Supporting Information for

Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family

Mark C. Walker,^{1,2}* Sara Eslami², Kenton J. Hetrick², Sarah E. Ackenhusen², Douglas A. Mitchell,^{2,3,4} Wilfred A. van der Donk^{2,3,5}

¹Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, New Mexico 87131, United States.

²Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States.

³Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States.

⁴Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, Illinois 61801, United States.

⁵Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States.

*To whom correspondence should be addressed. E-mail: markcwalker@unm.edu

ORCID:

Mark C. Walker	0000-0003-3942-003X
Sara M. Eslami	0000-0003-3397-0583
Kenton J. Hetrick	0000-0003-4657-5275
Sarah E. Ackenhusen	0000-0002-7412-575X
Douglas A. Mitchell	0000-0002-9564-0953
Wilfred A. van der Donk	0000-0002-5467-7071

Supplementary Figures and Tables

Supplementary Figure S1. Features calculated for precursor peptides	3
Supplementary Table S1. Features and scoring for class I precursors	4
Supplementary Table S2. Features and scoring for class II precursors	4
Supplementary Table S3. Features and scoring for class III precursors	4
Supplementary Table S4. Features and scoring for class IV precursors	4
Supplementary Figure S2. Sequence motifs in precursor peptides	5
Supplementary Figure S3. Sequence similarity network of precursor peptides	6
Supplementary Table S5. Location of characterized lanthipeptides in sequence similarity network	7
Supplementary Figure S4. Sequence logos of class I precursor families	8
Supplementary Figure S5. Sequence logos of class II precursor families	10
Supplementary Figure S6. Sequence logos of class III precursor families	12
Supplementary Figure S7. Sequence logos of class IV precursor families	14
Supplementary Table S6. Abundant protein families in class I biosynthetic gene clusters	15
Supplementary Table S7. Abundant protein families in class II biosynthetic gene clusters	15
Supplementary Table S8. Abundant protein families in class III biosynthetic gene clusters	16

Supplementary	Table S9. Abundant protein families in class IV biosynthetic gene clusters	16
Supplementary	Table S10. Distribution of abundant protein families among lanthipeptide biosynthetic gene clusters	17
Supplementary	FigureS8. Representative lanthipeptide biosynthetic gene clusters with abundant protein families	18
Supplementary	Table S11. Distribution of select protein families in lanthipeptide biosynthetic gene clusters	26
Supplementary	Figure S9. Representative lanthipeptide biosynthetic gene clusters with select protein families	27
Supplementary	Figure S10. Phylogenetic distribution of genomes used in this study	33
Supplementary	Figure S11. Phylogenetic tree of LanC-like proteins including human LanC-like proteins	34
Supplementary	Figure S12. GC content of biosynthetic gene clusters and their cognate genomes	35
Supplementary	Figure S13. ESI MS/MS and bioactivity of birimositide α and β	36
Supplementary	Table S12. Expected and observed monoisotopic masses for Brt α and Brt β	37
References.		38

Supplementary Figure S1. Features calculated to score precursor peptides. The DNA sequence encoding 7 genes upstream and downstream of a LanC-like domain containing protein was extracted and all potential open reading frames (ORFs) were identified. In the case that multiple potential ORFs shared a stop codon, the longest ORF within the expected range of LanA lengths was used. These ORFs were discarded if they were too long, too short, occurred entirely within an annotated gene, or did not contain a Cys residue. The remaining ORFs were then analyzed using FIMO [1] to identify conserved leader motifs. If the ORF contained a leader motif and has a GG, GA, or S/T (x)₂₋₇C motif downstream of the leader, but not within 10 residues of the end of the ORF, the approximate core was identified as starting immediately after the GG or GA motif or 1 reside before the S/T (x)₂₋₇C motif. If the ORF contained both a GG or GA motifs, only the first one was considered, likewise with the S/T (x)₂₋₇C motif. If the ORF contained both a GG or GA motif and a S/T (x)₂₋₇C motif, the longer potential core was used. If the ORF did not contain a GG, GA, or S/T (x)₂₋₇C motif, or those motifs were within 10 residues of the end of the ORF did not contain a GG, GA, or S/T (x)₂₋₇C motif, or those motifs were within 10 residues of the end of the ORF did not contain a GG, GA, or S/T (x)₂₋₇C motif, or those motifs were within 10 residues of the end of the ORF, the zero starting as identified as the potential core. If no leader peptide motif was identified in the ORF, the same analysis was performed starting from the beginning of the ORF instead of after the leader motif. Finally, if the predicted core did not contain a Cys residue, the ORF was discarded. The given features were then calculated for each potential ORF.

