Supplemental materials

Tiesues	Samples	Effective	OTUS	Richness indices		Diversity indices	
lissues		Tags	OTUS	Chao 1	ACE	Shannon	Simpson
	SGM 1	93471	354	646.25	604.16	0.9181	0.2039
Male's	SGM 2	83839	364	628.27	625.85	1.7753	0.4604
salivary	SGM 3	74025	257	425.17	409.44	1.2432	0.3089
glands	SGM 4	74529	212	298.06	296.67	0.7759	0.2280
	FCM 1	84216	418	632.44	665.01	1.2377	0.2782
Male's filter	FCM 2	85398	277	434.76	422.49	1.2993	0.3696
chamber	FCM 3	86855	248	419.03	444.43	0.7493	0.1738
	FCM 4	80812	234	359.08	390.42	0.9358	0.2640
Molo'o	CSM 1	77644	235	385.92	412.30	0.9165	0.2093
	CSM 2	85919	245	366.87	381.28	0.8002	0.1798
conical	CSM 3	79668	294	432.60	410.36	1.5108	0.3703
segment	CSM 4	103034	243	409.79	404.94	0.4899	0.0984
	MM 1	81107	252	453.28	455.93	0.7797	0.1543
Male's	MM 2	85007	328	524.50	552.10	1.6130	0.3740
midgut	MM 3	72193	209	370	364.26	0.9831	0.2310
	MM 4	92078	196	292.87	315.62	0.3405	0.0563
	HM 1	104818	349	503.41	511.58	1.4454	0.3798
Male's	HM 2	79333	349	449.16	422.48	1.7084	0.5277
hindgut	HM 3	82658	257	447.65	472.41	0.8856	0.2645
	HM 4	65707	221	310.76	315.66	1.6597	0.5421
	TM 1	84440	425	613.25	634.81	2.3263	0.5660
Taataa	TM 2	81792	376	638.86	624.18	1.6014	0.3780
163(63	TM 3	88302	339	534.03	482.70	2.2142	0.6357
	TM 4	85489	285	382	394.27	1.7336	0.4865
	BM 1	70280	263	388.82	370.08	1.9265	0.5455
Male's	BM 2	92568	347	590.89	535.82	1.5497	0.3819
bacteriomes	BM 3	66345	155	276.71	274.67	0.7379	0.1789
	BM 4	91484	191	262.03	294.75	0.9585	0.2309
	OF 1	72703	296	426	419.67	2.9963	0.7855
Ovaries	OF 2	78427	220	333.75	367.70	3.1249	0.7673
Ovalies	OF 3	81942	220	350.57	329.40	2.9159	0.7603
	OF 4	81753	199	295.28	324.86	2.6241	0.7252
	BF 1	73467	158	282.25	261.45	0.7997	0.2078
Female's	BF 2	86450	203	329.40	310.47	1.5191	0.4700
bacteriomes	BF 3	85002	195	312.34	324.78	1.5589	0.5473
	BF 4	82809	148	214.96	219.37	1.1042	0.3089

Table S1 Sample information, sequence abundance, and bacterial diversity of the reproductive organs and bacteriomes of both sexes, and the salivary glands and digestive organs of *Pycna repanda* males

Abbreviations: SGM, salivary glands of males; FCM, filter chamber of males; CSM, conical segment of males; MM, midgut of males; HM, hindgut of males; TM, testes of males; BM, bacteriomes of males; OF, ovaries of females; BF, bacteriomes of females.

Table S2 The 16S rRNA gene sequences of dominant symbionts harbored inPycna repanda

