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Supplementary Text 1 | Exemplary Workflow with nanoTRON 
nanoTRON Train  
 
(1) Collecting training data: Training data can be either generated with dedicated experiments for every class, or 

already existing data for the nanopatterns can be utilized. In any case, training data for every class should be 
gathered.  
 
Tipp: Picasso command-line tool Picasso csv2hdf allows the conversion from ThunderSTORM .csv localization 
tables to the Picasso format.  
 

(2) Selecting nanopattern: After spot identification and localization using Picasso Localize was performed, one can 
visualize and, if necessary, drift correct the localization files in Picasso Render. Using the Pick Tool the nanopattern 
can be selected manually. Another function called Pick Similar provides an automated solution for picking patterns in 
the whole field of view. Therefore, one selects a few nanopatterns manually by hand and applies Pick Similar. It 
utilizes the predictable blinking kinetics of DNA-PAINT and selects regions with similar number of localizations in 
areas of the size of the pick diameter. Every pick gets assigned with a group id, see Supplementary Figure 3a. The 
picked localizations can be saved using File ® Save picked localizations. 

 
(3) Setting up nanoTRON Train: If training data for every picked nanopattern is available, the training files can be 

loaded into the module nanoTRON Train, see Supplementary Figure 2a. First, the number of unique patterns needs 
to be set. In the box Training Files, all the files can be loaded and assigned with a class name. If necessary, the 
oversampling parameter can be modified, see Supplementary Figure 3b. Expand Training Set can be enabled to 
leverage the training data by augmentation, see Supplementary Figure 3c. After the image parameters are set up, 
Prepare Data converts the localization tables into grayscale images, see Supplementary Figure 3b and 
Supplementary Figure 9. In the box Perceptron, the neural network can be tuned. See the exemplary application 
described in Supplementary Text 2 for more details on this step. 

 
Attention: nanoTRON Train does not allow for duplicated class names. Every class needs to be assigned with a 
unique class name for the model. 
 
Tipp: With Export Image Subset ten images of every class can be exported. They are saved in the training file path. 

 
(4) Training: After the perceptron is set up accordingly, the training can be started with the button Train. The runtime of 

training can take up to hours, see Supplementary Table 11 for a comparison between different hardware 
configurations. When the training has finished, the learning curve and confusion matrix can be inspected with Show 
Learning Curve. Using Save Model, the trained neural network can be saved for later use. 

 
nanoTRON Predict 
 
(1) Collecting target data: After the target data is processed with Picasso Localize, the nanopatterns are selected in 

Picasso Render using the Pick Tool, as described in the section Selecting nanopattern for training. 
 

(2) Prediction: The grouped localization file can be loaded into nanoTRON predict via drag and drop or File ® Open. 
The corresponding model can be imported via Tools ® Load model. All available classes for prediction are listed in 
the box Export Structures The prediction is started with the button Predict.  

 
(3) Export: After the prediction finished, the classified nanopatterns can be exported in separate files. All nanopatterns, 

which should be exported, can be selected in the box Export Structures. Finally, nanoTRON exports all selected 
nanopatterns using the button Export. 

 
Tipp: With Filter Probabilities, the classified nanopattern can be filtered according to the prediction score. 
 
Tipp: With Export Pick Regions, a table of pick regions can be exported additionally to the localization tables.  
 
Attention: The option Regroup Export Files reassignes the picks with new group ids for every exported file. The 

group ids before prediction do not correspond to the reassigned group ids.  
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Supplementary Text 2 | Example application with DNA origami. 
As a proof-of-concept demonstration, we acquired five DNA-PAINT (Jungmann, et al., 2010) super-resolution example 

data sets, each containing DNA origami (Rothemund, 2006). Four data sets display a unique DNA origami pattern of 

digits 1 to 3 or a 3´4-grid-structure with 20-nm-spacing, Figure 1a and Supplementary Figure 4-7. A subsequent 

acquisition with all four DNA origami designs in a single sample serves as a validation data set, Figure 1b. Imaging 

conditions are described in Supplementary Table 1-5, DNA origami design sequences are listed in Supplementary 

Table 6-10.  

Using a 1-hidden-layer perceptron with 550 nodes and ReLU (Hahnloser, et al., 2000; He, et al., 2015) activation function 
and adam solver (Kingma, 2014), we could achieve a training accuracy of ~ 99%, test accuracy of ~ 98% and a 

validation accuracy ~ 94%, Figure 1c and Supplementary Figure 10. In the validation set, unidentifiable structures 

caused e.g. by structure misfolding, clustering, or loose attachment to the surface, were manually selected and excluded 
from the validation. 

 
 

Supplementary Text 3 | Example application with DNA origami and nuclear pore complexes. 
As a proof-of-concept demonstration for the applicability with biological samples, we generated an artificially merged 

DNA-PAINT super-resolution data set, displayed in Supplementary Figure 12. It contains the validation data set with 

the DNA origami structures (digits 1-3 and the 3´4-grid-structure with 20-nm-spacing) of Figure 1c and biological DNA-

PAINT super-resolution data of the GFP-tagged nuclear pore complex (NPC) protein Nup96. The artificial data set was 

generated in the following way, that a mask of the NUP96 related area of a 512 ´ 512 px super-resolution image the 

NUP96 experiment was created using Picasso: Mask, available in Picasso Render. The mask was then applied to the 

512 ´ 512 px DNA origami validation image so that the Nup96 related areas were cleared of DNA origami localizations. 

Using the command-line function picasso join file1 file2 the Nup96 localization file and the masked DNA origami 

localization file were combined. The artificial localization file was then loaded into Picasso Render and a few nuclear pore 

complexes and DNA origami were selected manually with the Pick Tool. Afterward, the whole image was screened for 

nuclear pore complexes and DNA origami with the automation picking tool Pick Similar, resulting in 12681 picks.  

For the classification of the DNA origami and NPCs, we used the four training sets of the DNA origami, Supplementary 

Figures 4-7, and one additional DNA-PAINT recording of the NUP96 labeled nuclear pore complex shown in 

Supplementary Figure 8. The trained model for the five classes achieved 99% training and 98% test accuracy. The 

neural network design was used as described in Supplementary Text 2. Oversampling was set to 40 and pick diameter 

to 1.5 px, resulting in grayscale images of 60 ´ 60 px size.  

 
 
Supplementary Text 4 | Recommendations and limitations of nanoTRON. 

To make nanoTRON useful as a standard tool in data analysis, we here provide a few recommendations for 
best practices. Successful classification strongly depends on the quality of the training and the training data 
(Belthangady and Royer, 2019). Like every deep learning framework, nanoTRON has limitations in 
performance and usage. To best prepare the user, we want to comment on a few limitations and mitigation 
approaches. 
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Recommendations 
 
Training data size: The training set should contain a sufficient number of picks in every class. We 
recommend at least 200 picks per class, see Supplementary Figure 11. If possible, higher number of picks 
per class is favourable. 
 
Balanced data sets: The whole training set should be balanced, meaning that the number of picks in every 
class should be similar. Unbalanced training sets can cause training and prediction artefacts. 

 
Data set augmentation: For training, we always recommend the data augmentation option Expand training 
set. Increasing the number of training data by rotations yields higher training and test accuracy, see 
Supplementary Figure 11. 
 
