J = 1.3 Hz, 1H), 5.84–5.52 (m, 2H), 5.39 (d, J = 5.1 Hz, 1H), 4.74–4.61 (m, 1H), 4.40 (dd, J = 14.3, 8.1 Hz, 1H), 3.98–3.84 (m, 1H), 3.50–3.43 (m, 1H), 3.36 (t, J = 10.9 Hz, 1H), 2.69 (dd, J = 14.4, 3.3 Hz, 1H), 2.51 (dd, J = 14.4, 9.0 Hz, 1H), 2.37 (d, J = 7.9 Hz, 2H), 2.06–1.40 (m, 18H), 1.02 (s, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.78 (d, J = 4.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 139.5, 136.3, 122.8, 116.0 (t, J = 244.3 Hz), 109.4, 80.9, 75.3, 70.6 (t, J = 23.8 Hz), 67.0, 62.2, 56.6, 41.7, 40.4, 39.8, 38.1, 37.0, 36.9, 33.4 (t, J = 4.0 Hz), 32.2, 32.0, 31.5, 28.9, 27.8, 20.9, 19.5, 17.2, 16.4, 14.6; ¹⁹F NMR (375 MHz, CDCl₃) δ –128.7– –131.6 (m, 2F). IR (ATR): 3418, 2945, 1710, 1454, 1375, 1327, 1245, 1051, 980, 83 cm⁻¹. HRMS (ESI, m/z): calcd for C₃₃H₄8F₃O₅⁺ (M+H)⁺: 563.3543; Found: 563.3533.

3-(3,3-Difluoro-2-hydroxypropyl)-3-methyl-1-phenylindolin-2-one (14f)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **10a** (85.3 mg, 0.36 mmol, 1.2 equiv.) was added DCM (3 mL, 0.1 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with saturated Na₂CO₃ and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 76.5 mg of the title compound **14f** (81% yield, **14f-a:14f-b** = 48:52).

R_f (**14f-a**) = 0.29 (PE/EA = 5/1, v/v), (37.0 mg, 39% yield, pale yellow oil). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.52 (m, 2H), 7.47–7.40 (m, 3H), 7.30–7.28 (m, 1H), 7.24 (td, *J* = 7.7, 1.4 Hz, 1H), 7.18–7.14 (m, 1H), 6.86–6.84 (m, 1H), 5.83–5.54 (m, 1H), 4.51 (s, 1H), 4.26–4.16 (m, 1H), 2.29–1.93 (m, 2H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.7, 142.4, 134.5, 134.0, 129.8, 128.6, 128.4, 126.6, 123.9, 122.9, 116.1 (dd, *J* = 242.7, 240.6 Hz), 110.1, 68.7 (dd, *J* = 25.0, 23.4 Hz), 46.8, 36.7–36.0 (m), 23.1; ¹⁹F NMR (375 MHz, CDCl₃) δ –126.5– –130.8 (m, 2F). IR (ATR): 3399, 2967, 1707, 1610, 1502, 1379, 1204, 1055, 757, 697 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₁₇F₂NO₂Na⁺ (M+Na)⁺: 340.1120; Found: 340.1116

R_f (**14f-b**) = 0.23 (PE/EA = 5/1, v/v), (39.5 mg, 42% yield, white solid, mp: 136.1 °C–137.4 °C). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.48 (m, 2H), 7.43–7.38 (m, 3H), 7.25–7.19 (m, 2H), 7.17–7.08 (m, 1H), 6.83 (dt, J = 7.5, 0.8 Hz, 1H), 5.55 (td, J = 56.2, 3.9 Hz, 1H), 3.53–3.30 (m, 1H), 2.43–2.13 (m, 2H), 1.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.8, 143.7, 134.8, 132.2, 129.7, 128.3, 128.2, 126.8, 123.2, 123.0, 116.0 (t, J = 242.5 Hz), 109.8, 69.1 (t, J = 23.9 Hz), 46.2, 37.8, 25.7; ¹⁹F NMR (375 MHz, CDCl₃) δ –126.5– –132.5 (m, 2F). IR (ATR): 3399, 2926, 1707, 1454, 1379, 1297, 1208, 1137, 1059, 760 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₈H₁₈F₂NO₂H⁺ (M+H)⁺: 318.1300; Found: 318.1298.

1-Benzyl-3-(3,3-difluoro-2-hydroxypropyl)-3-methylindolin-2-one (14g)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **10g** (90.4 mg, 0.36 mmol, 1.2 equiv.) was added DCM (3 mL, 0.1 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with saturated Na₂CO₃ and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 77.6 mg of the title compound **14g** (78% yield, **14g-a:14g-b** = 50:50).

R_f (**14g-a**) = 0.24 (PE/EA = 5/1, v/v), (39.0 mg, 39% yield, pale yellow oil). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.26 (m, 5H), 7.23–7.16 (m, 2H), 7.08 (td, *J* = 7.5, 1.1 Hz, 1H), 6.78 (dt, *J* = 7.8, 0.9 Hz, 1H), 5.86–5.56 (m, 1H), 5.00 – 4.87 (m, 2H), 4.79 (s, 1H), 4.26–4.17 (m, 1H), 2.22–1.82 (m, 2H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 182.4, 141.4, 135.5, 134.8, 129.1, 128.4, 128.0, 127.3, 123.6, 122.7, 116.2 (t, *J*=236.9 Hz), 109.9, 68.9 (t, *J*=24.2 Hz), 46.7, 44.1, 36.1, 22.7; ¹⁹F NMR (375 MHz, CDCl₃) δ –126.7– –132.9 (m, 2F). IR (ATR): 3358, 2967, 1681, 1491, 1383, 1182, 1055, 943, 805, 753 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₉H₂₀F₂NO₂⁺ (M+H)⁺: 332.1457; Found: 332.1456.

R_f(**14g-b**) = 0.17 (PE/EA = 5/1, v/v). (38.6 mg, 39% yield, white solid, mp: 105.3 °C-106.7 °C). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.25 (m, 5H), 7.19–7.15 (m, 2H), 7.08–7.02 (m, 1H), 6.80–6.69 (m, 1H), 5.55 (td, J = 56.2, 3.9 Hz, 1H), 5.01–4.83 (m, 2H), 3.48–3.33 (m, 1H), 2.43–2.13 (m, 2H), 1.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.3, 142.7, 136.1, 132.5, 128.9, 128.3, 127.7, 127.5, 122.8, 122.8, 115.9 (t, J = 242.3 Hz), 109.7, 68.9 (t, J = 24.0 Hz), 46.2, 44.1, 37.0, 26.1; ¹⁹F NMR (375 MHz, CDCl₃) δ –126.7– –132.9 (m, 2F). IR (ATR): 3418, 2926, 1700, 1491, 1383, 1305, 1182, 1059, 932, 752 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₉H₂₀F₂NO₂⁺ (M+H)⁺: 332.1457; Found: 332.1456.