Symbiont	
types	165 TRINA gene sequences
	AGAGTTTGATCATGGCTCAGGATAAACGCTAGCGGAGGGCATAACACATGCA
	AGTCGAGGGGCATCAAAAAAAAATATAAGTTTACTTATGTTTTTGTTTG
	CGGCGTACGGGTGAGTAATACATACGTAACTTTCCTTATGCTGAAGGATAGCC
	CGAGGAAACTTGGATTAATACTTCATAATACCATTTTTTATTAAGAAATTTGGTT
	AAAGTTATTATGGCATAAGATAGGCGGATGTCCGATTAGTTAG
	AATGGCTTACCAAGACAATGATCGGTAGGGGTCCTGAGAGGGCATACCCCCA
	CATTGGGACTGAGACACGGACCAAACTTCTACGGAAGGCAGCAGTGAGGAAT
	ATTGGTCAATGGAGGCAACTCTGAACCAGCCACTCCGCGTGTAGGAGGAAAG
	CCATTTAGGTTGTAAACTACTTTTGTATATGAATAAAAAATTCTATTTTAGAAA
	AAATTGAATGTAATATACGAATAAGTATCGGCCAACTCTGTGCCAGCAGCCGC
	GGTAAAACGGAGGATACGAGCGCTATCCGGATTTATTGGGTTTAAAGGGTGC
	GTAGGTGGTTTTTTAAGTCAGTAGTGAAATCTTAAAGCTTAACTTTAAAAGTGC
	TATTGATACTGATAAACTAGAGTGAGGTTGGAGTAACTGGAATGTGTGGTGGA
Clone DP 16	GCGGTGAAATGCATAGAGATCACACAGAACACCGATCGCGAAAGCAGGTTAC
CIONE PR-10	TAAACATAGACTGACGCTGAGGCACGAAAGCATGGGGAGCAAACAGGATTAG
(Suicia)	ATACCCTGGTAGTCCATGCCGTAAACGATGATCACTAACTA
	CAGTGGTCAAGCGAAAGTGATAAGTGATCCACCTGAGGAGTACGACCGCAAG
	GTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAATCGGTGGAGCATGTGG
	TTTAATTCGATGATACGCGAGGAACCTTACCAAAACTTAAATGTATTACGAATA
	AATTGGAAACAATTTAGTCATTAGACGGAGTACAAGGTGCTGCATGGTTGTCG
	TCAGCTCGTGCCGTGAGGTGTGAGGTTAAGTCCTTTAACGAGCGCAACCCTT
	ATTATTAGTTACCATCAAGTAATGTTGGGGACTCTAATAAGACTGCCGGCGTA
	AGCCGAGAGGAAGGCGGGGACGACGTCAAATCATCACGGCCCTTATGTTTTG
	GGCCACACGTGCTACAATGGTCGGTACAGAGGGGAGCAACTGGGTGACC
	AGAAGCAGATCTTGAAAGCCGATCTCAGTTCGGATTGGAGTCTGCAACTCGAC
	TCTATGAAGCTGGAATCGCTAGTAATCGCGCATCAGCCATGGCGCGGTGAAT
	ATGTTCCCGGGCCTTGTACACACCGCCCGTCAAGCCATGGAAGTTTGAAGTA
	CCTAAAATCGGTGACCTTGAGAGAAGGGAACTGCCGAAGGTAAGTCGAATAA
	CTAGGGCTAAGTCGTAACAAGGTAACCCAT
	ACGAGCGCGGGCGGCAGGCCTAACACATGCAAGTCGAGCGAACGTCCTTCG
	AAGGACGTAAGCGGCGGACGGGTGAGTAACACGTAAGAATCTACCTCGCTCA
	ACGGCACAACGCAGGGAAGCCTGCGCTAATTCCGTATGAATCCTGAATCAGG
	TAAAGATCCTTCGGAGCGAGATGAGCTTGCGCTAGATTAGCTTGTTGGTGGG
Clone DP 0	GTAAATGCCCACCAAGGCAACGATCTATAGCTGGTCTGGGAGGACGGAC
(Hodakinia)	CACACTGGGACTGGAACAAGGCCCAGACCCCCGTGGGGGTCAGCAGTGAGG
(ทบนั้งห์เกเล)	AATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGAGTGA
	GAAGTCAAACCTTCTGAAGGTTTGTGAAAATTGTAAAACTCTTTTGCCAAACGA
	AATGATGATGGTAGTTTGGACGAATAAGCTCCGGCCAACTTCGTGCCAGCAG
	CCGCGGTAATACGAGGGGAGCAAGCGTTGTTCGGTTTTATTGGGCGTAAAGC
	GCGCGTAGGCGGCCACGCAAGTCGTTTCAGAAGTCAAACGATGGAGCTCAAC

TCCATTCCGCTTCCGATACTACGCGGCTTGAGGTCGGTGGAGGCGAACGGAA CTCCAAGTGTAGAGGTGAAATTCGTTGATATTTGGGGGGAACACCGGAGGCGA AAGCGGTTCGCCATGCCGATTCTGACGCTGATGCGCTAAAGCGTGGGGAGCA AACAGGATTAGATACGCTGGTAGTCCACGCCCTGAACGATGGGTGCTAACAG CTGAAAACCAAACGTTCAAGTTTTCGTTTTTGATTGTAAAGCTAACGCGTGAAG CACTCCGCCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAACTGACG GGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAATCTGCACGTAAA ACCTTACCAGCCTTTGACATTGTAGGTCGGTTGTGCGACAGAAACGTTCGCAA CCAATGACCTCGCAACAGGTGCTGCATGGCTGCCGTCAGCTCGTGTCGTGAG ACGTACGGTTAAGTCCTATAACGAGCGCAACCCTCGTCCTTAGTTGCTTCCAA GCGAAAGCTAGCTCTCTAAGGAGACTGCCGGTTACAAGCTGGAGGAAGGGGA GGACGACGACAAGTCATCATGGCCTTTATAGGCTGGGCTACACACGTGCTAC AATGGTGGTGAAACAGAAAGTCGCAATGCCGCGAGGCGGAGCAAATCTCCAA ACCCCACCTCAGTACGGATTGTACCCTGCAACTCGGGTACATGAAGCAGGAA TCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCTCGGGTCCTG TACACCGCCCGTCACACCATGGAAGTAAACTTCGCTCCAATCCGTTGCGTC AGCACGGACAAAGCGAAGTTGACGACCGAGGTG

AACGAGCGCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGAACGTCCTTC GAAGGACGTAAGCGGCGAACGGGTAAGTAACACGTAAGAATCTACCTTGCTT AACGGCACAACGCACGTAACGTGCGCTAATTCCGTATAAATCCTGCATCAGGT AAAGAACTTTCGAAGCAAGATGAGCTTGCGCTAGATTAGCTCGTTGGTGGGGT CACTGGGACTGAAACAAGGCCCAGACCCCCGCGGGGGTCAGCAGTGAGGAA AGTTTAATCTTCCGAAGGTTCTTTGCGAACTGTAAATCTCTTTTGCCAACGAAA ATGATGATGGTAGTTTAAGCGAATAAGCTCCGGCCAACTTCGTGCCAGCAGC CGCGGTAATACGAGGGGGGGGGGGCAAGCGTTGTTCGGTTTTATTGGGCGTAAAGCG CGCGTAGGCGGCCACGCAAGTCGTTTCAGAAGTCAAACGATGGAGCTCAACT CCATTTCGCTTCCGATACTACGTGACTTGAGGTCGGCGGAGGCGAACGGAAC TCCAAGTGTAGAGGTGAAATTCGTTGATATTTGGGGGGAACACCAGAGGCGAA AGCGGTTCGCCATGCCGATTCTGACGCTGATGCGCTAAAGCGTGGGGGAGCAA ACAGGATTAGATACCCTGGTAGTCCACGCCCTGAACGATGAGTGCTAACGGT TGAAAACCAAACACAGTTTTCGTTTTGATTGTAAAAGCTAACGCGTTAAGCAC TCCGCCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGG ACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAATCTGCACGCAAAACC TTACCAGCCTTTGACATTGTAGGTCGGTTGTGCGACAGAAACGTTCGCAACCA ATGACCTTGCAACAGGTGCTGCATGGCTGCCGTCAGCTCGTGTCGTGAGACG TACGGTTAAGTCCTATAACGAGCGCAACCCTCGTCCTTAGTTGCTTCCAAGCG AAAGCTAGCTCTCTAAGGAGACTGCCGGTTATAAGCTGGAGGAAGGGGAGGA CGACGACAAGTCATCATGGCCCTTATAGGCTGGGCTACACGCGTGCTACAAT GGTGGAAGCAGAAAGTCGCAATGCCGCGAGGCGGAGCAAATCTCCAAAGCC CACCCCAGTACGGATTGTACCCTGCAACTCGGGTACATGAAGCAGGAATCGC TAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCTCGGGTCCTGTACA

Clone PR-96 (*Hodgkinia*)