Neural network design: For the classification of nanopatterns similar to the examples in Supplementary 
Text 1 and Supplementary Text 2, we propose to use a comparable layer design: 1 layer with 550 nodes and 
ReLU as activation function, see Supplementary Figure 10 for more details. 
 
Hyper parameter testing: We recommend testing different configurations for hyperparameters, like the 
number of layer and nodes, activation function etc. for training to achieve the best performing model. 
 
Image configuration: The parameter oversampling depends on the resolution of the super-resolution data. In 
combination with the pick diameter, an image input size of 40–60 px should be ideal. We suggest using lower 
oversampling as the resolution of the super-resolution data would provide. 
 
Validation experiments: We want to stress that new models should not be trusted “blindly”. Validation 
experiments should be made to understand the applicability and limitations of the trained model.  
 
 
Limitations 
 
Computation time: In principle, there is no limitation in the size of the nanopatterns. However, increasing the 
size (pick diameter) with constant oversampling will also increase the image size and therefore computation 
time. Runtimes of training can last up to hours and days for very large nanopatterns. 
 
Computation resources: We recommend ≥16GB RAM for training with nanoTRON.  

 
Discovery: nanoTRON will not discover new nanopatterns in the prediction data set. Structures, which were 
not included in training will be incorrectly classified. Therefore, for every unique nanopattern one needs to 
prepare training data and include that into the model. 
 
Model size: nanoTRON Train GUI is limited to 10 different classes. 
 
Data quality: The data quality of the training data set but also prediction data set strongly influences the 
performance of nanoTRON. Low quality data will likewise result in poor performance.  
 
Reproducibility: nanoTRON model system is designed to export the model file in .sav format along with an 
YAML documentation file, which contains all necessary parameters of the trained model. Values for 
hyperparameters, as well as the path to the training files. While train and test accuracies are included in the 
documentation file, we propose saving also the learning curve and confusion matrix after training. 
Generalization: Neural network training can suffer from “overfitting”, i.e. that a model performs well on the 
training data but fails to generalize on new data. In the context of super-resolution microscopy data, this 
could happen when the resolution of training and new data is different. Therefore, we recommend combining 
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multiple super-resolution images of the same class with varying spatial resolution for the training set, as 
suggested by Belthangady and Royer. The command-line function picasso join file1 file2 offers a tool for 
combining localization files, see Supplementary Text 3. Combining multiple files will train the model for a 
more general usage. Attention: Picking the nanopatterns needs to be done after combining, otherwise the 
group ids will be doubled. 
 
Artefacts: Real-world experiments contain artefacts and background signal. In the case of DNA origami, this 
could e.g. be misfolded structures. With biological targets, labelling issues can generate unwanted 
background signals. While selecting the nanopatterns with Picasso Render - especially if Pick Similar is used 
– we recommend screening the picks for artefacts and interactively excluding them in the training and 
prediction data set. 
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Supplementary Figure 1 | Overview DNA origami design. (a) Design of the ‘Digit 1’ structure. Red labeled hexagons 
mark the DNA staples, which are extended with the P1 docking sequence (Supplementary Table 10) for DNA-PAINT 
super-resolution imaging. Hexagon-to-hexagon distance is ~ 5 nm. (b) Design of the ‘Digit 2’ DNA origami. Yellow 
hexagons indicate the P3 DNA-PAINT docking sites. c) Design of the ‘Digit 3’ DNA origami. Cyan hexagons mark the P5 
DNA-PAINT docking sites. d) Design of the ’20-nm-grid’ DNA origami, a 3´4-grid-structure with 20 nm spacing. Hexagons 
colored magenta identify the P1 DNA-PAINT docking sites. 
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Supplementary Figure 2 | Graphical user interface. (a) GUI of nanoTRON: Train. Super-resolution training data sets are 
loaded into nanoTRON and converted to pixel images (Supplementary Figure 3 and Supplementary Figure 9). The 
artificial neural network is set up, trained, and saved. (b) Performance of the network can be visualized with a plot of the 
learning curve and the confusion matrix. (c) GUI of nanoTRON main window. Super-resolution data can be loaded into 
nanoTRON via drag and drop. Either a default or a saved model (Tools ® Load model) of the artificial neural network can 
be used to classify the nanopatterns in the super-resolution data. The default model gets loaded when the software is 
started. After prediction, the labeled data can be filtered using the predicted probability and exported as individual data 
sets with the corresponding meta data file (YAML file). In addition to the super-resolution data, the Picasso’s pick regions 
can be exported and subsequently used for further analysis. 
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Supplementary Figure 3 | Training data generation and augmentation. (a) In localization-based super-resolution 
microcopy, diffraction-limited images get “converted” into tables of localizations by estimating the centers of single 
molecule emissions. In Picasso, the module Localize provides the graphical user interface for processing raw microscopy 
data and turning them into localization tables. In Picasso Render, the localization tables can then be rendered as an image. 
To utilize nanoTRON, first nanopatterns need to be selected. Using Picassos Pick Tool, nanopatterns can be manually 
selected by a center point and a pick diameter. One super-resolution image of e.g. DNA origami with 512 x 512 px can 
contain up to tens of thousands of nanopatterns. The tool Pick similar provides an automated solution for screening the 
whole image and picking comparable areas. Every pick is then assigned with a unique group id. (b) During training data 
preparation in nanoTRON, the localizations are converted into grayscale images and normalized between 0 and 1. Every 
pick corresponds to one nanopattern and consequently one grayscale image. One exemplary heatmap of a 20-nm-grid 
pick is visualized in Supplementary Figure 9. The resolution of the image can be set via the parameter ‘oversampling’, 
Supplementary Figure 2a. (c) The training set data can be augmented with rotated variants of every image. Ultimately, 
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the original rendering of the super-resolution data is rotated 11 times around the center-of-mass with a step size of 30º 
effectively increasing the training data 11-fold. Scale bars, 20 nm (a, b)  
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Supplementary Figure 4 | Overview of training set Digit 1. (a) Zoom-in of individual DNA origami imaged with DNA-
PAINT (b) DNA-PAINT super-resolution mosaic image of 4955 DNA origami patterned with digit 1 (shown in 
Supplementary Figure 1a) DNA-PAINT docking sites with Sequence P1. Scale bars, 100 nm (a), 1 µm (b). 
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Supplementary Figure 5 | Overview of training set Digit 2. (a) Zoom-in of individual DNA origami imaged with DNA-
PAINT (b) DNA-PAINT super-resolution mosaic image of 6321 DNA origami patterned with digit 2 (shown in 
Supplementary Figure 1b) DNA-PAINT docking sites with Sequence P1. Scale bars, 100 nm (a), 1 µm (b). 
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Supplementary Figure 6 | Overview of training set Digit 3. (a) Zoom-in of individual DNA origami imaged with DNA-
PAINT (b) DNA-PAINT super-resolution mosaic image of 3068 DNA origami patterned with digit 3 (shown in 
Supplementary Figure 1c) DNA-PAINT docking sites with Sequence P1. Scale bars, 100 nm (a), 1 µm (b). 
  