Methyl 3-(3,3-difluoro-2-hydroxypropyl)-3-methyl-2-oxo-1-phenylindoline-6-carboxylate (14h)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **10i** (83.4 mg, 0.36 mmol, 1.2 equiv.) was added DCM (3 mL, 0.1 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF

(1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with saturated Na₂CO₃ and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel ($200\sim300$ mesh) and PE/EA ($20/1\sim10/1$, v/v) as eluent to afford 71.3 mg of the title compound **14h** (76% yield, **14h-a:14h-b** = 51:49)

R_f (**14h-a**) = 0.28 (PE/EA = 2/1, v/v). (36.8 mg, 39% yield, white solid, mp: 107.2–108.9 °C. NMR Spectroscopy:¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.1, 1.7 Hz, 1H), 7.88 (s, 1H), 6.92 (d, J = 8.2 Hz, 1H), 5.81–5.52 (m, 1H), 4.44 (s, 1H), 4.19–4.01(m, 1H), 3.91 (s, 3H), 3.28 (s, 3H), 2.18–1.80 (m, 2H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 182.4, 166.8, 146.4, 134.8, 131.2, 125.5, 123.9, 116.0 (t, J = 240.6 Hz), 108.4, 68.6 (t, J = 24.1 Hz), 52.3, 46.5, 36.0, 26.9, 22.6; ¹⁹F NMR (375 MHz, CDCl₃) δ –124.8– –133.7 (m, 2F). IR (ATR): 3414, 2926, 1703, 1498, 1457, 1286, 1103, 1051, 977, 772 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₈F₂NO₄⁺ (M+H)⁺: 314.1198; Found: 314.1198.

R_f (**14h-b**) = 0.17 (PE/EA = 2/1, v/v). (34.5 mg, 37% yield, white solid, mp: 128.4 °C–129.8 °C). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.1, 1.7 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 5.81–5.52 (m, 1H), 4.43 (s, 1H), 4.21–4.07 (m, 1H), 3.91 (s, 3H), 3.27 (s, 3H), 2.23–1.76 (m, 1H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.6, 167.0, 147.8, 132.5, 131.2, 124.7, 124.0, 115.8 (t, J = 242.5 Hz), 108.1, 68.8 (t, J = 23.8 Hz), 52.2, 45.9, 37.2, 26.7, 25.2; ¹⁹F NMR (375 MHz, CDCl₃) δ –126.5– –133.0 (m, 2F). IR (ATR): 3422, 2922, 1707, 1498, 1457, 1372, 1286, 1055, 977, 772 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₈F₂NO₄⁺ (M+H)⁺: 314.1198; Found: 314.1197.

3-(3,3-Difluoro-2-hydroxypropyl)-6-methoxy-1,3-dimethylindolin-2-one (14i)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **10j** (73.8 mg, 0.36 mmol, 1.2 equiv.) was added DCM (3 mL, 0.1 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with saturated Na₂CO₃ and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 69.5 mg of the title compound **14i** (82% yield, **14i-a:14i-b** = 51:49)

R_f(**14i-a**) = 0.33 (PE/EA = 2/1, v/v). (35.5 mg, 42% yield, pale yellow oil). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.86–6.73 (m, 3H), 5.86–5.51 (m, 1H), 5.12 (s, 1H), 4.25–4.09 (m, 1H), 3.80 (s, 3H), 3.22 (s, 3H), 2.10–1.76 (m, 2H), 1.46 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 181.9, 156.8, 136.2, 135.6, 116.2 (t, J = 239.6 Hz), 112.6, 110.1, 109.2, 68.5 (t, J = 24.1 Hz), 56.0, 47.1, 35.9, 26.7, 22.3; ¹⁹F NMR (375 MHz, CDCl₃) δ –126.3– –133.4 (m, 2F). IR (ATR): 3384, 2920, 1674, 1498, 1435, 1383, 1286, 1047, 873, 741 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₄H₁₈F₂NO₃+ (M+H)⁺: 286.1249; Found: 286.1249.

 $R_f(14i-b) = 0.19$ (PE/EA = 2/1, v/v). (34.0 mg, 40% yield, white solid, mp: 134.5 °C-136.1 °C). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.86–6.74 (m, 3H), 5.52 (td, J = 56.2, 3.8 Hz, 1H), 3.81 (s, 3H), 3.43–3.31 (m, 1H), 3.18 (s, 3H), 2.30–2.04 (m, 2H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.9, 156.3, 137.1, 134.0, 115.9 (t, J = 242.2 Hz), 112.3, 110.5, 108.9, 68.9 (t, J = 23.8 Hz), 56.0, 46.6, 37.3, 26.6, 25.5; ¹⁹F NMR (375 MHz, CDCl₃) δ –127.7– –132.3 (m, 2F). IR (ATR): 3392, 2930, 1685, 1498, 1290, 1238, 1126, 1036, 883, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₄H₁₈F₂NO₃⁺ (M+H)⁺: 286.1249; Found: 286.1249.

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **12d** (110.4 mg, 0.6 mmol, 2.0 equiv.) was added Hexane (0.75 mL, 0.4 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with saturated Na₂CO₃ and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 39.6 mg of the title compound as a pale yellow oil (60% yield).

R_f = 0.40 (PE/EA = 5/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.16 (m, 1H), 6.94–6.84 (m, 3H), 6.59–6.53 (m, 1H), 5.89–5.59 (m, 1H), 4.48 (dq, *J* = 10.3, 5.2 Hz, 1H), 2.23 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 161.2 (dd, *J* = 250.3, 7.3 Hz), 129.7–129.4 (m), 129.2 (t, *J* = 10.8 Hz), 121.2, 115.5 (t, *J* = 243.8 Hz), 113.4 (t, *J* = 15.1 Hz), 111.7 (dd, *J* = 21.5, 4.8 Hz), 72.8 (t, *J* = 24.4 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –112.7 (s, 2F), –126.3– –130.0 (m, 2F). IR (ATR): 3396, 2926, 1621, 1584, 1464, 1267, 1118, 1062, 999, 909 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₈F₄ONa⁺ (M+Na)⁺: 243.0404; Found: 243.0412.

5,5-Difluoro-1-(4-fluorophenyl)-4-hydroxy-2-methylenepentan-1-one (14k)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **12c** (99.6 mg, 0.6 mmol, 2.0 equiv.) was added Hexane (0.75 mL, 0.4 M), **2a** (64.8 mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with saturated Na₂CO₃ and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 35.4 mg of the title compound as a colorless oil (58% yield).

