Cellular census of human fibrosis defines functionally distinct stromal cell types and states

Authors

Thomas B Layton¹, Lynn Williams¹, Fiona McCann¹, Mingjun Zhang², Marco Fritszche¹, Huw Colin-York³, Marisa Cabrita¹, Michael T H Ng³, Marc Feldmann¹, Stephen Samson¹, Dominic Furniss⁴, Weilin Xie^{2,5}, Jagdeep Nanchahal^{1†}

Affiliations

¹The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK

²Department of Inflammation Research, Celgene Corporation, San Diego, California, United States of America.

³MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK.

⁴Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, UK.

⁵Present address: Institute of Materia Medica, Shandong First Medical University & Shandong, Academy of Medical Sciences, Jinan, Shandong Province, P R China

+Corresponding author. Email: jagdeep.nanchahal@kennedy.ox.ac.uk

Supplementary Figure 1. Quality control for single cell RNA-seq of Dupuytren's nodules

a-b, tSNE projections showing the number of genes and UMIs, percentage of mitochondrial reads and patient donors for 36,864 cells from the first patient batch (a) (n= 6 DD patients) and 7,332 cells from the second (b) patient batch (n = 6 DD patients) in single cell RNA-seq. Coloured by z-score values of QC metrics. **c-d**, Bar plots and box and whisker plots showing the proportion and number of cell types in first (c) and second (d) six patients in single cell RNA-seq. **e-f**, For box and whisker plots, range 90-5200 cells, median 280 cells and box bounds 155-1950 representing first and third quantiles. Violin plots showing quality control metrics in first (e) and second six patients (f) in single cell RNA-seq. Y axis in log(UMI+1) for nGene and nUMI and percentage of cells for mitochondrial reads. DD is prefix for DD patient IDs (n = 12 DD patients).

Supplementary Figure 2. Fibroblasts and myofibroblast have distinct signatures in human fibrosis.

a, Heatmap showing specificity of DD-associated GWAS loci in immune and mesenchymal cell populations in single cell RNA-seq of DD nodules using SNPSea. Heatmap represents zscore expression of DD GWAS loci associated genes (n=12 DD patients). **b**, Violin plots showing expression of DD GWAS associated genes in scaled log(UMI+1) in cell types in Dupuytren's nodules. c, Volcano plot showing differentially expressed genes (2-sided Wilcoxon Rank Sum Test) between myofibroblast and fibroblasts in single cell RNA-seq with FDR corrected adjusted *p*-values (BH correction). MFB = myofibroblast and FB = fibroblasts. d, Stacked bar plot showing the proportion of myofibroblasts to fibroblasts in each Dupuytren's nodule (n = 12 DD patients, DD is prefix for patient ID). **e**, Dot plot showing pathways enriched in fibroblasts and myofibroblasts in single cell RNA-seq. Gene ratio is the number of genes found in pathways and p.adjust is adjusted p-value (2-sided Wilicoxon Rank Sum test, BH FDR-correction). f, Microscopy images of Immunohistochemistry showing fibroblast marker expression in Dupuytren's nodules with isotype control (Rabbit IgG) (n = 5 DD patients). Scale bar = 20 μ m. g, tSNE projections of CyTOF analysis for representative DD patient showing fibroblast markers CD9 and PLA2G2A, alongside myofibroblast marker α -SMA (n = 6 DD patients). Scale bar is normalized protein expression.

Supplementary Figure 3. Three major subsets of fibroblasts in fibrosis housing an chemokine-rich ICAM1⁺ population.

a, tSNE projections of single cell RNA-seq of fibroblasts coloured by z-score expression of marker genes of major subsets (*CD34*, *PDPN* & *ICAM1*). (*n*=12 DD patients). **b**, Bar plot showing the proportion of fibroblast subsets in 12 Dupuytren's patients as a total of the entire fibroblast population in single cell RNA-seq. DD is patient ID prefix (*n*=12 DD patients). **c**, Histograms of flow cytometry analysis of freshly isolated and unstimulated nodular cells showing IL-6 and IL-8 protein expression in ICAM1⁺/fibroblasts (CD31⁻CD45⁻CD146⁻ITG- β 1^{low}). (*n*=3 DD patients). **d**, Diffusion map projection of single cell RNA-seq of fibroblasts coloured by subsets. DM1, 3 and 4 are diffusion component coordinates (*n*= 12 DD patients). **e**, Representative density plots of flow cytometry analysis for three fibroblast populations (PDPN⁺, CD34⁺ & ICAM1⁺) in the myofibroblast and immune cell-rich nodule and matrix-rich cord. (*n*= 8 DD patients).