Score potential core peptides

Molecular weight of core Isoelectric point of core Number of each amino acid in core Number of Ser + Thr in core Number of Ser + Thr + Cys in core Number of Charged residues in core Number of positive charges in core Number of negative charges in core Number of negative charges in core Number of polar residues in core Number of aliphatic residues in core Number of aromatic residues in core Core fraction that is Cys Core fraction that is Ser + Thr Core fraction that is Ser + Thr + Cys Core fraction that is charged residues Core fraction that is positive residues Core fraction that is negative residues Core fraction that is polar residues Core fraction that is aliphatic residues First fifth of precursor fraction S+T First fifth of precursor fraction C Second fifth of precursor fraction S+T Second fifth of precursor fraction S+T+C Second fifth of precursor fraction C Third fifth of precursor fraction S+T Third fifth of precursor fraction S+T+C Third fifth of precursor fraction C Fourth fifth of precursor fraction S+T Fourth fifth of precursor fraction C Fifth fifth of precursor fraction S+T Fifth fifth of precursor fraction S+T Fifth fifth of precursor fraction S+T+C Fifth fifth of precursor fraction S+T+C Fifth fifth of precursor fraction S+T+C

Number of amino acid pairs

AA, AC, AD, ..., AW, AY AXA, AXC, AXD, ..., AXW, AXY ... AXXXXXA, AXXXXXC, AXXXXXD, ..., AXXXXXW, AXXXXXY CA, CC, CD, ..., CW, CY CxA, CxC, CxD, ..., CxW, CxY ... CXXXXXA, CXXXXXC, CXXXXXD, ..., CXXXXXW, CXXXXXY ... WA, WC, WD, ..., WW, WY WXA, WXC, WXD, ..., WXW, WXY ... WXXXXXA, WXXXXXXC, WXXXXXXD, ..., WXXXXXW, WXXXXXY YA, YC, YD, ..., YW, YY YXA, YXC, YXD, ..., YXW, YXY ... YXXXXXA, YXXXXXXC, YXXXXXD, ..., YXXXXXW, YXXXXXY **Supplementary Table S1.** Features and scoring for class I precursors. ORFs were identified as precursors if their score was over 10. SVM, support vector machine.

Feature	Score
SVM classification	5
Presence of Class I leader peptide MEME motif	5
Core pl less than 9	2
2 or more Cys in core	2
Leader has KLxLxK MEME motif and ends in GG sequence	1

Supplementary Table S2. Features and scoring for class II precursors. ORFs were identified as precursors if their score was over 10.

Feature	score
SVM classification	5
Presence of Class II leader peptide MEME motif	5
2 or more Cys in core	2
Hits a Pfam* hidden Markov model	5
Precursor ends with sequence KRC	4
*DE00400 4 DE04004 40 DE44007 5 DE40004 4 DE00070 45 DE07000 40	-

*PF08130.1, PF04604.12, PF14867.5, PF16934.4, PF02979.15, PF07862.10

Supplementary Table S3. Features and scoring for class III precursors. ORFs were identified as precursors if their score was over 10.

Feature	score
SVM classification	5
Presence of Class III leader peptide MEME motif	5
2 or more Cys in core	2
Has SxxSxxxC motif	1
Has SxxSxxC motif	1
Core pl is between 3 and 9	1

Supplementary Table S4. Features and scoring for class IV precursors. ORFs were identified as precursors if their score was over 10.