R_f = 0.32 (PE/EA = 5/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.35 (m, 2H), 7.08–6.98(m, 2H), 6.78 (dd, *J* = 16.0, 1.4 Hz, 1H), 6.16–6.10 (m, 1H), 5.88–5.56 (m, 1H), 4.49–4.20 (m, 1H), 2.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, *J* = 245.5 Hz), 133.8, 132.1 (d, *J* = 3.2 Hz), 128.5 (d, *J* = 8.0 Hz), 122.4, 115.8 (d, *J* = 21.5 Hz), 115.6 (t, *J* = 242.3 Hz), 72.3 (t, *J* = 24.4 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ –113.0 (td, *J* = 9.9, 4.9 Hz, 1F), –126.5–133.0 (m, 2F). IR (ATR): 3411, 2971, 1703, 1603, 1510, 1230, 1051, 969, 854, 746 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₀H₁₀F₃O⁺ (M+H)⁺: 203.0678; Found: 203.0686.

(E)-1,1-Difluoro-4-(4-methoxyphenyl)but-3-en-2-ol (14l)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing $Mn(OAc)_3$ •2H₂O (16.1 mg, 0.06 mmol, 20 mol%) and **12i** (106.8 mg, 0.6 mmol, 2.0 equiv.) was added Hexane (0.75 mL, 0.4 M), **2a** (64.8 mg, 0.6 mmol, 2.0 equiv.)

mg, 0.3 mmol) and TBPB (145.7 mg, 0.75 mmol, 2.5 equiv.) sequentially. The tube was then sealed, and the resulting mixture was stirred at 70 °C in a heating block for 14 h, after which the mixture was cooled to 5 °C with ice bath. TBAF (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.) was added and the mixture was stirred at 5 °C for 0.5 h. The reaction mixture was quenched with water (2 mL) and extracted with DCM (3×10 mL). The organic phase was combined and washed with saturated Na₂CO₃ and brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel ($200\sim300$ mesh) and PE/EA ($20/1\sim10/1$, v/v) as eluent to afford 34.7 mg of the title compound as a pale yellow solid (54% yield).

 R_f = 0.31 (PE/EA = 5/1, v/v). mp: 51.3°C−52.8 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.39−7.29 (m, 1H), 6.93−6.83 (m, 2H), 6.74 (dd, *J* = 15.9, 1.4 Hz, 1H), 6.08−6.02 (m, Hz, 1H), 5.71 (td, *J* = 56.1, 4.1 Hz, 1H), 4.49−4.37 (m, 1H), 2.29 (d, *J* = 4.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 134.7, 128.7, 128.2, 120.3 (t, *J* = 4.1 Hz), 115.7 (t, *J* = 242.7 Hz), 114.2, 72.5 (t, *J* = 24.3 Hz), 55.4; ¹⁹F NMR (375 MHz, CDCl₃) δ −119.5− −135.0 (m, 2F). IR (ATR): 3273, 2956, 1603, 1510, 1469, 1297, 1254, 1144, 809, 701 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₁H₁₃F₂O₂+ (M+H)⁺: 215.0878; Found: 215.0870.

Application of radical C-Si bond activation in the synthesis of antitumor agent Z and its difluoro analog Z'.

Under N₂ atmosphere, to a solution of **15** (2.3 g, 6.8 mmol) and NEt₃ (1.4 mL, 9.5 mmol, 1.4 equiv.) in DCM (35 mL) at -78 °C was added Tf₂O (1.3 mL, 7.5 mmol, 1.1 equiv.) slowly in 15 min, the reaction medium was brought to room temperature and stirred for another 2 h, upon completion, a sodium bicarbonate solution was added to quench the reaction, the resulting mixture was extracted with EA (50 mL×3 times), the combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by chromatography on a silica column with PE/ EA (4/1, v/v) as an eluent. A colorless oil **16** is obtained (3.1 g, 6.6 mmol, 97% yield).

Under N₂ atmosphere, to a stirring solution of **16** (3.03 g, 6.4 mmol), Pd(OAc)₂ (144.0 mg, 0.64 mmol, 10 mol%), dppp (287.9 mg, 0.704 mmol, 11 mol%) and DMF (10 mL) was added NEt₃ (2.9 mL, 19.2 mmol, 3.0 equiv.) and tertbutyl acrylate (4.1 g, 32.0 mmol, 5.0 equiv.). The resulting mixture was stirred at 110 °C for 15 h, quenched by addition of water, extracted with EA (50 mL×3 times), the combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was through a silica plug and used for next step without further purification. To the solution of tertbutyl substituted acrylate in DCM (6 mL) was added TFA (30 mL) slowly, the resulting mixture was open to air and stirred for 12 h. The solvent and excess TFA were removed under reduced pressure, the residue was extracted with EA, the combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was dried over Na₂SO₄, and concentrated with EA, the combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was extracted with EA, the combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by chromatography on a silica column with DCM/ MeOH (10/1, v/v) as an eluent. A pale solid **17** is obtained (1.9 g, 76% yield for two steps).

R_f = 0.5 (DCM/MeOH = 10/1, v/v). mp: 80 °C–82 °C. ¹H NMR (600 MHz, DMSO-*d*₆ (treated with anhydrous Na₂SO₄)) δ 7.78 (d, *J* = 15.8 Hz, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.53–7.44 (m, 2H), 7.04 (d, *J* = 9.7 Hz, 2H), 6.36 (d, *J* = 15.9 Hz, 1H), 3.79 (s, 3H), 3.79 (s, 3H), 2.66 (t, *J* = 7.7 Hz, 2H), 2.54 (t, *J* = 6.9 Hz, 2H), 2.32 (s, 3H), 1.86 (p, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 167.9, 167.9, 167.3, 146.5, 144.1, 141.3, 137.4, 132.3, 131.4, 130.9, 130.6, 129.2, 128.6, 128.5, 126.7, 126.6, 119.2, 52.7, 52.7, 34.6, 34.5, 31.9, 19.4. IR (ATR): 2997, 2941, 2855, 2699, 2594, 1715, 1685, 1607, 1498, 1424, 1282, 1197, 1126, 1073, 936, 824, 689 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₃H₂₅O₆⁺ (M+H)⁺: 397.1646; Found: 397.1635.

(E)-dimethyl 4-(3-(3-methyl-4-(4,4,4-trifluoro-3-hydroxybut-1-en-1-yl)phenyl)propyl)phthalate (18)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (5.3 mg, 0.02 mmol, 20 mol%) and **17** (79.2 mg, 0.2 mmol, 2.0 equiv.) was added DCM (0.5 mL, 0.2 M), TBPB (48.5 mg, 0.25 mmol, 2.5 equiv.) and **3a** (23.4 mg, 0.1 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.12 mL, 0.12 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 27.0 mg of the title compound as a colorless oil (71% yield). The reaction conducted on 0.4 mmol scale afford 123.0 mg of the title compound (68% yield).

