
Supplementary Methods: 

Ethics approval and consent to participate 

Study protocols were approved by the UCSF Institutional Review Board. All clinical samples 

were provided by the Neurosurgery Tissue Core in a deidentified fashion. All experiments were 

carried out in conformity to the principles set out in the WMA Declaration of Helsinki as well as 

the Department of Health and Human Services Belmont Report. Informed written consent was 

provided by all patients. 

Tissue processing and sc/snRNA-seq 

Fresh tissue was dissociated mechanically in the presence of collagenase, deoxyribonuclease, 

trypsin inhibitor, and DPBS. The homogenate was shaken in a thermomixer at 37˚ for 15 

minutes, triturated via pipette, and shaken again at 37˚ for 15 minutes. The cells were then 

filtered through a 70 micron strainer, pelleted, and resuspended in neural basal media with 

FBS. Frozen tissues were dissociated mechanically and incubated with Nuclei EZ lysis buffer 

(Sigma) according to the manufacturer’s protocols. Nuclei were then filtered through a 70 

micron strainer. Debris was further depleted via a sucrose-based density gradient. The 10X 

Chromium single-cell platform (v3 3’-chemistry) was used for cell/nuclei capture and library 

preparation was performed per 10X Genomics’ protocols. Sequencing was performed on an 

Illumina NovaSeq using a paired-end 100bp protocol. 

Public data acquisition and processing 

Peripheral blood mononuclear cell (PBMC) data were obtained from 10x Genomics 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). Human pancreas 

Smart-seq2 data were obtained from the Sandberg lab (Segerstolpe et al., 2016). InDrop data 

were obtained from the Yanai lab (Baron et al., 2016). SnRNA-Seq and scRNA-Seq cortex 

data were obtained from the Zhang lab (Lake et al., 2017), Quake lab (Darmanis et al., 2015) 

and Kriegstein lab (Nowakowski et al., 2017). Bulk RNA-Seq data were obtained from the Ivy 

Foundation Glioblastoma Atlas Project (Puchalski et al., 2018) 

(http://glioblastoma.alleninstitute.org/)(Puchalski et al., 2018). Single-cell data were normalized 

via the Seurat “LogNormalize” function (Butler et al., 2018).  

Selection of training data 
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For the classification in Figure 1 the average expression level of commonly used marker-genes 

for PBMCs (Table S3) was used to score cells. Cells with scores within the top 2% were used 

for training, the remaining data were used for testing. The classifications were compared to the 

cell-type labels provided by 10X Genomics. For the projections we utilized the cell-type labels 

provided by the atlas or publication from where the data were derived. 

Random-forest algorithm for gene selection 

ELSA uses the RandomForestClassifier package in Sklearn (Klikauer, 2016) to optimize 

feature selection for classification. ELSA bootstrap resamples the input training data, choosing 

samples uniformly and at random with replacement. For each bootstrap iteration and each 

gene, the marginal out-of-bag (OOB) error is computed from a decision tree that is fit to 2/3 of 

the bootstrapped data. The standardized OOB errors, taken over a forest of trees, are then 

used to rank genes. In particular, the algorithm is as follows: 

 Input: training data 𝐷 and number of trees C (default C=50)  

 For each gene i do  

  For c = 1 to C: 

1. Draw a bootstrap sample 𝑍𝑐 from 𝐷, uniformly at random with replacement. 

By default the size of 𝑍𝑐 is set to 
2

3
 that of 𝐷, chosen based on published 

heuristics(Ruppert, 2004). 

2. Obtain a classification tree(Breiman and Ruppert, 1984) Tc  from the 

bootstrapped sample 𝑍𝑐 using Gini impurity as a metric for determining data 

splits.  

3. Classify the remaining data (
1

3
 by default) using Tc and calculate the OOB 

error-rate ec, i.e. the average error over all trees 𝑇1, … , 𝑇𝑐, when classifying the 

remaining 
1

3
 data (complement of 𝑍𝑐).  

4. For each gene i, permute its expression levels across cells in the training data 

𝐷 and recompute the OOB error (Ec). Set each gene’s importance to be the 

increase in OOB error (dc = Ec - ec).  

End for  

Aggregate total OOB error rate from all trees and calculate its variance. 



  𝑑̂ = 
1

𝐶
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𝐶
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2 =
1

𝐶−1
∑ (𝑑𝑐 − 𝑑̂)2𝐶
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Calculate importance of variable i: 𝑣𝑖 =
𝑑̂

Sd
 and rank variables by their importance. 

Boosting algorithm for cell classification 

RUSBoost combines under sampling with boosting, providing an efficient method for improving 

classification performance when trained on imbalanced data (Seiffert et al., 2009). The training 

algorithm proceeds as follows: 

1. Input: 

a. Training data D = (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁). The 𝑥𝑖 are cells, 𝑦𝑖 are cell-type labels. 

b. 𝑀, the maximum number of estimators at which boosting is terminated (50 by 

default).  

c. A weak learner, by default a decision stump (a 1-level decision tree) is used. 

d. A sampling strategy, random down sampling without replacement was used 

for all examples, as described here. 

