Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

for Global Challenges, DOI: 10.1002/gch2.201800104

Uptake and Retention of Nanoplastics in Quagga Mussels

Rachel L. Merzel, Lauren Purser, Taylor L. Soucy, Monica Olszewski, Isabel Colón-Bernal, Melissa Duhaime, * Ashley K. Elgin, * and Mark M. Banaszak Holl*

Supporting Information for

Uptake and retention of nanoplastics in quagga mussels

Rachel L. Merzel,^{1a} Lauren Purser,^{1a} Taylor L. Soucy,^{1a} Monica Olszewski,¹ Isabel Colón-Bernal,¹ Melissa Duhaime,^{2*} Ashley K. Elgin,^{3*} Mark M. Banaszak Holl^{4*}

¹Chemistry Department, University of Michigan, Ann Arbor, MI 48109, United States ²Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States ³NOAA Great Lakes Environmental Research Laboratory, Lake Michigan Field Station, Muskegon, MI 49441, United States ⁴Chemical Engineering, Monash University, Clayton VIC 3800, Australia *corresponding authors: duhaimem@umich.edu, ashley.elgin@noaa.gov, mark.banaszakholl@monash.edu

^aContributed equally to manuscript

Figure S1. Fluorescence microscopy images of dissected mussel organs following 24 hour uptake studies with carboxylic acid-terminated PS beads containing a red dye.

Recently reported marine microplastic concentrations:

127,000-2,000,000 particles/km² in the Great Lakes

15,000-2,000,000 particles/km² (ave. = 700,000 particles/km² in the San Francisco Bay)

Using 1,000,000 particles/km² as a general estimate, there are 0.01 particles/L of water

Consider the volume to arise from the number of liter volumes packed into a 1x1 km surface (effective sampling depth of 10 cm)

1 km = 10,000 1L cubes per side

100,000,000 1L cubes in 1 km²

Count description Particles/L		L/particle	
Average	0.01	100	
Low	0.00015	6,667	
High	0.02	50	

Figure S2. Calculations demonstrating how microplastic concentrations expressed in particles/km² were converted to particles/L. The table shows the calculations for how many liters of water would need to be collected to find one microplastic, based on the reported environmental concentrations.

Figure S3. Schematic estimating local concentrations of nanoplastics that could be produced from the degradation and fragmentation of microplastics.

Assume one 50 µm (50,000 nm) particle per liter

Day 14

Day 21

Figure S4. Fluorescence microscopy images of mussel feces following dosing with PS beads containing a red dye. The mussels were dosed for 24 hours and then given time to clear the ingested beads.

Figure S5. Fluorescence images of quagga mussel gills and digestive tract after mussels were dosed with carboxylic acid-terminated PS beads containing a red dye and allowed to clear until their feces were no longer fluorescent.

Figure S6. a) Dissected siphon from a mussel dosed with 1,000 nm beads containing a red dye. Following 24 hours of exposure, the mussel was allowed to clear the beads for 14 days before being dissected; b) Dissected siphon of a control (non-dosed) mussel.

a)

Figure S7. a) 20 x 20 μ m and b) 10 x 10 μ m AFM deflection images of 1,000 nm beads in a mussel siphon; c) 20 x 20 μ m and d) 10 x 10 μ m deflection images of control (non-dosed) mussel siphons.

Table S1. Summary of results from fluorescence spectroscopy studies quantifying the number of carboxylateterminated PS beads mussels ingested in 24 hours. Bead concentrations were 1 pM for 200 and 1,000 nm beads and 0.01 pM for 2,000 nm beads.

Bead diameter (nm) (conc.)	Mussel	Number of beads taken up in 24 hours
200 (1 pM)	A-1	1x10 ¹⁰
200 (1 pivi)	A-2	2x10 ⁸
	B-1	1x10 ⁹
1,000 (1 pM)	B-2	5x10 ⁸
	B-3	2x10 ⁸
	C-1	1x10 ⁷
2,000 (0.01 pM)	C-2	1x10 ⁷
	C-3	1x10 ⁷

Bead diameter (nm)	Mussel	Days allowed to clear	Ave. number beads remaining in mussels
200	D-1	21	1x10 ⁸
	D-2	21	6x10 ⁷
	E-1		5x10 ⁷
	E-2	17	1x10 ⁷
	E-3		2x10 ⁷
1,000	F-1	11	3x10 ⁷
	F-2	44	3x10 ⁷
	G-1⁵	40	6x10 ⁷
	G-2 ^b	49	4x10 ⁷
	G-3 ^b	Died on day 44-46	2x10 ⁴
	H-1 ^b		1x10 ⁸
	H-2 ^b	49	7x10 ⁷
	H-3⁵		1x10 ⁸
2,000 (0.01 pM)	I-1		4x10 ⁵
	I-2	20	6x10 ⁵
	I-3		1x10 ⁵

Table S2. Summary of fluorescence spectroscopy studies quantifying the number ofPS beads retained in the mussels after being given time to clear the beads.

^aMussel was not dissected before digesting and quantifying the number of beads

^bReplicates B&C were carried out at the same time but as separate trials in different beakers

Bead diameter (nm)	Nominal bead conc. (pM)	Total number beads added	Mussel	# beads in mussel	Conc. of beads in mussel (pM)
			J-1	2x10 ⁹	1.3
	1	1.2x10 ¹¹	J-2	1x10 ⁹	0.3
			J-3	2x10 ⁹	1.2
1,000 0. 0.3 (0.1 pM added a 0, 24, 48 hrs	0.1	1.2x10 ¹⁰	K-1	2x10 ⁸	0.1
			K-2	1x10 ⁸	0.3
			K-3	7x10 ⁸	0.7
			L-1	4x10 ⁸	0.2
	0.3 (0.1 pM added at 0, 24, 48 hrs)	3.6x10 ¹⁰	L-2	3x10 ⁹	2.2
	,		L-3	4x10 ⁸	0.3
2,000	0.03 (0.01 pM Added at 0. 24, 48 hrs)	3.6x10 ⁹	M-1	1x10 ⁸	0.08
			M-2	3x10 ⁷	0.02

Table S3. Summary of fluorescence spectroscopy studies quantifying the number of PSbeads taken up into the mussels after 3 days of exposure to an excess of beads