R_f = 0.43 (PE/EA = 2/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.48 (s, 1H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.07–6.96 (m, 3H), 6.06 (dd, *J* = 15.7, 6.6 Hz, 1H), 4.65–4.62 (m, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 2.69 (t, *J* = 7.5 Hz, 2H), 2.60 (t, *J* = 7.5 Hz, 2H), 2.34 (s, 3H), 1.99–1.91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 168.0, 146.4, 142.4, 136.1, 134.1, 132.7, 132.5, 131.0, 130.7, 129.4, 129.0, 128.8, 126.5, 126.2, 124.5 (q, *J* = 280.6 Hz), 121.6, 71.9 (q, *J* = 32.1 Hz), 52.8, 52.7, 35.2, 35.1, 32.4, 19.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –79.0 (d, *J* = 8.9 Hz, 3F). IR (ATR): 3448, 3004, 2952, 2863, 1722, 1610, 1498, 1435, 1286, 1167, 1126, 969, 790, 738 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₄H₂₆F₃O₅⁺ (M+H)⁺: 451.1727; Found: 451.1712.

(E)-dimethyl 4-(3-(3-methyl-4-(4,4 -difluoro-3-hydroxybut-1-en-1-yl)phenyl)propyl)phthalate (19)

Under N₂ atmosphere, to a dried 10 mL Schlenk tube equipped with a magnetic stir bar containing Mn(OAc)₃•2H₂O (10.6 mg, 0.04 mmol, 20 mol%) and **17** (158.4 mg, 0.4 mmol, 2.0 equiv.) was added DCM (1.0 mL, 0.2 M), TBPB (97.0 mg, 0.50 mmol, 2.5 equiv.) and **2a** (43.2 mg, 0.2 mmol) sequentially. The tube was sealed, and the resulting mixture was kept stirring at 70 °C in heating block for 14 h. The mixture was then cooled to -10 °C with low temperature bath, TBAF (1.0 M in THF, 0.24 mL, 0.24 mmol, 1.2 equiv.) was added and the resulting mixture was stirred at -10 °C for 1.0 h. The reaction mixture was quenched with water (2 mL), extracted with DCM (3×10 mL) and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (20/1~10/1, v/v) as eluent to afford 59.2 mg of the title compound as a colorless oil (69% yield).

R_f = 0.43 (PE/EA = 2/1, v/v). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.6 Hz, 1H), 7.48 (s, 1H), 7.39–7.32 (m, 2H), 7.01–6.96 (m, 3H), 6.07 (dd, *J* = 15.7, 6.3 Hz, 1H), 5.72 (td, *J* = 56.1, 3.9 Hz, 1H), 4.47–4.45 (m, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 2.69 (t, *J* = 7.5 Hz, 2H), 2.60 (t, *J* = 7.3 Hz, 2H), 2.33 (s, 3H), 1.99–1.91 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 168.7, 168.0, 146.4, 142.0, 136.0, 132.8, 132.7, 132.6, 131.0, 130.7, 129.4, 129.0, 128.8, 126.4, 126.0, 123.4 (t, *J* = 4.0 Hz), 115.7 (t, *J* = 243.6 Hz), 72.5 (t, *J* = 24.2 Hz), 52.8, 52.7, 35.2, 35.0, 32.4, 19.8; ¹⁹F NMR (375 MHz, CDCl₃) δ –125.9– –131.7 (m, 2F). IR (ATR): 3459, 2948, 1722, 1607, 1435, 1286, 1126, 1070, 969, 734 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₄H₂₆F₃O₅Na⁺ (M+Na)⁺: 455.1641; Found: 455.1625.

Under N₂ atmosphere, to a dried 10 mL round bottom flask equipped with a magnetic stir bar containing **18** (58.5 mg, 0.13 mmol) and DCM (1.5 mL) was added DIBAL-H (1.0 mL, 1.0 M in hexane, 1.0 mmol, 8.0 equiv.) slowly in 10 min, the reaction medium was brought to 0 °C gradually. The reaction was quenched with 1.0 M HCl, then the resulting mixture was extracted with EA, and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (1/2, v/v) as eluent to afford 48.1 mg of the title compound as a white solid (94% yield). R_f = 0.22 (PE/EA = 1/1, v/v). mp: 79 °C-81 °C. NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 9.2 Hz, 1H), 7.36-7.32 (m, 2H), 7.22-7.18 (m, 3H), 6.25 (dd, *J* = 15.9, 6.7 Hz, 1H), 4.90 (s, 4H), 4.82 (s, 1H), 3.28 (s, 2H), 3.10 (s, 1H), 2.86-2.79 (m, 4H), 2.53 (s, 3H), 2.17-2.10 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) 143.0, 142.8, 139.5, 136.9, 136.1, 134.1, 132.3, 130.7, 130.2, 130.1, 128.6, 126.5, 126.1, 124.5 (q, *J* = 280.1 Hz), 121.5, 71.9 (q, *J* = 31.9 Hz), 64.5, 64.2, 35.2, 35.2, 32.8, 19.9; ¹⁹F NMR (375 MHz, CDCl₃) -78.9 (d, *J* = 8.9 Hz, 3F). IR (ATR): 3340, 2922, 2855, 1610, 1454, 1267, 1170, 1126, 1010, 969, 831, 734 cm⁻¹. HRMS (ESI, m/z): calcd for

C₂₄H₂₅F₃O₃Na⁺ (M+Na)⁺: 417.1648; Found: 455.1636.

(E)-(4-(3-(4-(4,4-difluoro-3-hydroxybut-1-en-1-yl)-3-methylphenyl)propyl)-1,2-phenylene)dimethanol (difluoro analog Z' of antitumor agent Z)

Under N_2 atmosphere, to a dried 10 mL round bottom flask equipped with a magnetic stir bar containing **19** (43.2 mg, 0.1 mmol) and DCM (1.5 mL) was added DIBAL-H (0.8 mL, 1.0 M in hexane, 0.8 mmol, 8.0 equiv.) slowly in 10 min, the reaction medium was brought to 0 °C gradually. The reaction was quenched with 1.0 M HCl, then the resulting mixture was extracted with EA, and organic phase was combined and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel (200~300 mesh) and PE/EA (1/2, v/v) as eluent to afford 33.5 mg of the title compound as a white solid (89% yield).