Feature	score
SVM classification	5
Presence of Class IV leader peptide MEME motif	5
2 or more Cys in core	2
Precursor ends with sequence GCD	1
Precursor ends with sequence LGS	1

Supplementary Figure S2. Sequence motifs present in more than 100 lanthipeptide precursor peptides. Some of the conserved leader peptide motifs have been shown to be important for the cognate lanthipeptide synthases (FxLD in class I [2]; E/D(-8)L/M(-9) in class II [3]; LxLQ in class III [4], and Lx₂LPE in class IV [5]). Lipid II-binding motifs, which arise for likely antibiotic lanthipeptides are underlined in red.

Supplementary Figure S3. Sequence similarity network of predicted precursor peptides generated with the Enzyme Function Initiative-Enzyme Similarity Tool [6] with permissive similarity cutoff (alignment score: 6; equivalent to an expectation value of 10⁻⁶) and visualized in Cytoscape [7].

Colored by prokaryotic phylum

Colored by lanthipeptide class

Supplementary Table S5. Location of top BLAST hits of known lanthipeptides from the MIBiG [8] and BAGEL [9] databases in the sequence similarity networks presented in Figure 2. If the precursor is located in a cluster with more than 20 members, the identifier of that cluster is given. If the precursor is located in a cluster with 20 or fewer members, the label from Figure 2 is given. If the precursor occurred only once, it is annotated as a singleton.

Known Lanthipeptide	Cluster	Known Lanthipeptide	Cluster
AmfS	III 1	Nisin_O	7
BacCH91	15	Nisin_U	17
BhtA1	BhtA1	Nisin_Z	17
BhtA2	BhtA2	Nukacin_ISK-1	II 1
Bicereucin_beta	II 33	Paenibacillin	Paenibacillin
BLD_1648	BLD_1648	Paenicidin_A	Paenicidin A
Bovicin_HJ50	Bovicin HJ50	Paenicidin_B	Paenicidin A
BsaA2	15	Paenilan	I 20
Carnolysin_A1	II 16	Penisin	123
Carnolysin_A2	II 16	Pinensin	I 17
Catenulipeptide	singleton	Plantaricin C	Plantaricin C
Cerecidin	II 3	Pneumolancidin_PldA2	ll 11
Cinnamycin_B	Cinnamycin B	Pneumolancidin_PldA3	II 11
CyIL	II 46	Pneumolancidin_PldA4	ll 11
CyILs	II 3	Prochlorosin 1.1	Prochlorosin 1.1
Curvopeptin	singleton	Pseudomycoicidin	Geobacillin II
Divamide*	Cinnamycin B	Roseocin α	II 29
Duramycin*	Cinnamycin B	Roseocin ß	II 2
Entianin	17	Ruminococcin A	II 1
Epidermin	15	 SAL-2242	III 1
Ericin A	17	Salivaricin 9	II 1
Ericin S	17	Salivaricin A	ll 14
Erythreapeptin	III 4	 Salivaricin G32	II 1
Flavecin A1	Flavecin A1	Sap T	I 21
 Flavucin	Flavucin	SapB	III1
Gallidermin	15	Smb A	BhtA2
Geobacillin I	17	Smb B	BhtA1
Geobacillin II	Geobacillin II		III 1
 Griseopeptin	III 1	SRO15-3108	2
Haloduracin alpha	4	Stackepeptin A	singleton
Haloduracin beta	Haloduracin beta	Stackepeptin B	singleton
Informatipeptin		Stackepeptin C	singleton
Lacticin 3147 α*	II 9	Stackepeptin D	singleton
Lacticin 3147 β*	II 6	Staphylococcin C55 alpha	11.9
Lacticin 481*	1	Staphylococcin C55 beta	6
Lichenicidin VK21 A1	4	Streptin	114
Lichenicidin VK21 A2	7	Streptococcin A-FF22	II 1
Macedocin	ll 1	StreptococcinA-M49	II 1
Macedovicin	Bovicin HJ50	Subtilin	17
McdA1	II 1	Subtilomycin	Subtilomycin
Mersacidin	Mersacidin	Suicin 3908	Bovicin HJ50
Michiganin A	Michiganin A	Suicin 65	II 1
Microbisporicin	Microbisporicin	Suicin 90-1330	17
Mutacin 1140*	15	Thermophilin 1277	Bovicin H.I50
Mutacin II	II 1	Thusin A	4
Mutacin K8		Thusin B	Thusin B
Nisin A	17		