 S14 

 
 

Supplementary Figure 7 | Overview of training set 20-nm-grid. (a) Zoom-in of individual DNA origami imaged with DNA-
PAINT (b) DNA-PAINT super-resolution mosaic image of 6321 DNA origami patterned with a 3 ´ 4 grid with 20 nm spacing 
(shown in Supplementary Figure 1d) DNA-PAINT docking sites with Sequence P1. Scale bars, 100 nm (a), 1 µm (b). 
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Supplementary Figure 8 | Overview of training set Nup96. (a) Zoom-in of individual Nup96 proteins of the nuclear pore 
complex in a fixed U2OS cell. (b) DNA-PAINT super-resolution mosaic image of 2447 nuclear pore complexes labeled with 
DNA-modified GFP nanobody. Scale bars, 100 nm (a), 1 µm (b). 
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Supplementary Figure 9 | Exemplary heatmap of one pick of the 20-nm-grid training set. While preparing the data for 
training, nanoTRON converts the localizations of picks into grayscale images, as illustrated in Supplementary Figure 3b. 
The size of the image corresponds to the pick diameter and the chosen oversampling according to image size = pick 
diameter ´ oversampling. Every image gets scaled to gray values from 0 to 1. After converting all training sets to image 
stacks, the MLP is trained with the grayscale images. The exemplary heatmap displays one 20-nm-grid pick after 
conversion from localizations to an image with rounded gray values for clear visualization. nanoTRON does not round the 
gray values. 
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Supplementary Figure 10 | Model parameter tuning of the numbers of nodes in the 1-layer network. Training and 
test score achieved with the four classes training set with varying number of nodes from 50 to 1500. The final value was 
set to 550 nodes, indicating sufficient model complexity. Further increasing the number of nodes did not increase the test 
accuracy.  
 
 
 

 
 
Supplementary Figure 11 | Training and test score with different training set sizes using the 1-layer network. Training 
and test scores achieved using the 4 classes. The number of picks in every unique training set were varied, starting from 
20 up to 3000 picks per set. The scores were calculated with and without the nanoTRON option “Expand Training Set”, 
Supplementary Figure 3c. Using 200 images per unique training set and the data augmentation option, a test accuracy 
of ~0.95 could be realized. Without augmentation the test accuracy dropped to ~0.86. Larger training sets with 3000 picks 
per unique set increase test accuracy up to almost ~0.99. 
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Supplementary Figure 12 | Proof-of-concept experiment with a biological target. (a) Overview image of the artificial 
DNA-PAINT data set constructed as described in Supplementary Text 3. (b) Super-resolution image with classified 
nanopatterns using nanoTRON and a 5-class model, which was trained as described in Supplementary Text 3. The 
different colors (red, yellow, cyan and purple) visualize the respective DNA origami structures. The Nup96 protein of the 
nuclear pore complex is depicted in green. The overview image clearly shows the two cellular nuclei. (c) Zoom-in of the 
marked region in b. Scale bars, 10 µm (a, b), 500 nm (c). 
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Supplementary Table 1 | Experimental conditions training set Digit 1 

Microscope setting Condition 
Microscope Setup 1 
Objective Apo SR HP TIRF 100x 
Camera Zyla 4.2 Plus 
Field of view 512´512 pixel after binning 
Frames 15 000 
Exposure time 200 ms 
Binning 2´2 
Tube lens 1´ 
Excitation laser 561 nm [max power 200 mW] 
Laser Power 80 mW 

 
Sample settings Condition 
Sample target Digit 1 DNA origami 
Imager sequence P1 
Imager concentration 1 nM 
Imaging buffer B with PCA/PCD/TX 
Dye Cy3B 

 
 
 
Supplementary Table 2 | Experimental conditions in training set Digit 2 

Setting Condition 
Microscope Setup 1 
Objective Apo SR HP TIRF 100x 
Camera Zyla 4.2 Plus 
Field of view 512´512 pixel after binning 
Frames 15 000 
Exposure time 200 ms 
Binning 2´2 
Tube lens 1´ 
Excitation laser 561 nm [max power 200 mW] 
Laser Power 80 mW 

 
Sample settings Condition 
Sample target Digit 2 DNA origami 
Imager sequence P3 
Imager concentration 1 nM 
Imaging buffer B with PCA/PCD/TX 
Dye Cy3B 
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Supplementary Table 3 | Experimental conditions training set Digit 3 

Setting Condition 
Microscope Setup 3 
Objective Apo SR HP TIRF 100x 
Camera Zyla 4.2 Plus 
Field of view 512´512 pixel after binning 
Frames 15 000 
Exposure time 200 ms 
Binning 2´2 
Tube lens 1´ 
Excitation laser 560 nm [max power 500 mW] 
Laser Power 100 mW 

 
Sample settings Condition 
Sample target Digit 3 DNA origami 
Imager sequence P5 
Imager concentration 1 nM 
Imaging buffer B with PCA/PCD/TX 
Dye Cy3B 

 
 
 
Supplementary Table 4 | Experimental conditions in training set 20-nm-grid 

Setting Condition 
Microscope Setup 3 
Objective Apo SR HP TIRF 100x 
Camera Zyla 4.2 Plus 
Field of view 512´512 pixel after binning 
Frames 15 000 
Exposure time 200 ms 
Binning 2´2 
Tube lens 1´ 
Excitation laser 560 nm [max power 500 mW] 
Laser Power 100 mW 

 
Sample settings Condition 
Sample target 20-nm-grid DNA origami 
Imager sequence P1 
Imager concentration 3 nM 
Imaging buffer B with PCA/PCD/TX 
Dye Cy3B 
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Supplementary Table 5 | Experimental conditions in validation set 

Setting Condition 
Microscope Setup 3 
Objective Apo SR HP TIRF 100x 
Camera Zyla 4.2 Plus 
Field of view 512´512 pixel after binning 
Frames 25 000 
Exposure time 200 ms 
Binning 2´2 
Tube lens 1´ 
Excitation laser 560 nm [max power 500 mW] 
Laser Power 100 mW 

 
Sample settings Condition 
Sample target Digit 1, Digit 2, Digit 3 and 20-nm-grid  
Imager sequence P1, P3, P5 
Imager concentration 0,5 nM each 
Imaging buffer B with PCA/PCD/TX 
Dye Cy3B 
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Supplementary Table 6 | M13mp18 p7249 sequence 

TTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACT

TGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAA

CAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACC

GCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCC

CGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCC

AGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACC

CGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAG

CACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCA

CCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAA

CGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGA

CGCGAATTATTTTTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTT

ATACAATCTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTC

TCAGGCAATGACCTGATAGCCTTTGTAGATCTCTCAAAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGT

CTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTT

CTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGAT

TTATTGGATGTTAATGCTACTACTATTAGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATC

TAATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTAC

AGCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCGGT

CTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAA

AGACCTGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGATTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGT

CTAAACATTTTACTATTACCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTT

ACTATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGT

TCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATC

TCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGTTCTTGTCA

AGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGC

CTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGGGG

GTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGTTTAATGGAAACTTCCTCATGAAAAA

GTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCT

CAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCGAAAGCAAGCTGATAAACC

GATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAA

CTGTTGAAAGTTGTTTAGCAAAATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACTATGAGGGCTGTCTGTGGAAT

GCTACAGGCGTTGTAGTTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGG

TTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTG

GTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACT

GTTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCAG

AGACTGCGCTTTCCATTCTGGCTTTAATGAGGATTTATTTGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCTGGTG

GTGGTTCTGGTGGCGGCTCTGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGGTGATTTTGAT

TATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGG

TGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTG

ATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCGCTGGTAAACCATATGAATTTTCTATT

GATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTC

TTAATCATGCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAA

GATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAGG

GTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAAATCGTTTCTTATTTG

GATTGGGATAAATAATATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAA

TAGCAACTAATCTTGATTTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGATAAGCCTTCTATATCTGATTTGCTT

GCTATTGGGCGCGGTAATGATTCCTACGATGAAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACA

GCCGATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGTTCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAAC
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ATGTTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTT

GTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATTATGA

TTCCGGTGTTTATTCTTATTTAACGCCTTATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTT

CTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATTTTGAT

AAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATTTACAGAAGCAAGGTTATTC

ACTCACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGAAATTGTTAAATGTAATTAATTTTGTTTTCTTGATGTTTGTTTCATCATCTTCTTTT

GCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTAC

TGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTCTGTTTTACGTGCAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCAGAAGT

ATAATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAAT

GTTACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGATTTAATACGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGA

CGGCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGATTTGCCAACTGACCAGATATTGATTGAGGGTTTGA

TATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAGGCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATCT

TCTGCTGGTGGTTCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTTAC

GCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGACTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGC

GTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG 

 
 
Supplementary Table 7 | Rectangular DNA origami staple strands 

Plate Pos Name Sequence Digit 1 Digit 2 Digit 3 20-nm-grid 
1 A1 21[32]23[31]BLK TTTTCACTCAAAGGGCGAAAAACCATCACC     

1 A2 19[32]21[31]BLK GTCGACTTCGGCCAACGCGCGGGGTTTTTC     

1 A3 17[32]19[31]BLK TGCATCTTTCCCAGTCACGACGGCCTGCAG     

1 A4 15[32]17[31]BLK TAATCAGCGGATTGACCGTAATCGTAACCG     

1 A5 13[32]15[31]BLK AACGCAAAATCGATGAACGGTACCGGTTGA     

1 A6 11[32]13[31]BLK AACAGTTTTGTACCAAAAACATTTTATTTC     

1 A7 9[32]11[31]BLK TTTACCCCAACATGTTTTAAATTTCCATAT     

1 A8 7[32]9[31]BLK TTTAGGACAAATGCTTTAAACAATCAGGTC     

1 A9 5[32]7[31]BLK CATCAAGTAAAACGAACTAACGAGTTGAGA     

1 A10 3[32]5[31]BLK AATACGTTTGAAAGAGGACAGACTGACCTT     

1 A11 1[32]3[31]BLK AGGCTCCAGAGGCTTTGAGGACACGGGTAA     

1 A12 0[47]1[31]BLK AGAAAGGAACAACTAAAGGAATTCAAAAAAA     

1 B1 23[32]22[48]BLK CAAATCAAGTTTTTTGGGGTCGAAACGTGGA     

1 B2 22[47]20[48]BLK CTCCAACGCAGTGAGACGGGCAACCAGCTGCA     

1 B3 20[47]18[48]BLK TTAATGAACTAGAGGATCCCCGGGGGGTAACG    P1 
1 B4 18[47]16[48]BLK CCAGGGTTGCCAGTTTGAGGGGACCCGTGGGA     

1 B5 16[47]14[48]BLK ACAAACGGAAAAGCCCCAAAAACACTGGAGCA     

1 B6 14[47]12[48]BLK AACAAGAGGGATAAAAATTTTTAGCATAAAGC     

1 B7 12[47]10[48]BLK TAAATCGGGATTCCCAATTCTGCGATATAATG    P1 
1 B8 10[47]8[48]BLK CTGTAGCTTGACTATTATAGTCAGTTCATTGA     

1 B9 8[47]6[48]BLK ATCCCCCTATACCACATTCAACTAGAAAAATC     

1 B10 6[47]4[48]BLK TACGTTAAAGTAATCTTGACAAGAACCGAACT     

1 B11 4[47]2[48]BLK GACCAACTAATGCCACTACGAAGGGGGTAGCA    P1 
1 B12 2[47]0[48]BLK ACGGCTACAAAAGGAGCCTTTAATGTGAGAAT     

1 C1 21[56]23[63]BLK AGCTGATTGCCCTTCAGAGTCCACTATTAAAGGGTGCCGT     

1 C4 15[64]18[64]BLK GTATAAGCCAACCCGTCGGATTCTGACGACAGTATCGGCCGCAAGGCG     

1 C5 13[64]15[63]BLK TATATTTTGTCATTGCCTGAGAGTGGAAGATT     

1 C6 11[64]13[63]BLK GATTTAGTCAATAAAGCCTCAGAGAACCCTCA     
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1 C7 9[64]11[63]BLK CGGATTGCAGAGCTTAATTGCTGAAACGAGTA     