 R_f = 0.33 (PE/EA = 1/2, v/v). mp: 79 °C−80 °C. NMR Spectroscopy: ¹H NMR (600 MHz, CDCl₃) δ7.38 (d, *J* = 7.8 Hz, 1H), 7.27−7.24 (m, 2H), 7.17 (s, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.03−6.93 (m, 3H), 6.06 (dd, *J* = 15.9, 6.4 Hz, 1H), 5.71 (d, *J* = 56.1, 4.2 Hz, 1H), 4.71 (s, 4H), 4.51−4.40 (m, 1H), 2.64 (t, 2H), 2.60 (t, *J* = 7.7 Hz, 2H), 2.45 (bs, 3H), 2.33 (s, 3H), 1.97−1.88 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) 143.0, 142.5, 139.6, 136.9, 135.9, 132.7, 132.7, 130.7, 130.1, 130.0, 128.6, 126.5, 126.0, 123.3 (t, *J* = 3.9 Hz), 115.7 (t, *J* = 243.7 Hz), 72.6 (t, *J* = 24.3 Hz), 64.6, 64.2, 35.2, 35.2, 32.8, 19.9; ¹⁹F NMR (375 MHz, CDCl₃) −127.3−−129.6 (m, 2F). IR (ATR): 3355, 3213, 2922, 2855, 1614, 1461, 1372, 1129, 1066, 999, 831 cm⁻¹. HRMS (ESI, m/z): calcd for C₂₄H₂₆F₂O₃Na⁺ (M+Na)⁺: 399.1742; Found: 399.1730.

¹H NMR of **5** (CDCl₃, 400 MHz, 25 °C)

¹⁹F NMR of **5** (CDCl₃, 375 MHz, 25 °C)

028.67-

-220.0 -240.0 -260.0 -280.0 -300.0 -200.0 -100.0 -120.0 -140.0 -160.0 -180.0 -80.0 -60.0 -40.0 -20.0 -0 20.0 40.0 60.0 80.0 100.0

62

Z06'8L- ____

662[.]69-892[.]69-

69

£00.17-

F	
E	
-	S
F	3(
F	Ľ
-	
-	0
F	o.
-	∞
E	4
-	
-	_
F	<u>.</u>
-	0
1	ž
E	ЪĽ.
-	
F	0
-	Ö.
-	4
-	4
-	
-	_
F	0.
-	2
E	2
-	
F	0
-	õ
F	õ
F	4
E	
E	_
F	0
F	80
F	12
E	T,
E	
F	0
F	0
F	0
E	-
E	Ċ
F	_
-	0.
_	9
-	1
-	'
-	
-	0
-	2
-	2
-	'
-	
_	0
_	0.0
-	100.0
	-100.0
	-100.0
	-100.0
	0.0 -100.0
	80.0 -100.0
	-80.0 -100.0
	-80.0 -100.0
	-80.0 -100.0
	0.0 -80.0 -100.0
	50.0 -80.0 -100.0
	-60.0 -80.0 -100.0
	-60.0 -80.0 -100.0
	-60.0 -80.0 -100.0
	0 -60.0 -80.0 -100.0
	0.0 -60.0 -80.0 -100.0
	-40.0 -60.0 -80.0 -100.0
	-40.0 -60.0 -80.0 -100.0
	-40.0 -60.0 -80.0 -100.0
) -40.0 -60.0 -80.0 -100.0
	0.0 -40.0 -60.0 -80.0 -100.0
	20.0 -40.0 -60.0 -80.0 -100.0
	-20.0 -40.0 -60.0 -80.0 -100.0
	-20.0 -40.0 -60.0 -80.0 -100.0
	-20.0 -40.0 -60.0 -80.0 -100.0
	-20.0 -40.0 -60.0 -80.0 -100.0
	0 -20.0 -40.0 -60.0 -80.0 -100.0
	0 -20.0 -40.0 -60.0 -80.0 -100.0
	0 -20.0 -40.0 -60.0 -80.0 -100.0
	0 -20.0 -40.0 -60.0 -80.0 -100.0
	0 -20.0 -40.0 -60.0 -80.0 -100.0
	0.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	0.000 0 -20.0 -40.0 -60.0 -80.0 -100.0
	.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	0.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	0.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	.0 80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	0.0 80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0
	100.0 80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0

O ∐ HF₂C [`]SiMe₂Ph

098⁻371-212⁻321-

¹⁹F NMR of **2a** (CDCl₃, 375 MHz, 25 °C)

¹H NMR of **7j** (CDCl₃, 400 MHz, 25 °C)

967.91-

144.722~

874.17 648.07 217.47 277.477.47 277.477.47 277.47 277.47 277.47 277.47 277.47 277.47 2

158'821 521'52'15 521'52'15 153'155' 158'821 92'158'93 158'821 92'158'93 158'821 158'821 158'821

100 091-

468.4-

976.2 976.2	
951.9- 951.9-	
89L 9- 68L 9- 192 L	
105'1	
-1.624 -7.624 -7.624	
248.77	

¹H NMR of 7x (CDCl₃, 400 MHz, 25 °C)

¹³C NMR of **7**x (CDCl₃, 100 MHz, 25 °C)

	- 9
	10
	50
616.92 616.92	30
SIE.EE SIE.FE	
	-
05515-	- 96
710:00	- 99
258,0/2	-8
	- 08
	- 06
	(mqq)
	110 f1
	120
<128'839	 130
546:5517 065:351~	 140
	150
	- 09
\$88'091	
	18(
	190
	200
	210
	ſ

-19

¹H NMR of **7ae** (CDCl₃, 400 MHz, 25 °C)

¹³C NMR of **7ae** (CDCl₃, 100 MHz, 25 °C)

¹H NMR of **7al** (CDCl₃, 400 MHz, 25 °C)

¹H NMR of **7an** (CDCl₃, 400 MHz, 25 °C)

¹³C NMR of **7an** (CDCl₃, 100 MHz, 25 °C)

¹H NMR of 7ao (CDCl₃, 400 MHz, 25 °C)

¹H NMR of **7af** (CDCl₃, 400 MHz, 25 °C)

-18.482

122

¹H NMR of **9b'** (CDCl₃, 400 MHz, 25 °C)

¹⁹F NMR of **9b'** (CDCl₃, 100 MHz, 25 °C)

619[.]*LL*ε09[.]*LL*-

9/5^{.62-}

-40.0 -60.0 -80.0 -100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -220.0 -240.0 -260.0 -280.0 -300.0 -20.0 0 20.0 40.0 100.0 80.0 60.0

975.97-925.97-

867^{.62-}

028.97-948.97-

+25:⁻270

10†^{.62-} 985^{.62-}

¹⁹F NMR of **9h** (CDCl₃, 375 MHz, 25 °C)