2. Output: 𝐻(𝑥), the final strong learner. 

3. Initialize weights 𝑤𝑖 =
1

𝑁
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, … , 𝑁} 

For 𝑚 = 1 to 𝑀 do  

a. Randomly down-sample each class (𝑥𝑖, 𝑦) to the size of the smallest class, 

𝑚𝑖𝑛𝑗|(𝑥, 𝑦𝑗)|. By default, this is done without replacement.   

b. Invoke the weak learner on the down-sampled training data 𝐷𝑚, to obtain the 

classifier ℎ𝑚: 𝑋 ×  𝑌 → [0, 1] 

c. Calculate the pseudo-loss over 𝐷: 

 ∈𝑚←  ∑ 𝑤𝑖(1 − ℎ𝑚(𝑥𝑖, 𝑦𝑖) + ℎ𝑚(𝑥𝑖, 𝑦))(𝑖,𝑦):𝑦𝑖≠𝑦  

d. Calculate the weight update parameter: 𝛼𝑚 ←
∈𝑚

1−∈𝑚
 

e. Update the weights 𝑤𝑖: 

𝑤𝑖 ← 𝑤𝑖𝛼𝑚

1
2

(1+ℎ𝑚(𝑥𝑖,𝑦𝑖)−ℎ𝑚(𝑥𝑖,𝑦:𝑦≠𝑦𝑖))
 

𝑤𝑖 ←
𝑤𝑖

∑ 𝑤𝑖𝑖
 

End for 

Output the final strong learner:  



𝐻(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 ∑ ℎ𝑚(𝑥, 𝑦)

𝑀

𝑚=1

log
1

𝛼𝑚
 

Cross-validation and testing 

10-fold cross-validation was performed using the KFold cross validation routine of the 

Sklearn package (Klikauer, 2016). Summary metrics were computed via the PyCM package in 

python (Haghighi et al., 2018). 
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Figure S1: A-B) Sensitivities and specificities by cell type, computed on the PBMC dataset via 10-fold cross-
validation. C) T-SNE plot of Smart-seq2 scRNA-seq data from Segerstolpe et al. D) A T-SNE plot of data from 
Segerstolpe et al., projected onto InDrop-based scRNA-seq from Baron et al. E) A visualization of the 
projection of the cell-type labels from Segerstolpe et al. to the data from Baron et al. F) ELSA projection of 
snRNA-seq data onto scRNA-seq, both from human cortex. G) A comparison of classifier accuracy between 
ELSA, Garnett, and scmap, based on the Smart-seq2 and InDrop data in C). 



 

Figure S2: ELSA projections from novel scRNA-seq of human glioma to bulk RNA-seq from the Ivy 

Glioblastoma Atlas Project A), and from glioma scRNA-seq to scRNA-seq of human fetal and adult cortex. 



Table S1. Datasets used for classifications and projections 
 

Dataset type Dataset Organism Tissue Experimental platform 

Single cell Novel Human Glioblastoma 
10X Genomics 
Chromium 

Single cell Baron Human Pancreas inDrop 

Single cell Segerstolpe Human Pancreas Samrt-Seq2 

Single cell 10X Genomics Human Peripheral blood 
10X Genomics 
Chromium 

Single cell Darmanis Human Brain SMARTer 

Single cell Nowakowski Human Cortex SMARTer 

Single cell Lake  Human cortex Samrt-Seq 

Single nuc Lake  Human cortex Samrt-Seq 

Bulk RNA-Seq IvyGAP Human Glioblastoma Illumina HiSeq  

 



Table S2. Specimens of novel Glioma used in the study 
 

ID Diagnosis Age Gender IDH status Clonal CNVs Platform 
Cell 

number 
SF11956 Primary GBM 63 M Wildtype chr7p+, chr10-, chr19q- 10x 3,923 

SF11977 Primary GBM 61 F Wildtype 
chr5+, chr7p+, chr9+, 
chr19q- 10x 705 

SF11644 Primary GBM 57 M Wildtype chr13- 10x 1,330 
SF11979 Primary GBM 76 F Wildtype chr7p+, chr10-, chr19q- 10x 3,331 

SF12199 
Primary 
astrocytoma 74 M Mutant 

chr7+, chr10-,1 chr15-, 
chr19+ 10x 1834 

SF111036/
SF12017 

Primary 
astrocytoma 34/44 M/M Mutant 

chr1p-, chr7q+cd chr9-, 
chr17+, chr19q+ 10x 5,368 

S10432 Primary GBM 50 F Wildtype chr7p+, chr 10- 10x 1,463 
SF4324 Recurrent GBM 57 F Wildtype chr7p+, chr 10- 10x 69,159 

 



Table S3. The used marker-genes for PBMCs classification 
 

Cell types Cell markers 

NK cells NCAM1, FCGR3A 

Monocytes CD14, FCGR1A, CD68 

B cells CD19, MS4A1, CD79A 

CD4 T cells CD4, IL2RA, IL7R 

CD8 T cells CD8A, CD8B 

Dendritic cells IL3RA, CD1C, BATF3, CD209 

CD34+ CD34, ENG 

 
 