CACCGCCCGTCACACCATGGGAGCGGGGTCCGTCGGAAGCGTGAGCGAAGC TCCGTCAAGGCGGACTTAGCGACCGAGGTG AACGAGCGCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGAACGTCCTTC GAAGGACGTAAGCGGCGAACGGGTGAGTAACACGTAAGAATCTACCTCGCTC AACGGCGCAACGCACGTAACGTGCGCTAATTCCGTATGAATCCTACATCAGGT AAAGATCCTTCGGAGCGAGATGAGCTTGCGCTAGATTAGCTCGTTGGTGGGG ACACTGGGACTGAAACAAGGCCCAGACTCCCGCGGGAGTCAGCAGTGAGGA AAGTCTAATCTTCCGAAGGTTTGTAAAGAACTGTAAACCTCTTTTGCAAACGAA AATGATGATTGTAGTTTAAGCGAATAAGCTCCGGCCAACTTCGTGCCAGCAGC CGCGGTAATACGAGGGGGGGGGGGGCGAGCGTTGTTCGGTTTTATTGGGCGTAAAGCG CGCGTAGGCGGCCACGCAAGTCGTTTCAGAAGTCAAACGATGGAGCTCAACT CCATTTCGCTTCCGATACTACGTGGCTTGAGTTCGGTGGAGGCGAACGGAAC TCCAAGTGTAGAGGTGAAATTCGTTGATATTTGGAGGAACACCAGAGGCGAAA Clone PR-131 GCGGTTCTCCATGCCGATTCTGACGCTGATGCGCTAAAGCGTGGGGGAGCAAA (Hodgkinia) CAGGATTAGATACCCTGGTAGTCCACGCCCTGAACGATGAGTGCTAACAGTT GAAAACCAAACATGGTTTTCGTTTTTGATTGTAAAGCTAACGCGTGAAGCACTC CGCCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAACTGACGGGGAC CCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTGCACGTAAAACCTTA CCAGCCTTTGACATTGTAGGTCGGTTGCTGACAGAAACGTCCGCACCCAATG ACCTTGCAACAGGTGCTGCATGGCTGCCGTCAGCTCGTGTGGGAGACGTAC GGTTAAGTCCTATAACGAGCGCAACCCTCATCCATAGTTGCTTCCAAGCGAAA GCTAGCTCTCTACGGAAACTGCCGGTTATAAGCTGGAGGAAGGGGAGGACGA CGACAAGTCATCATGGCCTTTATAGGCTGGGCTACACACGTGCTACAATGGTG GTGAAACAGAAAGTCGCAATGCCGCGAGGCGGAGCAAATCTCCAAACCCCAC CCCAGTACGGATTGTACCCTGCAACTCGGGTACATGAAGCAGGAATCGCTAG TAATCGCGGATCAGCATGCCGCGGTGAATACGTTCTCGGGTCCTGTACACAC CGCCCGTCACACCATGGGAGTG AACGAGCGCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGAACGTCCTTC GAAGGACGTAAGCGGCGGACGGGTGAGTAACACGTAAGAATCTACCTTGTTC AACGGCACAACGCACGTAACGTGCGCTAATTCCGTATAAATCCTGCATCAGGT AAGGAACTTTCGGAACAAGATGAGCTTGCGCTAGATTAGCTCGTTGGTGGGG ACACTGGGACTGAAACAAGGCCCAGACCCCCGCGGGGGTCAGCAGTGAGGA ATATTGGACAATGAGCGCAAGCTTGATCCAGCTATGCCGCGTGAGCGATTGG Clone PR-187 AAGTCTAATCTTCCGAAGGTTCTTTAAGAACTGTAAACCTCTTTTGCTAACGAA (Hodgkinia) AATGATGATTGTAGTTTAAGCGAATAAGCTCCGGCCAACTTCGTGCCAGCAGC CGCGGTAATACGAGGGGGGGGGCAAGCGTTGTTCGGTTTTATTGGGCGTAAAGCG CACGTAGGCGGTCGCGCAAGTCGATAACAGAAACAGAAGTCAAACGATGGAG CTCAACTCCATTTCGCTTCCGATACTACGTGACTTGAGGTCGGTGGAGGTGAA CGGAACTCCAAGTGTAGAGGTGAAATTCGTTGATATTTGGAGGAACACCAGAG GCGAAAGCGGTTCTCCATGCCGATTCTGACGCTAATGTGCTAAAGCGTGGGG AGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTGAACGATGAGTGCTA

ACAGTTGAAAACCAAACTTACGTTTTCGTTTTTGATTGTAAAGCTAACGCGTTA AGCACTCCGCCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGAC GAGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTGCACGTAA AACCTTACCAGCCTTTGACATTGTAGGTCGGTTGTGCGACAGAAACGTACGCA ACCAATGACCTCGCAACAGGTGCTGCATGGCTGCCGTCAGCTCGTGTCGTGA GACGTACGGTTAAGTCCTATAACGAGCGCAACCCTCGTCCTTAGTTGCTTCCA AGCGAAAGCTAGCTCTCTAAGGAGACTGCCGGTTATAAGCTGGAGGAAGGGG AGGACGACGACAAGTCATCATGGCCCTTATAGGCTGGGCTACACACGTGCTA CAATGGTGGAAGCAGAAAGTCGCAATGCCGCGAGGCGGAGCAAATCTCCAAA GCCCACCCCAGTACGGATTGTACCCTGCAACTCGGGTACATGAAGCAGGAAT CGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATATGTTCCCGGGCCTTGT ACACACCGCCCGTCAAGCCATGGAAGT

AACGAGCGCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGAACGTCCTTC GAAGGACGTAAGCGGCGGACGGGTGAGTAACACGTAAGAATCTACCTTGTTC AACGGCACAACGCACGTAACGTGCGCTAATTCCGTATAAATCCTGCATCAGGT AAAGAACTTTCGGAACAAGATGAGCTTGCGCTAGATTAGCTCGTTGGTGGGGT CACTGGGACTGAAACAAGGCCCAGACCCCCGCGGGGGTCAGCAGTGAGGAA TATTGGACAATGAGCGCAAGCTTGATCCAGCTATGCCGCGTGAGCGATTGGA AGTCTAATCTTCCGAAGGTTCTTTAAGAACTGTAAACCTCTTTTGCTAACGAAA ATGATGATTGTAGTTTAAGCGAATAAGCTCCGGCCAACTTCGTGCCAGCAGCC ACGTAGGCGGTCGCGCAAGTCGATAACAGAAACAGAAGTCAAACGATGGAGC TCAACTCCATTTCGCTTCCGATACTACGTGACTTGAGGTCGGTGGAGGTGAAC GGAACTCCAAGTGTAGAGGTGAAATTCGTTGATATTTGGAGGAACACCAGAG GCGAAAGCGGTTCTCCATGCCGATTCTGACGCTAATGTGCTAAAGCGTGGGG AGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTGAACGATGAGTGCTA ACAGTTGAAAACCAAACTTACGTTTTCGTTTTTGATTGTAAAGCTAACGCGTTA AGCACTCCGCCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGAC GAGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAATCTGCACGTAA AACCTTACCAGCTCTTGACCCTGTTTGCCGAGTGGTTTTGGAAACACACCTCT CGATGGCAAACAACAGGTGCTGCATGGCTGCCGTCAGCTCGTGTCGTGAGAC GTACGGTTAAGTCCTATAACGAGCGCAACCCTCGTCCTTAGTTGCTTCCAAGC GAAAGCTAGCTCTCTAAGGAGACTGCCGGTTATAAGCTGGAGGAAGGTGGGG ACGACGACAAGTCATCATGGCCTTTATGAGCTGGGCTACACGTGCTACAAT GGTGGTGAAACAGAAAGTCGCAATGCCGCGAGGCGGAGCAAATCTCCAAACC CCACCTCAGTACGGATTGTACCCTGCAACTCGGGTACATGAAGCAGGAATCG CTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCTCGGGTCCTGTAC ACACCGCCCGTCACACCATGGGAGCGGGGTCCGCCGTAAGCGTGAGCGAAG CTCCGTCAGGGCGGACTTAGCGACCGAGGTG CACTTTATGAAATAATGCTAATACCGTATATTCTCTTCGGAGGAAAGATTTATC GCTGATGGATGAGCCCGCGTCAGATTAGGTAGTTGGTAGGGTAATGGCCTAC

Clone PR-215 (*Hodgkinia*)

```
Rickettsia
```

CAAGCCAACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACT GAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGGAATATTGGACAAT GGGCGAAAGCCTGATCCAGCAATACCGAGTGGGTGACGAAGACCTTAGGGTT GTAAAGCCCTTTTCAGCAGGGAAGATAATGACGGTACCTGACCAAGAAAGCC CCGGCTAACTCCGTGCCAGCAGCCGCGGTAAGACGGAGGGGGCTAGCGTTG TTCGGAATTACTGGGCGTAAAGAGTGCGTAGGCGGTTTAGTAAGTTGGAAGT GAAAGCCCGAGGCTTAACCTCGGAACTGCTTTCAAAACTACTAATCTAGAGGG TAGTAGGGGATGATGGAATTCCTAGTGTAGAGGTGAAATTCTTAGATATTAGG AGGAACACCGGTGGCGAAGGCGGTCATCTAGGCTACAACTGACGCTGATGCA CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAGATATCGGGAGAATTTCTTTCGGTTTCGTAGCTAACGCAT TAAGCACTCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTG ACGGGGACTCGCACAAGCGGTGGAGCATGCGGTTTAATTCGATGTTACGCGA AAAACCTTACCAACCCTTGACATGGTGGTTGCGGGAAACAGAGATGCATCCCT TCAGTTCGGCTGGACCACACACAGGTGTTGCATGGCTGTCGTCAGCTCGTGT CGTGAGATGTTGGGTTAAGTCCCGCACGAGCGCACCCTCATTCTTATTTGCCA GCGCGTAATGCCGGGAGTATAGGGAACTGGCCGTCGATAGCCTGGAGGAAG TGGGGACTATGTTCAGTCC

TAATGAATGTTAGCTACCTACTTCTTTTGCAACCCACTCCCATGGTGTGACGG GCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGACATGCTGATCCGCGA TTACTAGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTCCAATCCGGACTT AAACGTACTTTCTGAGTTCCGCTTCCCCTCGCGGGCTTGCCTCTCTGTATA CGCCATTGTAGCACGTGTGTAGCCCTACTCGTAAGGGCCATGATGACTTGAC GTCATCCCCACCTTCCTCCGGTTTATCACCGGCAGTCTCCTTTGAGTTCCCGA CTTTACTCGCTGGCAACAAAGGATAAGGGTTGCGCTCGTTGCGGGACTTAAC CCAACATTTCACAACACGAGCTGACGACAGCCATGCAGCACCTGTCTCAGAG TTCCCGAAGGCACTCTTCTATCTCTAAAAGATACTCTGGATGTCAAGAGTAGG TAAGGTTCTTCGCGTTGCATCGAATTAAACCACATGCTCCACCGCTTGTGCGG GCCCCCGTCAATTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGT Arsenophonus CGATTTAACGCGTTAGCTCCGGAGGCCACGGTTCATGACCACAACCTCCAAAT CGACATCGTTTACAGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCA CGCTTTCGCACATGAGCGTCAGTCTTTATCCAGTGGATCGCCTTCGCCACTGG TATTCCTCCACATCTCTACGCATTTCACCGCTACATGTGGAATTCTATCCACCT CTATAAGACTCTAGTTAATCAGTTTTGAATGCCATTCCCAGGTTAAGCCCGGG GATTTCACATTCAACTTAATTAACCGCCTGCGTGCCCTTTACGCCCAGTAATTC CGATTAACGCTCGCACCCTCCGTATTACCGCGGCTGCTGGCACGGAGTTAGC CCGGTGCTTCTTCTGTTGCTAACGTCAATTGCTAAGAGTATTAATCTTAACACC TTTCCTCACAACTGAAAGTACTTTACAACCCGAAGGCCTTCTTCATACACATGG CATAGCTGCAGTAT