¹⁹F NMR of **9i** (CDCl₃, 375 MHz, 25 °C)

0 .OH | CF₃

+5£.97--79.338

¹⁹F NMR of **9j** (CDCl₃, 375 MHz, 25 °C)

+85^{.62-}

295[.]62-975.946

295[.]62-975.946

975.97<u>-</u> 925.97<u>-</u>

+5£.97-2958.97-80.0 -100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -220.0 -240.0 -260.0 -280.0 -300.0 -60.0 -40.0 -20.0 -0 20.0 40.0 60.0 80.0 100.0

855.97<u>-</u> 222.922

¹⁹F NMR of **9q** (CDCl₃, 375 MHz, 25 °C)

289.67-179.67-529.67-529.67-

956'6L-256'6L-955'6L-955'6L-

965.97<u>-</u> 922.97<u>-</u>

¹⁹F NMR of **9t** (CDCl₃, 375 MHz, 25 °C)

095[.]6*L*-

-80.0 -100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -220.0 -240.0 -260.0 -280.0 -300.0 -60.0 -40.0 -20.0 0 20.0 40.0 60.0 80.0 100.0

0 ∥ ∕ОН O. | CF₃ Br

895^{.6}L-

095[.]62-\$75[.]62-

¹⁹F NMR of **9x** (CDCl₃, 375 MHz, 25 °C)

-300.0 -280.0 -100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -220.0 -240.0 -260.0 -80.0 -60.0 -40.0 -20.0 Fo 20.0 40.0 60.0 80.0 100.0

095[.]6*L*-\$75[.]6*L*-

¹⁹F NMR of **9y** (CDCl₃, 375 MHz, 25 °C)

O ∐ OH O´ Ĭ $|_{CF_3}$

822.97-822.97-300.0 -260.0 -280.0 -240.0 -220.0 -200.0 -180.0 -160.0-140.0 -120.0 -100.0-80.0 -60.0 -40.0 -20.0 0 20.0 40.0 60.0 80.0 100.0

597^{.62-}

8/5.67-285.67-

\$69[.]6*L*-6*L*9[.]6*L*-

215.97--79.496

¹⁹F NMR of **9ad** (CDCl₃, 375 MHz, 25 °C)

*96[.]6*L*-

*85^{.62-}

95.97<u>-</u> 95.520

095.67-442.97¹H NMR of **9ah** (CDCl₃, 400 MHz, 25 °C)

LS#'6L-

222.27-952.67-222.67-574.67-

-300.0

-100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -220.0 -240.0 -260.0 -280.0

-80.0

-60.0

-40.0

-20.0

0

20.0

40.0

60.0

80.0

100.0

825.67-184.67-

¹⁹F NMR of **9ak** (CDCl₃, 375 MHz, 25 °C)

075.67- ____

-280.0 -300.0 -260.0 -240.0 -220.0 -100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -80.0 -60.0 -40.0 -20.0 -0 20.0 40.0 60.0 80.0 100.0 ¹H NMR of **9al** (CDCl₃, 400 MHz, 25 °C)

È

¹⁹F NMR of **9al** (CDCl₃, 375 MHz, 25 °C)

0 Η, OH H, ∕ ∕′Ó Me Ĥ ĊF₃ . Me 0

215'6L-96†'6L-L\$t'6L-1tt'6L-

¹⁹F NMR of **9am** (CDCl₃, 375 MHz, 25 °C)

255.67-252.65-

¹H NMR of **9an** (CDCl₃, 400 MHz, 25 °C)

¹⁹F NMR of **9an** (CDCl₃, 375 MHz, 25 °C)

908.67- ____

-240.0 -260.0 -280.0 -300.0-220.0 -160.0 -180.0 -200.0 -100.0 -120.0 -140.0 -80.0 -60.0 -40.0 -20.0 -o 20.0 40.0 60.0 80.0 100.0

0 Мe Н Ö н_н ∠OSiMe₂Ph O ĊF₃

758.97-258.97-258.97-

-300.0 -280.0 -260.0 -240.0 -220.0 -200.0 -180.0 -160.0 -140.0 -120.0 -100.0 -80.0 -60.0 -40.0 -20.0 -0 20.0 40.0 60.0 80.0 100.0 ¹H NMR of **9ap** (CDCl₃, 400 MHz, 25 °C)

¹⁹F NMR of **9ap** (CDCl₃, 375 MHz, 25 °C)

687[.]6*L*-£*L*7[.]6*L*-577[.]6*L*-607[.]6*L*-

-300.0 -280.0 -260.0 -240.0 -220.0 -160.0 -180.0 -200.0 -120.0 -140.0 -100.0 -80.0 -60.0 -40.0 -20.0 0 20.0 40.0 60.0 80.0 100.0

₩86'62->

-300 -280 -260 -240 -220 -200 . -180 -160 -140 -120 -100 f1 (ppm) -89 Ŀ -99-140 20 -8 -0 -8 . -9--8 2 -8 101

		, - <u>1</u> 0
	1	-0
		-9
		20-
-25,989		-92
-37.142		40
746.083		-03
970'891		-9
L68.253		
976.92 976.92		-12
125.77 172.77		-8
		-8
		100 f1 (pp
978'601- /20'7712		110
122.661		120
125.207		130
849,721-		140
819'82L- 216'82L-		150
132.061		
142,683		0
		F ^S
ere.08r—		-81
		190
		200
		210
		E.

210'08-266'62-> -300 -280 -240 -260 -220 -200 -180 -160 -140 -120 f1 (ppm) -8 -89 -40 18 -0 -8 -9--8 -8 102

Me N CF ₃	10 0 -10
~52°53¢ ~50°636	30
-37,142	
120.94—	20
68:004 9004 9004	
516.28 291.77 292.28	-8
267.011-	
874,721 808,821 908,121 128,125,121 128,125,121 128,121 128,121 128,121 128,121 128,121 128,121 128,12	130 120 130
245.541 272.461 272.461 272.461	
	160
	170
arr.08r-	180
	190
	50-
	210

¹⁹F NMR of **11f** (CDCl₃, 375 MHz, 25 °C)

286.07->

-340 -320 -300 -280 -240 -260 -220 -140 -160 -180 -200 1 -100 -120 f1 (ppm) -89 -99 -40 -20--0 -8 -9 -8 -8 100 120 140

Me OH Me CF ₃ OMe		10 - 10
~52°394		30
068.78—		-97
-46.469		-6
255.97		-8
292.89 272.89 255.89		-02
091.72 091.72		-8
		-8
		(ppm)
454.017		- Off
285.211	_	120
898 521- 852 921- 609 721-		130
210.751 633.551		140
		150
156.421		160
		, 0/1
695.08r—		180
		190
		200
		210