1 C8 7[56]9[63]BLK ATGCAGATACATAACGGGAATCGTCATAAATAAAGCAAAG     

1 C11 1[64]4[64]BLK TTTATCAGGACAGCATCGGAACGACACCAACCTAAAACGAGGTCAATC     

1 C12 0[79]1[63]BLK ACAACTTTCAACAGTTTCAGCGGATGTATCGG     

1 D1 23[64]22[80]BLK AAAGCACTAAATCGGAACCCTAATCCAGTT   P5  

1 D2 22[79]20[80]BLK TGGAACAACCGCCTGGCCCTGAGGCCCGCT   P5  

1 D3 20[79]18[80]BLK TTCCAGTCGTAATCATGGTCATAAAAGGGG   P5  

1 D4 18[79]16[80]BLK GATGTGCTTCAGGAAGATCGCACAATGTGA  P3 P5  

1 D5 16[79]14[80]BLK GCGAGTAAAAATATTTAAATTGTTACAAAG  P3 P5  

1 D6 14[79]12[80]BLK GCTATCAGAAATGCAATGCCTGAATTAGCA  P1 P3   

1 D7 12[79]10[80]BLK AAATTAAGTTGACCATTAGATACTTTTGCG  P1 P3   

1 D8 10[79]8[80]BLK GATGGCTTATCAAAAAGATTAAGAGCGTCC     

1 D9 8[79]6[80]BLK AATACTGCCCAAAAGGAATTACGTGGCTCA     

1 D10 6[79]4[80]BLK TTATACCACCAAATCAACGTAACGAACGAG     

1 D11 4[79]2[80]BLK GCGCAGACAAGAGGCAAAAGAATCCCTCAG     

1 D12 2[79]0[80]BLK CAGCGAAACTTGCTTTCGAGGTGTTGCTAA     

1 E1 21[96]23[95]BLK AGCAAGCGTAGGGTTGAGTGTTGTAGGGAGCC     

1 E2 19[96]21[95]BLK CTGTGTGATTGCGTTGCGCTCACTAGAGTTGC     

1 E3 17[96]19[95]BLK GCTTTCCGATTACGCCAGCTGGCGGCTGTTTC     

1 E4 15[96]17[95]BLK ATATTTTGGCTTTCATCAACATTATCCAGCCA  P3   

1 E5 13[96]15[95]BLK TAGGTAAACTATTTTTGAGAGATCAAACGTTA     

1 E6 11[96]13[95]BLK AATGGTCAACAGGCAAGGCAAAGAGTAATGTG  P1    

1 E7 9[96]11[95]BLK CGAAAGACTTTGATAAGAGGTCATATTTCGCA   P5  

1 E8 7[96]9[95]BLK TAAGAGCAAATGTTTAGACTGGATAGGAAGCC  P1 P3   

1 E9 5[96]7[95]BLK TCATTCAGATGCGATTTTAAGAACAGGCATAG     

1 E10 3[96]5[95]BLK ACACTCATCCATGTTACTTAGCCGAAAGCTGC     

1 E11 1[96]3[95]BLK AAACAGCTTTTTGCGGGATCGTCAACACTAAA     

1 E12 0[111]1[95]BLK TAAATGAATTTTCTGTATGGGATTAATTTCTT     

1 F1 23[96]22[112]BLK CCCGATTTAGAGCTTGACGGGGAAAAAGAATA     

1 F2 22[111]20[112]BLK GCCCGAGAGTCCACGCTGGTTTGCAGCTAACT     

1 F3 20[111]18[112]BLK CACATTAAAATTGTTATCCGCTCATGCGGGCC  P3  P1 
1 F4 18[111]16[112]BLK TCTTCGCTGCACCGCTTCTGGTGCGGCCTTCC     

1 F5 16[111]14[112]BLK TGTAGCCATTAAAATTCGCATTAAATGCCGGA  P1    

1 F6 14[111]12[112]BLK GAGGGTAGGATTCAAAAGGGTGAGACATCCAA     

1 F7 12[111]10[112]BLK TAAATCATATAACCTGTTTAGCTAACCTTTAA  P1  P5 P1 
1 F8 10[111]8[112]BLK TTGCTCCTTTCAAATATCGCGTTTGAGGGGGT  P3   

1 F9 8[111]6[112]BLK AATAGTAAACACTATCATAACCCTCATTGTGA     

1 F10 6[111]4[112]BLK ATTACCTTTGAATAAGGCTTGCCCAAATCCGC     

1 F11 4[111]2[112]BLK GACCTGCTCTTTGACCCCCAGCGAGGGAGTTA    P1 
1 F12 2[111]0[112]BLK AAGGCCGCTGATACCGATAGTTGCGACGTTAG     

1 G1 21[120]23[127]BLK CCCAGCAGGCGAAAAATCCCTTATAAATCAAGCCGGCG     

1 G4 15[128]18[128]BLK TAAATCAAAATAATTCGCGTCTCGGAAACCAGGCAAAGGGAAGG     

1 G5 13[128]15[127]BLK GAGACAGCTAGCTGATAAATTAATTTTTGT  P1    

1 G6 11[128]13[127]BLK TTTGGGGATAGTAGTAGCATTAAAAGGCCG     

1 G7 9[128]11[127]BLK GCTTCAATCAGGATTAGAGAGTTATTTTCA   P5  

1 G8 7[120]9[127]BLK CGTTTACCAGACGACAAAGAAGTTTTGCCATAATTCGA  P1 P3   

1 G11 1[128]4[128]BLK TGACAACTCGCTGAGGCTTGCATTATACCAAGCGCGATGATAAA     

1 G12 0[143]1[127]BLK TCTAAAGTTTTGTCGTCTTTCCAGCCGACAA     
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1 H1 21[160]22[144]BLK TCAATATCGAACCTCAAATATCAATTCCGAAA     