Supplementary Figure 4. The proliferative stromal cell is housed within the myofibroblast compartment.

a, Density plots of flow cytometry analysis for freshly isolated nodular cells showing Ki67 protein expression with myofibroblast marker ITG- β 1 and fibroblast marker CD34. MFB = myofibroblast (n = 8 DD patients). **b**, Above, representative density plot of gating strategy for ITG- β 1^{high} and ITG- β 1^{low} stromal cell populations. **c**, tSNE projections of CyTOF analysis for representative DD patient showing Ki67⁺ enrichment in α -SMA⁺ myofibroblast population (n = 6 DD patients). **d**, Histogram showing FACS analysis of Ki67 expression in gated ITG- β 1^{high} and ITG- β 1^{low} populations (n = 6 DD patients).

a, tSNE projection of single cell RNA-seq showing four myofibroblasts subsets (n = 12) DD patients). **b**, Confocal image of immunofluorescence showing CD82 and α -SMA protein expression in Dupuytren's nodule (n = 5 DD patients). Scale bar 100 μ m. c, Heatmap of single cell RNA-seq showing z-score mean expression of CD82^{high} myofibroblast markers (cluster 1) across DD patients. Prefix 0-3 denotes cluster and suffix DD1-DD65 represents DD patient IDs. Below, scatter plot showing top positive markers of CD82^{high} myofibroblasts. 2-sided Wilcoxon Rank Sum test and FDRadjusted p-value (BH correction). p-adjust labelled $< 1e^{-51}$ d, Bar plot of single cell RNA-seq showing the proportions of myofibroblast subsets in DD patients as a total of all myofibroblasts. (n = 12 DD patients). **e**, tSNE projections of CyTOF analysis showing distinct CD82^{high}OX40L⁺ myofibroblast in DD nodule. (n = 6 DD patients). Scale bar is normalized protein expression. f, Scatter plot with linear regression fit (mean +/- SE) of flow cytometry analysis showing positive correlation of CD82 and α -SMA protein expression. Data points represent mean fluorescence intensity (MFI) of α -SMA in CD82^{low}, CD82^{mid} and CD82^{high} myofibroblasts. These were selected as the top, middle and bottom 20% of cells based of CD82 expression (MFI), respectively. (n = 8 DD patients, R = Pearson correlation coefficient, 2-sided t-test statistics p-value = 1.557e⁻¹⁰). g, Top, representative density plots of flow cytometry analysis showing increased CD82⁺ stromal cells in DD nodules as compared to DD cords (n = 6 DD patients). Bottom, density plot of flow cytometry analysis showing co-expression of α -SMA and ITG-β1 in myofibroblasts. CD34 used an example fibroblast marker.

Supplementary Figure 5. Discrete CD82^{high} myofibroblast in localized human fibrosis.

Supplementary Figure 6. Modelling the myofibroblast activation trajectory associated with CD82 expression.