No. of representative clones of different RFLP profiles	The percentage in clone library	Closest match in GenBank	Identity to closest match (%)
		Sulcia of Platypleura kaempferi (LC370623.1)	99%
Clone PR-16 (Sulcia)	63%	<i>Sulcia</i> of <i>PI. yaeyamana</i> (LC370627.1)	99%
		Sulcia of Pl. kuroiwae (LC370624.1)	99%
		Hodgkinia of PI. kuroiwae (LC370476.1)	92.54%
Clone PR-9 (<i>Hodgkinia</i>)	1%	Hodgkinia of <i>PI. yaeyamana</i> (LC370501.1)	91.76%
		Hodgkinia of Pl. kaempferi (LC370463.1)	91.72%
		Hodgkinia of PI. kuroiwae (LC370476.1)	92.43%
Clone PR-96 (<i>Hodgkinia</i>)	30%	Hodgkinia of <i>PI. yaeyamana</i> (LC370501.1)	91.71%
		Hodgkinia of Pl. kaempferi (LC370463.1)	90.78%
		Hodgkinia of PI. kuroiwae (LC370476.1)	93.52%
Clone PR-131 (<i>Hodgkinia</i>)	1%	Hodgkinia of PI. yaeyamana (LC370501.1)	92.65%
		Hodgkinia of Pl. kaempferi (LC370463.1)	91.49%
		Hodgkinia of PI. kuroiwae (LC370476.1)	91.55%
Clone PR-187 (<i>Hodgkinia</i>)	0.5%	Hodgkinia of <i>PI. yaeyamana</i> (LC370501.1)	91.03%
		Hodgkinia of Pl. kaempferi (LC370463.1)	90.52%
		Hodgkinia of <i>PI. kuroiwae</i> (LC370476.1)	90.95%
Clone PR-215 (<i>Hodgkinia</i>)	4.5%	Hodgkinia of <i>PI. yaeyamana</i> (LC370501.1)	90.44%

 Table S3 NCBI blast results for the 16S rRNA gene sequences of the representative clones obtained from the bacteriomes of *Pycna repanda* males

epanda using diagnostic r Crt amplifications									
Cumhiant		Numbers	of positive	e individua	als/total n	umbers o	f individua	als tested	b
Sympiont	SG	FC	CS	MG	HG	MT	TE	OV	BA
Sulcia	0/55	0/55	0/55	0/55	0/55	0/55	0/30	25/25	55/55
Hodgkinia	0/55	0/55	0/55	0/55	0/55	0/55	0/30	25/25	55/55
Arsenophonus	0/55	0/55	0/55	0/55	0/55	0/55	0/30	23/25	50/55 ^c

Table S4 Prevalence of dominant symbionts in different tissues of *Pycna repanda* using diagnostic PCR amplifications ^a

^a A total of 55 individuals were used in this study, 30 males and 25 females.

55/55

55/55

55/55

30/30

0/25

0/55

^b Abbreviations: SG, salivary glands; FC, filter chamber; CS, conical segment; MG, midgut; HG, hindgut; MT, Malpighian tubules; TE, testes; OV, ovaries; BA, bacteriomes.

^c 50 individuals were positive detection, 27 males and 23 females.

55/55

Rickettsia

55/55

55/55

	Average numbers of Hodg	kinia cells counted in every	
	indivi	Ratio of DC: LC	
	Dark cells	Light cells	
Male (n=15)	~205	~1150	1: 5.598
Female (n=15)	~211	~1187	1: 5.619

Table S5 Ratio of Hodgkinia of dark cells to light cells in the bacteriomes ^a

^a *Hodgkinia* cells of different colors were found in all observed individuals. We randomly selected multiple sections from 15 males and 15 females for statistical analysis, aiming to estimate the ratio of *Hodgkinia* of dark cells to light cells. Abbreviations: DC, *Hodgkinia* of darker cells; LC, *Hodgkinia* of light cells.