1 H2 19[160]20[144]BLK GCAATTCACATATTCCTGATTATCAAAGTGTA     

1 H3 17[160]18[144]BLK AGAAAACAAAGAAGATGATGAAACAGGCTGCG     

1 H4 15[160]16[144]BLK ATCGCAAGTATGTAAATGCTGATGATAGGAAC  P1    

1 H5 13[160]14[144]BLK GTAATAAGTTAGGCAGAGGCATTTATGATATT     

1 H6 11[160]12[144]BLK CCAATAGCTCATCGTAGGAATCATGGCATCAA   P5  

1 H7 9[160]10[144]BLK AGAGAGAAAAAAATGAAAATAGCAAGCAAACT  P1 P3   

1 H8 7[160]8[144]BLK TTATTACGAAGAACTGGCATGATTGCGAGAGG     

1 H9 5[160]6[144]BLK GCAAGGCCTCACCAGTAGCACCATGGGCTTGA     

1 H10 3[160]4[144]BLK TTGACAGGCCACCACCAGAGCCGCGATTTGTA     

1 H11 1[160]2[144]BLK TTAGGATTGGCTGAGACTCCTCAATAACCGAT     

1 H12 0[175]0[144]BLK TCCACAGACAGCCCTCATAGTTAGCGTAACGA     

2 A1 23[128]23[159]BLK AACGTGGCGAGAAAGGAAGGGAAACCAGTAA   P5  

2 A2 22[143]21[159]BLK TCGGCAAATCCTGTTTGATGGTGGACCCTCAA   P5  

2 A3 20[143]19[159]BLK AAGCCTGGTACGAGCCGGAAGCATAGATGATG   P5  

2 A4 18[143]17[159]BLK CAACTGTTGCGCCATTCGCCATTCAAACATCA  P1  P5  

2 A5 16[143]15[159]BLK GCCATCAAGCTCATTTTTTAACCACAAATCCA   P5  

2 A6 14[143]13[159]BLK CAACCGTTTCAAATCACCATCAATTCGAGCCA   P5  

2 A7 12[143]11[159]BLK TTCTACTACGCGAGCTGAAAAGGTTACCGCGC  P3   

2 A8 10[143]9[159]BLK CCAACAGGAGCGAACCAGACCGGAGCCTTTAC  P1    

2 A9 8[143]7[159]BLK CTTTTGCAGATAAAAACCAAAATAAAGACTCC     

2 A10 6[143]5[159]BLK GATGGTTTGAACGAGTAGTAAATTTACCATTA     

2 A11 4[143]3[159]BLK TCATCGCCAACAAAGTACAACGGACGCCAGCA     

2 A12 2[143]1[159]BLK ATATTCGGAACCATCGCCCACGCAGAGAAGGA     

2 B1 23[160]22[176]BLK TAAAAGGGACATTCTGGCCAACAAAGCATC     

2 B2 22[175]20[176]BLK ACCTTGCTTGGTCAGTTGGCAAAGAGCGGA     

2 B3 20[175]18[176]BLK ATTATCATTCAATATAATCCTGACAATTAC    P1 
2 B4 18[175]16[176]BLK CTGAGCAAAAATTAATTACATTTTGGGTTA     

2 B5 16[175]14[176]BLK TATAACTAACAAAGAACGCGAGAACGCCAA  P3   

2 B6 14[175]12[176]BLK CATGTAATAGAATATAAAGTACCAAGCCGT  P3 P5  

2 B7 12[175]10[176]BLK TTTTATTTAAGCAAATCAGATATTTTTTGT  P1   P1 
2 B8 10[175]8[176]BLK TTAACGTCTAACATAAAAACAGGTAACGGA     

2 B9 8[175]6[176]BLK ATACCCAACAGTATGTTAGCAAATTAGAGC     

2 B10 6[175]4[176]BLK CAGCAAAAGGAAACGTCACCAATGAGCCGC     

2 B11 4[175]2[176]BLK CACCAGAAAGGTTGAGGCAGGTCATGAAAG    P1 
2 B12 2[175]0[176]BLK TATTAAGAAGCGGGGTTTTGCTCGTAGCAT     

2 C1 21[184]23[191]BLK TCAACAGTTGAAAGGAGCAAATGAAAAATCTAGAGATAGA     

2 C4 15[192]18[192]BLK TCAAATATAACCTCCGGCTTAGGTAACAATTTCATTTGAAGGCGAATT     

2 C5 13[192]15[191]BLK GTAAAGTAATCGCCATATTTAACAAAACTTTT  P3   

2 C6 11[192]13[191]BLK TATCCGGTCTCATCGAGAACAAGCGACAAAAG     

2 C7 9[192]11[191]BLK TTAGACGGCCAAATAAGAAACGATAGAAGGCT   P5  

2 C8 7[184]9[191]BLK CGTAGAAAATACATACCGAGGAAACGCAATAAGAAGCGCA  P1    

2 C11 1[192]4[192]BLK GCGGATAACCTATTATTCTGAAACAGACGATTGGCCTTGAAGAGCCAC     

2 C12 0[207]1[191]BLK TCACCAGTACAAACTACAACGCCTAGTACCAG     

2 D1 23[192]22[208]BLK ACCCTTCTGACCTGAAAGCGTAAGACGCTGAG     

2 D2 22[207]20[208]BLK AGCCAGCAATTGAGGAAGGTTATCATCATTTT     

2 D3 20[207]18[208]BLK GCGGAACATCTGAATAATGGAAGGTACAAAAT  P3   

2 D4 18[207]16[208]BLK CGCGCAGATTACCTTTTTTAATGGGAGAGACT  P3   



 S26 

2 D5 16[207]14[208]BLK ACCTTTTTATTTTAGTTAATTTCATAGGGCTT     

2 D6 14[207]12[208]BLK AATTGAGAATTCTGTCCAGACGACTAAACCAA     

2 D7 12[207]10[208]BLK GTACCGCAATTCTAAGAACGCGAGTATTATTT  P1  P5  

2 D8 10[207]8[208]BLK ATCCCAATGAGAATTAACTGAACAGTTACCAG     

2 D9 8[207]6[208]BLK AAGGAAACATAAAGGTGGCAACATTATCACCG     

2 D10 6[207]4[208]BLK TCACCGACGCACCGTAATCAGTAGCAGAACCG     

2 D11 4[207]2[208]BLK CCACCCTCTATTCACAAACAAATACCTGCCTA     

2 D12 2[207]0[208]BLK TTTCGGAAGTGCCGTCGAGAGGGTGAGTTTCG     

2 E1 21[224]23[223]BLK CTTTAGGGCCTGCAACAGTGCCAATACGTG     

2 E2 19[224]21[223]BLK CTACCATAGTTTGAGTAACATTTAAAATAT     

2 E3 17[224]19[223]BLK CATAAATCTTTGAATACCAAGTGTTAGAAC  P3   

2 E4 15[224]17[223]BLK CCTAAATCAAAATCATAGGTCTAAACAGTA  P3   

2 E5 13[224]15[223]BLK ACAACATGCCAACGCTCAACAGTCTTCTGA  P3   

2 E6 11[224]13[223]BLK GCGAACCTCCAAGAACGGGTATGACAATAA  P3   

2 E7 9[224]11[223]BLK AAAGTCACAAAATAAACAGCCAGCGTTTTA  P3 P5  

2 E8 7[224]9[223]BLK AACGCAAAGATAGCCGAACAAACCCTGAAC  P1 P3   

2 E9 5[224]7[223]BLK TCAAGTTTCATTAAAGGTGAATATAAAAGA  P3   

2 E10 3[224]5[223]BLK TTAAAGCCAGAGCCGCCACCCTCGACAGAA     

2 E11 1[224]3[223]BLK GTATAGCAAACAGTTAATGCCCAATCCTCA     

2 E12 0[239]1[223]BLK AGGAACCCATGTACCGTAACACTTGATATAA     

2 F1 23[224]22[240]BLK GCACAGACAATATTTTTGAATGGGGTCAGTA   P5  

2 F2 22[239]20[240]BLK TTAACACCAGCACTAACAACTAATCGTTATTA   P5  

2 F3 20[239]18[240]BLK ATTTTAAAATCAAAATTATTTGCACGGATTCG   P5 P1 
2 F4 18[239]16[240]BLK CCTGATTGCAATATATGTGAGTGATCAATAGT   P5  

2 F5 16[239]14[240]BLK GAATTTATTTAATGGTTTGAAATATTCTTACC   P5  

2 F6 14[239]12[240]BLK AGTATAAAGTTCAGCTAATGCAGATGTCTTTC   P5  

2 F7 12[239]10[240]BLK CTTATCATTCCCGACTTGCGGGAGCCTAATTT  P1   P1 
2 F8 10[239]8[240]BLK GCCAGTTAGAGGGTAATTGAGCGCTTTAAGAA     

2 F9 8[239]6[240]BLK AAGTAAGCAGACACCACGGAATAATATTGACG     

2 F10 6[239]4[240]BLK GAAATTATTGCCTTTAGCGTCAGACCGGAACC     

2 F11 4[239]2[240]BLK GCCTCCCTCAGAATGGAAAGCGCAGTAACAGT    P1 
2 F12 2[239]0[240]BLK GCCCGTATCCGGAATAGGTGTATCAGCCCAAT     

2 G1 21[248]23[255]BLK AGATTAGAGCCGTCAAAAAACAGAGGTGAGGCCTATTAGT     

2 G4 15[256]18[256]BLK GTGATAAAAAGACGCTGAGAAGAGATAACCTTGCTTCTGTTCGGGAGA     

2 G5 13[256]15[255]BLK GTTTATCAATATGCGTTATACAAACCGACCGT     

2 G6 11[256]13[255]BLK GCCTTAAACCAATCAATAATCGGCACGCGCCT     

2 G7 9[256]11[255]BLK GAGAGATAGAGCGTCTTTCCAGAGGTTTTGAA     

2 G8 7[248]9[255]BLK GTTTATTTTGTCACAATCTTACCGAAGCCCTTTAATATCA  P1    

2 G11 1[256]4[256]BLK CAGGAGGTGGGGTCAGTGCCTTGAGTCTCTGAATTTACCGGGAACCAG     

2 G12 0[271]1[255]BLK CCACCCTCATTTTCAGGGATAGCAACCGTACT     

2 H1 23[256]22[272]BLK CTTTAATGCGCGAACTGATAGCCCCACCAG     

2 H2 22[271]20[272]BLK CAGAAGATTAGATAATACATTTGTCGACAA     

2 H3 20[271]18[272]BLK CTCGTATTAGAAATTGCGTAGATACAGTAC     

2 H4 18[271]16[272]BLK CTTTTACAAAATCGTCGCTATTAGCGATAG     

2 H5 16[271]14[272]BLK CTTAGATTTAAGGCGTTAAATAAAGCCTGT     

2 H6 14[271]12[272]BLK TTAGTATCACAATAGATAAGTCCACGAGCA     

2 H7 12[271]10[272]BLK TGTAGAAATCAAGATTAGTTGCTCTTACCA     

2 H8 10[271]8[272]BLK ACGCTAACACCCACAAGAATTGAAAATAGC     
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2 H9 8[271]6[272]BLK AATAGCTATCAATAGAAAATTCAACATTCA     

2 H10 6[271]4[272]BLK ACCGATTGTCGGCATTTTCGGTCATAATCA     

2 H11 4[271]2[272]BLK AAATCACCTTCCAGTAAGCGTCAGTAATAA     

2 H12 2[271]0[272]BLK GTTTTAACTTAGTACCGCCACCCAGAGCCA     

 
 