-80,125 -80,108

¹H NMR of **11h** (CDCl₃, 400 MHz, 25 °C)

¹⁹F NMR of **11h** (CDCl₃, 375 MHz, 25 °C)

\$60.08->

976.976

-300 -280 -260 -240 -220 -200 -180 -160 -140 -120 f1 (ppm) -8 -99 -40 -29 -0 -8 -9--8 -8 100

L1'+35 L1'+9+6 L1'865 L3'865 L3'022 L2'023 L12'160 CDC13 L12'313 CDC13			
LLZ: +01 Lt+ +01 L19: +01 L08: 111 056: 111 +L6: 111 52L: 611 6LL: 611 098: 611 098: 611			
\$8+'121 E96'221 266'221 E10'E21 ESE'E21 122'521 060'221 \$60'821 \$56'821 \$86'821 070'621		-	
250'621 1/28'651 676'651 055'191 679'191 981'791 997'791 158'691 166'691			

856[.]8⁷-242.942

-220.0 -240.0 -260.0 -280.0 -300.0 -200.0 -80.0 -100.0 -120.0 -140.0 -160.0 -180.0 -60.0 -40.0 -20.0 -o 20.0 40.0 60.0 80.0 100.0

246.87-249.926

-220.0 -240.0 -260.0 -280.0 -300.0 -200.0 -80.0 -100.0 -120.0 -140.0 -160.0 -180.0 -60.0 -40.0 -20.0 -0 20.0 40.0 60.0 80.0 100.0

L66'8L-

-240.0 -260.0 -280.0 -300.0 -220.0 -200.0 -180.0 -100.0 -120.0 -140.0 -160.0 -80.0 -60.0 -40.0 -20.0 -0 20.0 40.0 60.0 80.0 Ē 100.0

L66'8L-

-220.0 -240.0 -260.0 -280.0 -300.0 -200.0 -80.0 -100.0 -120.0 -140.0 -160.0 -180.0 -60.0 -40.0 -20.0 -0 20.0 40.0 60.0 80.0 100.0

60.0

80.0

100.0

	- 30	
	-280.0	
ОН	260.0	
CF ₃	0.0	
F ₃ C	0 -24	
	-220.	
	-200.0	
	0.0	
	-160	
	-140.0	
	120.0	
	0.00	
70(1)	-10	
		-21.5
	0.09-	- 00.£
	-20	
	- o	
	20.0	
	0.0	
	80.0	
	100.0	

 £81'1£1

 151'1£1

 £60'1£1

 £70'61

 165'0£1

 22'0£1

 87'0£1

 195'671

 265'671

 812'671

 281'671

 25'871

-260.0 -280.0 -300.0 -240.0 -220.0 -100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -80.0 -60.0 -40.0 -20.0 0 20.0 40.060.0 80.0 100.0

¹H NMR of **14b** (CDCl₃, 400 MHz, 25 °C)

¹⁹F NMR of **14b** (CDCl₃, 375 MHz, 25 °C)

262.151-1 -131,260 541,161-111.151-130.531 665.051-130.382 -130'320 729.367 -129,339 612.621-129,191 909'821-878,821-128 458 024.821-7 279.401-856 701-749.401--104.934 029.401-7 606.401--968't01-1

-300 -280 -260 -240 -220 -200 -180 -160 -120 -140 -100 f1 (ppm) -80 00--40 -20 0 20 40 60 80 100

¹H NMR of **14c** (CDCl₃, 400 MHz, 25 °C)

¹³C NMR of **14c** (CDCl₃, 100 MHz, 25 °C)

¹⁹F NMR of **14c** (CDCl₃, 375 MHz, 25 °C)

-300 -280 -260 -240 -220 -200 -180 -100 -120 -140 -160 f1 (ppm) -80 09--40 -20 0 20 40 60 80 100

¹⁹F NMR of **14d** (CDCl₃, 375 MHz, 25 °C)

131 482	-1
131 464	
975.151	
CICICI	
200 001	
901.001	
130 201	
982 021	
130 555	
217.921	
129.684	-7
079'671	
219'671	
129.564	-1
929 671	-1
267 671	
COP 671	
200 VCE	
070'071	
900 801	
128,881	-1
28.851	
128,804	
927.821	
SST.821	
SU1.821	<u></u>

-300 -260 -280 -220 -240 -100 -120 -140 -160 -180 -200 f1 (ppm) -80 -09-40 -20 -0 20 40 60 80 100

¹H NMR of **14e** (CDCl₃, 400 MHz, 25 °C)

-300

¹⁹F NMR of **14f-b** (CDCl₃, 375 MHz, 25 °C)

1-131 403
197.151-1
545.151-1
115,151
627.051-1
269'081-1
185.051-
130.547
985.821
893.821-
-128 432
1128.411
129.721-
743.721-7

-300 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm) -80 -09-40 -20 -0 20 40 09 - 08 100

982'ZEL-1 -132.748 -132,636 865.551---132.030 266'121-1 678.151-248.151-1 -127,809 982'221-299'721-7 829.721--£30.721--127.029 906'921-288.921-7

-300 -280 -260 -240 -220 -200 -180 -160 -140 -120 -100 f1 (ppm) -80 00--40 -20 0 20-40 60 -8 10

1-135.040 -132.004 688.151-998.151-972.181--131,243 921.121-E60.151---128,812 882.821--128'665 -128,639 128.051 128,007 106.721-778.721-7

-300 -280 -260 -240 -220 -200 -180 -160 -140 -120 -100 f1 (ppm) -80 00--40 -20 0 20 40 60 80 100

9	8	L	5	S	L	÷	1		
2	9	L	5	e	1	-	1		
Z	3	9	2	S	L	-	1		
9	0	9	5	e	L	-	1	ř	
9	e	0	5	e	1	-	1		
6	6	6	ŀ	3	L	-	1		
9	8	8	1	e	L	-	1	l	
6	4	8	٦	e	L	-	1	L	
2	L	6	1	2	L	÷	1	ĩ	
9	7	6	Ľ	2	1	-	4	l	
9	Z	8	'2	2	ŀ	-	1		
2	0	8	1	2	ŀ	-	1		
9	L	Z	'2	2	L	ŕ	1	ľ	
2	6	4	2	2	L	-	1		
6	9	0	2	2	L	-	1		
9	7	0	1	2	1	ř	1		

-300 -280 -260 -240 -220 -200 -120 -140 -160 -180 -100 f1 (ppm) -80 00--40 -20 -0 20 40 09 80 100