	Numbers of indiv	iduals examined	a	Numbers of
I ransmission process	TEM		lissues	bacteriocytes/ovarioles observed
Sulcia and Arsenophonus leaving the peripheral bacteriocytes	18	25	bacteriomes	~110
Hodgkinia emigrating from the central bacteriocytes	18	25	bacteriomes	~190
Symbionts migrating through the follicular cells into the perivitelline space	18	25	ovaries	~270
Symbionts forming a "symbiont ball" in each egg	18	25	ovaries	~230

Table S6 Individuals, tissues and observations for the study of transovarial transmission of bacteriome-associated symbionts.

^a The transmission process was similar in every individual examined. Mature females were used in the present study. Fourteen females were dissected for FISH and TEM. Eleven females were dissected for FISH. Four females were dissected for TEM.

	Numbers of Hodgkinia cells counted		
	Dark cells	Light cells	
FM 1	437	0	
FM 2	393	0	
FM 3	411	0	
FM 4	221	0	
FM 5	491	0	
FM 6	401	0	
FM 7	354	0	
FM 8	284	0	
FM 9	189	0	
FM 10	253	0	
FM 11	282	0	
FM 12	167	0	
FM 13	225	0	
FM 14	309	0	
FM 15	442	0	
FM 16	228	0	
FM 17	248	0	
FM 18	459	0	

Table S7 Statistical analysis showing *Hodgkinia* cells of darker color emigrating from central bacteriocytes through the multi-nuclear compartment to the hemolymph.

Abbreviations: The numbers (i.e., 1, 2, 3, 4) after FM represented the biological replications.

Table S8 Statistical analysis revealing numbers of symbiont cells changing their shape during the transovarial transmission process.

Shape change	Symbiont species	Numbers of cells counted ^a	
Irregular to roughly spherical	Sulcia	106	
inegular to roughly spherioar	Hodgkinia	892	
Roughly spherical to irregular	Sulcia	168	
Roughly spherical to integular	Hodgkinia	1262	
Not obvious	Arsenophonus	1823	

^a The shape change of related symbionts were observed in every examined individual and we randomly selected multiple sections from different individuals for the cell counts.

	Numbers of different symbionts counted ^a				
	Sulcia	Hodgkinia	Arsenophonus	- кано ог 5. п. А	
FM 1	185	1661	686	1: 8.978: 3.708	
FM 2	193	1718	702	1: 8.902: 3.637	
FM 3	189	1690	693	1: 8.942: 3.667	
FM 4	179	1638	679	1: 9.151: 3.793	
FM 5	194	1756	705	1: 9.052: 3.634	
FM 6	185	1672	685	1: 9.038: 3.703	
FM 7	183	1651	678	1: 9.022: 3.705	
FM 8	195	1753	720	1: 8.990: 3.692	
FM 9	188	1684	691	1: 8.957: 3.676	
FM 10	185	1659	684	1: 8.968: 3.697	
FM 11	196	1773	722	1: 9.046: 3.684	
FM 12	183	1640	679	1: 8.962: 3.710	
FM 13	192	1730	707	1: 9.010: 3.682	
FM 14	187	1748	697	1: 9.250: 3.727	
FM 15	194	1742	724	1: 8.979: 3.732	
FM 16	190	1697	701	1: 8.932: 3.689	
FM 17	197	1765	728	1: 8.959: 3.695	
FM 18	187	1669	685	1: 8.925: 3.667	

Table S9 Ratio of three different symbionts in the "symbiont balls" at the posterior pole of the oocytes

^a We randomly selected multiple sections from every individual to estimate the ratio of the three different symbionts. Abbreviations: A, *Arsenophonus*; S, *Sulcia*; H, *Hodgkinia*; FM, females. The numbers (i.e., 1, 2, 3, 4) after FM represented the biological replications.

Fig S1 Venn diagrams showing numbers of the OTUs shared among different tissues of *Pycna repanda*. (A) Numbers of the OTUs are shared among the salivary glands, filter chamber, conical segment, midgut and hindgut of *Py. repanda* males. (B) Numbers of the OTUs shared among the bacteriomes and reproductive organs in both sexes. Abbreviations: SGM, salivary glands of males; FCM, filter chamber of males; CSM, conical segment of males; MM, midgut of males; HM, hindgut of males; TM, testes of males; BM, bacteriomes of males; OF, ovaries of females; BF, bacteriomes of females.