*top blast hit is not identical, possibly because the genome of the producer is not in the database.

Supplementary Figure S4. Sequence logos generated from alignments of class I precursor peptides in clusters with 20 or more members (in Figure 2) using WebLogo [10]. Conserved leader motifs that are shared among multiple clusters (from Figure S2) are boxed in gray and potential lipid II-binding motifs are overlined in red. Families with no previously characterized members are highlighted in yellow.

<mark> 1</mark> n = 139	
l 2 n = 153	
<mark> 3</mark> n = 132	
<mark> 4</mark> n = 68	
 5 n = 138	MEKVLDLDVQVK ANNNTNDSAGDER I TSHELCTPGC AKTGSFNSFCC
<mark> 6</mark> n = 32	
1 7 n = 92	
<mark> 8</mark> n = 36	NPENNLFOLDLKVEKSSNGVEPRVI SYAECTPGTCAN-CEBGPTEDSACCSVELTUSLTKICYVCKR
<mark> 9</mark> n = 65	
<mark>I 10</mark> n = 46	NHK IKL <mark>I</mark> KGLQINKEQISKLQEEQN <mark>NS</mark> LKGGVNSLQAAAQ <mark>S</mark> CGQC <mark>S</mark> CGGNTVVKTRAAQ
<mark> 11</mark> n = 58	NIA-QIERE RADIARA CALIER DE DE CONFRIENCE CONTRACTOR
<mark> 12</mark> n = 49	WRTE VLSUPAPE UDLDLDLRVSDUPEQAESFGQGTYTSPSSYA GTRCPVCC

<mark> 13</mark> n = 56	$\underset{\substack{i=1,2,2,3}{\text{ML}}}{\text{ML}} \underset{\substack{i=1,2,2,3}{\text{ML}}}{\text{ML}} \underbrace{FDL}_{\text{ML}} \underbrace{VQV}_{\text{ML}} \underbrace{T}_{\substack{i=1,2,2,3}{\text{ML}}} \underbrace{GDVD}_{\text{ML}} \underbrace{PQL}_{\text{ML}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\text{ML}} \underbrace{PQL}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{PQL}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{PQL}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{S}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\substack{i=1,2,3,3}{\text{ML}}} \underbrace{GDVD}_{\substack{i=1,2,3}{\text{ML}}} \underbrace{GDVD}_{\substack$
14 n = 36	
<mark> 16</mark> n = 33	NNK ELFOLD INKK NETPTENTAQT WIJ + VKVSKAVCKIGTCICTTSCSNCK
 17 n = 50	
I 20 n = 27	MKNQFDLDLQVAKNEVAPKEVQPASCI CTPSCATGTLNCQVSLJFCKTC
I 21 n = 23	
 23 n = 23	MANNYFDLDVEVK <mark>s</mark> VNs NEGLYTSZCYSSKCYSDFCYSSDCYTGRHMCGVTHG _z sc
<mark> 31</mark> n = 21	$\underbrace{MEN}_{T \in FSLELDVT} \underbrace{EVA}_{F \notin \mathfrak{P}} \underbrace{EQD}_{F \notin \mathfrak{Q}} \underbrace{SSGVTSTGCCKN}_{S \otimes \mathfrak{Q} \otimes$

Supplementary Figure S5. Sequence logos generated from alignments of class II precursor peptides in clusters with 20 or more members (in Figure 2) using WebLogo [10]. Conserved leader motifs that are shared among multiple clusters (from Figure S2) are boxed in gray and potential lipid II-binding motifs are overlined in red. Families with no previously characterized members are highlighted in yellow.