10.0

7-131.394 295.151--131.244 212.151-029.021-869.051--674.051--130,449 601'6Z1-129.081 896'821--128.934 295.392 --128.320 861.821--071.821-7 -160 -155 -150 -145 -140 -135 -130 f1 (ppm) -125 -120 -115 -110 -105 -100 -95

¹H NMR of **14j** (CDCl₃, 400 MHz, 25 °C)

¹³C NMR of **14j** (CDCl₃, 150 MHz, 25 °C)

209'22 992'22 826'24 6'94 209'22 97'22 97'22 97'22 209'22 97'20 97'20 97'20 97'20 97'20 97'20 97'20 97'20 97
9999 1111 662 1111 168 1111 200 011 200 011 200 011 200 011 200 001 200 000 200 00000000

¹⁹F NMR of **14j** (CDCl₃, 375 MHz, 25 °C)

¹H NMR of **14k** (CDCl₃, 400 MHz, 25 °C)

¹³C NMR of **14k** (CDCl₃, 100 MHz, 25 °C)

020.27	
1-72,265	
-72.510	
728'945	
091'22/	
614 TT	

191.511 192.511 193.511 193.51 193.52

781.481~ 781.481~

¹⁹F NMR of **14k** (CDCl₃, 375 MHz, 25 °C)

¹H NMR of **14l** (CDCl₃, 400 MHz, 25 °C)

¹³C NMR of **14l** (CDCl₃, 100 MHz, 25 °C)

¹⁹F NMR of **14l** (CDCl₃, 375 MHz, 25 °C)

996[.]82-576[.]82-

-260.0 -280.0 -300.0 -240.0 -220.0 -200.0 -180.0 -160.0 -100.0 -120.0 -140.0 -80.0 -60.0 -40.0 -20.0 0 20.0 40.0 60.0 80.0 100.0

976[.]8⁷-200.⁸⁷-

-300.0 -280.0 -260.0 -240.0 -220.0 -200.0 -120.0 -140.0 -160.0 -180.0 -100.0 -80.0 -60.0 -40.0 -20.0 -o 20.0 40.0 60.0 80.0 100.0

¹H NMR of difluoro analog Z' of antitumor agent Z (CDCl₃, 400 MHz, 25 °C)

Supplementary References

- [1] Chung, W. J. & Welch, J. T. A general method for synthesis of trifluoroacetyltrialkyl(aryl)silanes and the Sakurai reaction of fluorinated acylsilanes with allyl silanes. *J. Fluorine Chem.* **125**, 543–548 (2004).
- [2] Xiao, F. Liu, C. Wang, D. Huang, H. & Deng, G -J. Concise synthesis of ketoallyl sulfones through an iron-catalyzed sequential four-component assembly. *Green Chem.* 20, 973–977 (2018).
- [3] Guo, H -M. Zhou, Q -Q. Jiang, X. Shi, D -Q. & Xiao, W -J. Catalyst- and Oxidant-Free Desulfonative C-P Couplings for the Synthesis of Phosphine Oxides and Phosphonates. *Adv. Synth. Catal.* 359, 4141–4146 (2017).
- [4] Jecs, E. & Diver, S. T. Toward the synthesis of amphidinolide P: optimization of a model ene–yne metathesis fragment coupling. *Tetrahedron Lett.* **55**, 4933–4937 (2014).
- [5] Shrestha, T. B. Troyer, D. L. & Bossmann, S. H. Strategies for Large-Scale Synthesis of Coelenterazine for in Vivo Applications. *Synthesis*, **46**, 646–652 (2014).
- [6] Trost, B. M. & Schmuff, N. R. Stereochemistry of allyl sulfones. On the structure of metalated allyl sulfones and their stereochemistry of alkylation. J. Am. Chem. Soc. 107, 396–405 (1985).
- [7] Paquette, L. A. Gilday, J. P. & Maynard, G. D. Intramolecular nucleophilic addition to unsaturated carbon. Dependence of cyclization efficiency on the method of carbon-carbon bond cleavage utilized to generate the reactive species. *J. Org. Chem.* 54, 5044–5053 (1989).
- [8] Geoghegan, K. Evans, P. Rozas, I. & Alkorta, I. Regioselectivity in the Intramolecular Heck Reaction of a Series of Cyclic Sulfonamides: An Experimental and Computational Study. *Chem. Eur.*, J. 18, 13379–13387 (2012).
- [9] Larson, E. G. & Connell, G. Anisotropic Conductive Adhesive Compositions. PCT Int. Appl. 2008011452, 2008.
- [10] Yang, Z. & Tang, A. Synthesis of Perfluoroalkyl-Substituted Oxindoles through Organophotoredox-Catalyzed Perfluoroalkylation of N-arylacrylamides with Perfluoroalkyl Iodides. *Synlett* **30**, 1061–1066 (2019).
- [11] Biadatti, T. Thoreau, E. Voegel, J. & Jomard, A. Analogues of Vitamin D. WO2004020379A1, (2004)
- [12] Harrowven, D. C. et al. Potassium carbonate-silica: a highly effective stationary phase for the chromatographic removal of organotin impurities. *Chem. Commun.* 46, 6335–6337 (2010).
- [13] Wu, K., Wang, L., Colón-Rodríguez, S., Flechsig, G.-U. & Wang, T. Amidyl Radical Directed Remote Allylation of Unactivated sp3 C-H Bonds by Organic Photoredox Catalysis. *Angew. Chem. Int. Ed.* 58, 1774-1778 (2019).
- [14] Zhang, J., Li, Y., Zhang, F., Hu, C.& Chen, Y. Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp3)-H Functionalization under Mild Reaction Conditions. *Angew. Chem. Int. Ed.* 55, 1872-1875 (2016)
- [15] Wei, W.-T. et al. Synthesis of Oxindoles by Iron-Catalyzed Oxidative 1,2-Alkylarylation of Activated Alkenes with an Aryl C(sp2)-H Bond and a C(sp3)-H Bond Adjacent to a Heteroatom. *Angew. Chem. Int. Ed.* 52, 3638-3641 (2013).
- [16] Li, Y.-M. et. al. Direct Annulations toward Phosphorylated Oxindoles: Silver-Catalyzed Carbo-Phosphorus Functionalization of Alkenes. Angew. Chem. Int. Ed. 52, 3972-3976 (2013).
- [17] Li, G. et. al. Nickel-Catalyzed Decarboxylative Difluoroalkylation of α,β-Unsaturated Carboxylic Acids. Angew. Chem. Int. Ed. 55, 3491-3495 (2016).
- [18] Cui, Z., Shang, X., Shao, X.-F. & Liu, Z.-Q. Copper-catalyzed decarboxylative alkenylation of sp3 C–H bonds with cinnamic acids via a radical process. *Chem. Sci.* 3, 2853-2858 (2012)