Fig S2 Bacterial communities of the salivary glands, bacteriomes, reproductive and digestive organs of *Pycna repanda* at the phylum level and comparative analysis of the differences of dominant phyla among different tissues. (A) Bacterial composition of the salivary glands, bacteriomes, reproductive and digestive organs. (B) Comparative analysis of the differences of Proteobacteria among different tissues. (C) Comparative analysis of the differences of Bacteroidetes among different tissues. Different letters represent significant difference at the 0.05 level. Abbreviations: SGM, salivary glands of males; FCM,

filter chamber of males; CSM, conical segment of males; MM, midgut of males; HM, hindgut of males; TM, testes of males; BM, bacteriomes of males; OF, ovaries of females; BF, bacteriomes of females.

Fig S3 Principal component analysis revealing the similarity of bacterial communities among different tissues. Abbreviations: SGM, salivary glands of males; FCM, filter chamber of males; CSM, conical segment of males; MM, midgut of males; HM, hindgut of males; TM, testes of males; BM, bacteriomes of males; OF, ovaries of females; BF, bacteriomes of females.

Fig S4 Phylogenetic relationship inferred from bacterial 16S rRNA gene sequences of *Sulcia* symbionts of cicadas and other representative hemipteran insects. Asterisks representing support values less than 50% and bootstrap support values more than 50% are shown on each node in the order of the maximum-likelihood/Bayesian inference. Bootstrap support values and posterior probabilities of the maximum-likelihood/Bayesian inference are shown near branches. The scale bar represents 0.02 substitutions per nucleotide site.

Fig S5 Phylogenetic relationship inferred from bacterial 16S rRNA gene sequences of *Hodgkinia* symbionts of cicadas. Asterisks representing support values less than 50% and bootstrap support values more than 50% are shown on each node in the order of the maximum-likelihood/Bayesian inference. Bootstrap support values and posterior probabilities of the maximum-likelihood/Bayesian inference are shown near branches. The scale bar represents 0.05 substitutions per nucleotide site.

Fig S6 General morphology of the bacteriomes and localization of primary symbionts in the bacteriome units in *Pycna repanda*. **(**A**)** General morphology of the bacteriomes of male adult. (B) General morphology of the bacteriomes of female adult. (C) The distribution of symbionts in the bacteriocytes of males. (D) The distribution of symbionts in the bacteriocytes of females. (E) The central bacteriocytes harboring *Hodgkinia* of different colors in males. (F) The central bacteriocytes harboring *Hodgkinia* of different colors in females. **(G)** Negative control using only *Sulcia*-specific probe (green) showing *Sulcia* hosted in the peripheral bacteriocytes. (H) Negative control using only *Hodgkinia*-specific

probe (red) showing *Hodgkinia* harbored in the central bacteriocytes. (I) FISH analysis distinguishing *Hodgkinia* (red) (in the central bacteriocytes) from *Sulcia* (green) (in the peripheral bacteriocytes). Magenta, green and red represent bacteriocyte nucleus, *Sulcia* and *Hodgkinia*, respectively. Abbreviations: BN, bacteriocyte nucleus; H, *Hodgkinia*; S, *Sulcia*.

Fig S7 Schematic representation illustrating the general morphology of ovaries and ovariole of *Pycna repanda*. (A) The general morphology of the ovaries. (B) The morphology of the ovariole. Abbreviations: CO, common oviduct; FE, follicular epithelium; L, ligament; LO, lateral oviduct; O, oocyte; ON, oocyte nucleus; P, pedicel; RS, reserve substances; TF, terminal filament; T, tropharium; V, vitellarium.

Fig S8 Hodgkinia emigrating through the multi-nuclear compartment from central bacteriocyte. (A) Histological observation showing the Hodgkinia cells emigrating through the multi-nuclear compartment from the central bacteriocytes of females. (B) Fluorescent microscopy showing the Hodgkinia cells emigrating through the multi-nuclear compartment from the bacteriocytes. Magenta, green and red represent bacteriocyte nucleus, Sulcia and Hodgkinia, respectively. (C-D) Ultrastructural observation showing Hodgkinia cells of darker colors emigrating through the multi-nuclear compartment from central bacteriocytes. Abbreviations: BN, bacteriocyte nucleus; CB, central bacteriocyte; H, Hodgkinia; MC, multi-nuclear compartment (encircled with black/white dotted line); PB, peripheral bacteriocyte; black arrows, Hodgkinia emigrating from central bacteriocyte through the multi-nuclear compartment.

Fig S9 Symbionts invading the follicular epithelium before migrating into the perivitelline space of the ovariole. (A–B) Follicular epithelium remained its inherent shape before invasion of symbionts (A, longitudinal section; B, cross section). (C–D) Symbionts entered the cytoplasm of the follicular epithelium, resulting in the increased volume of follicular epithelium. Abbreviations: FE, follicular epithelium; He, hemolymph; PS, perivitelline space (encircled with black dotted line); SM, symbiotic microorganisms (C, longitudinal section; D, cross section); black arrows, symbiotic microorganisms emigrating through the follicular epithelia into the perivitelline space.