Supplementary Table 8 | Biotinylated staple strands 

Position Name Sequence Modification 

C02 18[63]20[56]BIOTIN ATTAAGTTTACCGAGCTCGAATTCGGGAAACCTGTCGTGC 5' - Biotin 

C09 4[63]6[56]BIOTIN ATAAGGGAACCGGATATTCATTACGTCAGGACGTTGGGAA 5' - Biotin 

G02 18[127]20[120]BIOTIN GCGATCGGCAATTCCACACAACAGGTGCCTAATGAGTG 5' - Biotin 

G09 4[127]6[120]BIOTIN TTGTGTCGTGACGAGAAACACCAAATTTCAACTTTAAT 5' - Biotin 

K02 18[191]20[184]BIOTIN ATTCATTTTTGTTTGGATTATACTAAGAAACCACCAGAAG 5' - Biotin 

K09 4[191]6[184]BIOTIN CACCCTCAGAAACCATCGATAGCATTGAGCCATTTGGGAA 5' - Biotin 

O02 18[255]20[248]BIOTIN AACAATAACGTAAAACAGAAATAAAAATCCTTTGCCCGAA 5' - Biotin 

O09 4[255]6[248]BIOTIN AGCCACCACTGTAGCGCGTTTTCAAGGGAGGGAAGGTAAA 5' - Biotin 

 
 
Supplementary Table 9 | DNA-PAINT docking site sequences 

Name Sequence Modification 

P1 docking strand TTATACATCTA - 

P3 docking strand TTTCTTCATTA - 

P5 docking strand TTCAATGTATG - 

 
 
Supplementary Table 10 | DNA-PAINT imager sequences 

Name Sequence Modification 

Imager P1 CTAGATGTAT 3' – Cy3B 

Imager P3 GTAATGAAGA 3' – Cy3B 

Imager P5 CATACATTGA 3' – Cy3B 
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nanoTRON Train: Digit 1, Digit 2, Digit 3 and 20 nm grid DNA origami 
 
Computer CPU Cores Total  

runtime  
Runtime 
per epoch 

 
MacBook Pro 13 (early-2015) Intel® Core™ i5-5257U @ 2.70GHz 2 ~ 30 min ~ 1.1 min 
 
MacBook Pro 15 (mid-2014) Intel® Core™ i7-4980HQ @ 2.80GHz 4 ~ 15 min ~ 0.5 min 
     
Dell XPS 15 (9550) Intel® Core™ i7-6700HQ @ 2.60GHz 4 ~ 37 min ~ 1.3 min 
     
Dell Precision T7910 2x Intel® Xeon® E5-2680 v3 @ 2.50GHz 24 ~ 47 min ~ 1.7 min 
     
Dell Precision T7910 2x Intel® Xeon® E5-2660 v3 @ 2.60GHz 20 ~ 25 min ~ 0.9 min 
 

 
Supplementary Table 11 | Training runtime comparison with various computers. The runtime for training of the 1-layer 
MLP with 550 nodes and the training data from Supplementary Figure 4-7 was recorded on different computer systems. 
Three mobile devices and two high-performance workstations. Computation time ranges from 15 – 47 minutes. The training 
was performed using 247522 grayscale images. 
 
 
 
 
 

nanoTRON Predict: 13332 nanopatterns with Digit 1, Digit 2, Digit 3 and 20 nm grid DNA origami 
 
Computer CPU Cores Runtime 

 
MacBook Pro 13 (early-2015) Intel® Core™ i5-5257U @ 2.70GHz 2 ~ 9.3 min 
 
MacBook Pro 15 (mid-2014) Intel® Core™ i7-4980HQ @ 2.80GHz 4 ~ 5.6 min 
    
Dell XPS 15   Intel® Core™ i7-6700HQ @ 2.60GHz 4 ~ 4.9 min 
    
Dell Precision T7910 2x Intel® Xeon® E5-2680 v3 @ 2.50GHz 24 ~ 4.2 min 
    
Dell Precision T7910 2x Intel® Xeon® E5-2660 v3 @ 2.60GHz 20 ~ 3.4 min 
 

 
Supplementary Table 12 | Prediction runtime comparison with various computers. The runtime for prediction of the 
validation data set with four unique DNA origami nanopatterns (Figure 1c) was recorded on different computer systems. 
The nanoTRON model described in Supplementary Text 2 was used. 13332 nanopatterns were classified between 3.4 – 
9.3 minutes. 
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Training with Digit 1, Digit 2, Digit 3 and 20 nm grid DNA origami 
 
Neural network Layout Processed 

with 
Total  
runtime  

Runtime  
per epoch 

Train  
accuracy 

Test 
accuracy 

 
nanoTRON MLP 1-layer FC 550 nodes CPU ~ 47 min ~ 1.7 min ~ 0.99 ~ 0.98 
 

Keras LeNet-5 7-layer CNN 
CPU ~ 36 h ~ 53 min ~ 0.99 ~ 0.98 
     
GPU ~ 12 min ~ 0.3 min ~ 0.99 ~ 0.98 

 
CPU: 2x Intel® Xeon® E5-2680 v3 @ 2.50GHz (24 cores) 
GPU: NVIDIA GeForce GTX 1080 Ti 

 
Supplementary Table 13 | nanoTRON MLP compared with LeNet-5 CNN. Runtime and performance evaluation of the 
nanoTRON 1-layer perceptron described in Supplementary Text 2 and the LeNet-5 convolutional neural network (CNN) 
(Lecun, et al., 1998) implemented in Keras (Chollet, 2015). The 7-layer CNN network design is listed in Supplementary 
Table 14. For the comparison, the augmented training data from Supplementary Text 2 was used. The networks were 
trained in total with 247522 grayscale images. Input shape was 50 x 50 pixels with gray values from 0 to 1. Early stop 
callback was monitoring validation accuracy (10% split of training data) with a minimum change of 1E-4 over at least 10 
epochs. Solver was set in all cases to “adam”. Both neural networks classified the test set of 74257 images with a test 
accuracy of around ~ 0.98. nanoTRON MLP reached the early stop after ~ 47 minutes with CPU processing, while the 
training of the LeNet-5 CNN lasted almost 1.5 days using the CPU. The same network trained with the high-performance 
GPU finished after ~ 12 min. This implies that CNN training is practically only feasible using GPU processing. 
 
 
 
 
 

 
Layer type Layer configuration Output shape  Parameter # 

 
Conv2D   Filter 6, Kernel 5, Stride 1, tanh (None, 50, 50, 6) 156 
    
Average Pooling 2D  Pool 2, Stride 1 (None, 25, 25, 6) 0 
    
Conv2D Filter 16, Kernel 5, Stride 1, tanh (None, 21, 21, 16) 2416 
    
Average Pooling 2D Pool 2, Stride 1 (None, 10, 10, 16) 0 
    
Conv2D   Filter 120, Kernel 5, Stride 1, tanh (None, 6, 6, 120) 48120 
    
Flatten  (None, 4320) 0 
    
Dense Units 84, tanh (None, 84) 362964 
    
Dense Units 4, softmax (None, 4) 340 
 
Total parameters: 413,996   
Trainable parameters: 413,996   
Non-trainable parameters: 0    

 
Supplementary Table 14 | LeNet-5 CNN Design. Convolutional neural network model design of the LeNet-5 implemented 
in Keras and used for comparison with the nanoTRON 1-layer MLP, described in Supplementary Text 2.  
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Materials and buffers. Unmodified DNA oligonucleotides, fluorescently modified DNA oligonucleotides and 
biotinylated DNA oligonucleotides were purchased from MWG Eurofins. M13mp18 scaffold was obtained 
from Tilibit. BSA-Biotin was obtained from Sigma-Aldrich (cat: A8549). Streptavidin was ordered from 
Invitrogen (cat: S-888). Tris 1M pH 8.0 (cat: AM9856), EDTA 0.5M pH 8.0 (cat: AM9261), Magnesium 1M (cat: 
AM9530G) and Sodium Chloride 5M (cat: AM9759) were ordered from Ambion. Ultrapure water (cat: 10977-
035) was purchased from Gibco. Polyethylene glycol (PEG)-8000 (catalog no. 6510-1KG) was purchased from 
Merck. Glass slides (cat: 48811-703) were obtained from VWR. Coverslips were purchased from Marienfeld 
(cat: 0107032). Silicon (cat.1300 1000) was ordered from picodent. Double sided tape (cat: 665D) was 
ordered from Scotch.  