a, Heatmap showing the first principal component (PC1) gene loadings (*loess* smoothed z-score row scaled expression) in single cell RNA-seq of myofibroblasts (n=12 DD patients). Putative myofibroblast activation trajectory direction labelled. b, Scatter plot of single cell RNA-seq with linear regression fit (mean +/- SE) of myofibroblast (ACTA2 normalized expression) and fibroblast (CXCL14 normalized expression) gene modules plotted against PC1 gene loadings. Each point represents a single myofibroblast (n = 12DD patients). **c**, Diffusion map embedding of myofibroblasts coloured by the expression of CD82^{high} myofibroblast marker (CD82) and ACTA2^{low} (PLA2G2A) myofibroblast marker genes in scaled(log(UMI+1)). Bottom two figures are diffusion maps coloured by patient donors (n=12 DD patient) and slingshot pseudotime with overlay of principal curve fit (Spearman correlation with 2-sided *t*-test statistic). **d**, Representative PCA embedding of myofibroblasts coloured by four major subsets with overlying of RNA velocity. RNA velocity quantified using Velocyto (n = 12 DD patients). **e**, Density plot of single cell RNAseq of myofibroblasts illustrating subsets along pseudotime. Data represents Gaussian kernel probability densities. f, Line plots showing the expression (loess smoothed normalized expression +/- SE) of selected genes along modelled pseudotime (slingshot pseudotime) in single cell RNA-seq of myofibroblasts (n = 12 DD patients). Mean +/- SEM.

Supplementary Figure 7. CD82^{high} myofibroblast markers are highly expressed within α -SMA rich foci *in vivo*.

a, Schematic of Dupuytren's nodule and cord with representative immunohistochemistry for established myofibroblast markers. staining b, Microscopy image of immunohistochemistry staining in Dupuytren's nodule (myofibroblast and immune cell-rich fibrotic microenvironment) and cord (matrix-rich fibrotic microenvironment) for markers of CD82^{high} myofibroblast population (n = 5 DD patients). Scale bar 50 μ m. **c**, tSNE projections of single cell RNA-seq coloured by the expression of corresponding CD82^{high} myofibroblast marker genes in z-score scaled log(UMI+1) (n = 6 DD patients). The IL11 receptor (IL11RA) used instead of IL11 given the lack of a suitable antibody.

Supplementary Figure 8. siRNA knockdown of tetraspanin CD82 in human myofibroblasts.

a, Heatmap of z-score regularized-log transformed values of differentially expressed genes in RNA-seq following siCD82 and siControl transfection in DD myofibroblasts (n = 7 DD patients). **b**, Representative density plots of flow cytometry analysis of CD82 surface expression in DD myofibroblasts following siCD82 and siControl transfections (n=3 DD patients). **c**, Box and whisker plot of *CD82* normalized counts in RNA-seq following siCD82 and siControl transfections (n=7 DD patients, mean +/- SEM). Range 75-807, median 516, box bounds 401-594 represent first and third quantiles. **d**, Heatmap of RNA-seq data showing pathways enriched and contributing differentially expressed genes following siRNA mediated *CD82* knockdown. Colour scale represents \log_2 fold change. LFC = \log_2 fold change.

е

Supplementary Figure 9. CD82+PDGFRA+ fibroblasts in murine and human pulmonary fibrosis.

a, tSNE projection of single cell RNA-seq of murine bleomycin pulmonary fibrosis model coloured by Louvain clusters with fibroblasts (*Col1a1*+*Acta2*-) and myofibroblasts (*Col1a1*+*Acta2*+) highlighted (n = 2 mice, k = 10,410 cells). **b**, Scatter plot showing significant marker genes (2-sided Wilcoxon Rank Sum Test) of Pdgfra+ fibroblasts in single cell RNA-seq. LFC = log fold change. FDR-corrected (BH correction) p-value. **c**, tSNE projections of single cell RNA-seq of murine fibroblasts and myofibroblasts in bleomycin model (n = 2 mice) coloured by marker gene expression in scaled log(UMI+1). **d**, Confocal images of immunofluorescence in three independent patients showing staining quantification. CD82+ mean 85.6%, range, 67-97% and box bounds 84.5-89.5% representing first and third quantiles. CD82⁻ mean 19.7%, range, 7-33% and box bounds 12.5-27.0% representing first and third quantiles. 2-sided unpaired *t*-test. Scale bar 50 µm (n = 3 IPF patients, 3 independent experiments). **e**, Microscopy images showing immunohistochemistry of CD82 and COL13A expression in human IPF with corresponding isotype control. Scale bar 40 µm.