Two buffers were used for sample preparation and imaging:  

• Buffer A (10 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.05% Tween 20, pH 7.5) 
• Buffer B (5 mM Tris-HCl pH 8, 10 mM MgCl2, 1 mM EDTA, 0.05% Tween 20, pH 8).  
• Imaging Buffer B was supplemented with: 1× Trolox, 1× PCA and 1× PCD (see paragraph below for 

details). This photo-stabilization system allowed us to maximize the number of photons per event and 
thus achieve optimal spatial resolution.  

Trolox, PCA and PCD stocks:  

• 100× Trolox: 100 mg Trolox, 430 μl 100% methanol, 345 μl 1 M NaOH in 3.2 ml H2O.  
• 40× PCA: 154 mg PCA, 10 ml water and NaOH were mixed and the pH was adjusted to 9.0.  
• 100× PCD: 9.3 mg PCD, 13.3 ml of buffer was used (100  mM Tris-HCl pH  8, 50  mM KCl, 1 mM EDTA, 

50% glycerol). 

Optical setups.  

Super-resolution setup 1: Fluorescence imaging was partly carried out (see Imaging conditions) on an 
inverted microscope (Nikon Instruments, Eclipse Ti) with the Perfect Focus System, applying an objective-
type TIRF configuration with an oil-immersion objective (Nikon Instruments, Apo SR HP TIRF ×100, numerical 
aperture 1.49, Oil). A 561 nm (Coherent Sapphire, 200 mW, DPSS-system) laser was used for excitation. The 
laser beam was passed through cleanup filters (Chroma Technology, ZET561/10) and coupled into the 
microscope objective using a beam splitter (Chroma Technology, ZT561rdc). Fluorescence light was 
spectrally filtered with an emission filter (Chroma Technology, ET600/50 m and ET575lp) and imaged on a 
sCMOS camera (Andor, Zyla 4.2 Plus) without further magnification, resulting in an effective pixel size of 
130 nm (after 2 × 2 binning). 

Super-resolution setup 3: Fluorescence imaging was partly carried out (see Imaging conditions) on an 
inverted microscope (Nikon Instruments, Eclipse Ti2) with the Perfect Focus System, applying an objective-
type TIRF configuration with an oil-immersion objective (Nikon Instruments, Apo SR HP TIRF ×100, numerical 
aperture 1.49, Oil). A 560  nm (MPB Communications Inc., 500 mW, DPSS-system) laser was used for 
excitation. The laser beam was passed through cleanup filters (Chroma Technology, ZET561/10) and coupled 
into the microscope objective using a beam splitter (Chroma Technology, ZT561rdc). Fluorescence light was 
spectrally filtered with an emission filter (Chroma Technology, ET600/50 m and ET575lp) and imaged on a 
sCMOS camera (Andor, Zyla 4.2 Plus) without further magnification, resulting in an effective pixel size of 
130 nm (after 2 × 2 binning). 

DNA origami self-assembly. The Rothemund rectangular origami (RRO) from Figure 1 were synthesized in a 
one-pot reaction with 50 μl total volume containing 10 nM scaffold strand (M13mp18), 100 nM core staples, 1 
μM biotinylated staples and 1 μM DNA-PAINT handles. Sequences are listed in Supplementary Table 6-9. 
The folding buffer was 1x TE buffer with 12.5 mM MgCl2. Structures were annealed using a thermal ramp. 
First, incubating for 5 min at 80°C, then going from 65°C to 4°C over the course of 3 hours. DNA origami 
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structures were purified via two rounds of PEG precipitation by adding the same volume of PEG-buffer, 
centrifuging at 14,000g at 4 °C for 30 min, removing the supernatant and resuspending in folding buffer. 

Nanobody conjugation. Unconjugated GFP Nanobody (Fluotag-Q anti-GFP) was purchased from Nanotag. 
The nanobody DNA conjugation was performed according to the protocol described before (Schlichthaerle, et 
al., 2018). 

Super-resolution DNA-PAINT imaging with DNA origami. For chamber preparation, a piece of coverslip 
(no. 1.5, 18 × 18 mm, ~0.17 mm thick) and a glass slide (76 × 26 mm, 1 mm thick) were sandwiched together 
by two strips of double-sided tape to form a flow chamber with inner volume of ~20 μl. First, 20 μl of biotin-
labeled bovine albumin (1 mg/ml, dissolved in buffer A) was flown into the chamber and incubated for 2 min. 
Then the chamber was washed using 40 μl of buffer A. Second, 20 μl of streptavidin (0.5mg/ml, dissolved in 
buffer A) was then flown through the chamber and incubated for 2 min. Next, the chamber was washed with 
20 μl of buffer A and subsequently with 20 μl of buffer B. Then ~500 pM of the DNA origami structures (RRO) 
were flown into the chamber and allowed to attach to the surface for 2 min. Finally, the imaging buffer with 
buffer B with dye-labeled imager strands was flowed into the chamber and sealed with silicon. Imaging 
conditions are listed in Supplementary Table 1-5. Imager sequences are stated in Supplementary Table 10. 

Super-resolution DNA-PAINT imaging with nuclear pore complex. Nuclear Pore Complex (NPC) imaging 
was performed using a U2OS cell line genetically modified with an EGFP fused to Nup96 proteins. The cells 
were fixed in 2.4% paraformaldehyde in PBS for 30 min. After fixation, cells were washed three times with 
PBS followed by permeabilization with 0.25% Triton-X-100 in PBS for 5 min. Then, cells were blocked in 
blocking buffer (3% BSA + 0.02% Tween-20) for 60 min. Anti-GFP nanobody conjugated to a DNA-PAINT 
docking site was diluted in blocking buffer to approximately 25 nM and incubated overnight at 4°C. On the 
next day, cells were washed 2x with PBS followed by an incubation with gold nanoparticles for 5 min. Cells 
were washed two times with PBS, then the imaging solution (PBS + 500 mM NaCl) was added containing 250 
pM Cy3B labeled imager strands (Schueder, et al., 2019). 

Super-resolution reconstruction. Raw fluorescence data was subjected to spot-finding and subsequent 
super-resolution reconstruction using the Picasso software package. The drift correction was performed with 
a redundant cross-correlation (segmentation: 1000) and subsequently Undrift from picked with all picked DNA 
origami structures. The DNA origami were picked using Picasso Pick Tool and Pick similar. 
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