$ \begin{array}{c} \textbf{II 13} \\ \textbf{n} = \textbf{33} \end{array} $
II 14 NSFNKNSKD LTNA EEVSEKELNEVAGGKKGSGWFAT TDDCPNSVFVCC
$ II 16 $ $ II = 36 $ $ A_{1} = 36 $ $ A_{1} = 36 $ $ A_{2} = 26 $
II 19 $ II 27 $ $ II$
II 21 WKK EFEALEEELKELAGGSEATP MTVTPTTIT PISLAGCPTTKCASIVSPCND
$\begin{array}{c} \textbf{II 23} \\ \textbf{n} = 34 \end{array} \xrightarrow{\textbf{N} \neq \textbf{k}} \begin{array}{c} \textbf{N} & \textbf{S} & \textbf{E} & \textbf{K} & \textbf{L} & \textbf{N} & \textbf{S} & \textbf{G} & \textbf{K} & \textbf$
II 25 n = 32
$\frac{ 26}{n = 39} \qquad \qquad$
II 27 MAVGLL NKAGNVSEELAVLNNEHSLNASLDT I CGTMGSLGCGSF GCGSLSSCC

<mark> 28</mark> n = 34	MQAVEEKVQSG TDRNADEVFDLV GDLEQE PPLASPTNSGSGTACGTCAGVYCC
ll 29 n = 31	ŴŊŀŴŔŶĬŴŊġŊŶŔŀĸĹĠŜeapaĦ <u>Ĕ</u> ŶġeġŀĹŢ _Ĕ ijţdeĔĹĭĕijŇĞĄĄŎ <mark>Ŷ</mark> ġĸĿġŢĿĠſŎŴŶŶġŢĿĿĬĬŢĬŸĊĠĿġſ'nŀġĸŀſĸŇ
<mark>II 30</mark> n = 34	WNNKFTGKINELELEQUVGDNQVVGG TPTI PAT SFVGVTFTVTLNAGACPTSGCTKSCNK
<mark> 31</mark> n = 31	ŴDI <mark>VRSWKDADYRISLGS</mark> EAPA <mark>HPSG</mark> EGILTAUTDEELTEUNGAAGSGVIGTLGGCSCLPWY <mark>S</mark> GT PWT VCGIAGNPGKPCKN
<mark>II 32</mark> n = 33	MAQKDFPQKINSQLLEEISDNSAVGAG w G w G w G w G w G w G w G w G w G w G
II 32 n = 33 II 33 n = 26	MAQKDFPQKINSQLLEEISDNSAVGAG, wgwgWaQLSEISEALGNKGAVCTGTIECONNCR MgwgwgWaQLSEISEALGNKGAVCTGTIECONNCR MgwkitsENightsGagtegeteereereereereereereereereereereereeree
II 32 n = 33 II 33 n = 26 II 36 n = 28	MAQKDFPQK INSOLLEE SDNS AVGAG WGWGWGWAQLSE SEALGNKGAVCTGT ECONNCR Mennessen for the formation of the formati

Supplementary Figure S6. Sequence logos generated from alignments of class III precursor peptides in clusters with 20 or more members (in Figure 2) using WebLogo [10]. Conserved leader motifs that are shared among multiple clusters (from Figure S2) are boxed in gray. Families with no characterized members are highlighted in yellow.

III 1 n = 460	
III 2 n = 125	$\begin{array}{c} \text{MALLDLQTMESPEHTGG} & \text{GGG} \\ \text{STVSLLSCYSAASVLLCL} \\ SUBSCHERTER SETENCE SEESESSESSESSESSESSESSESSESSESSESSESSE$
<mark> 3</mark> n = 151	MAEEVLNLQLVSVQVDETDEVDGNRFSTFSTNRCGNWSAFSWENC
 4 n = 34	MELVLDLQALEAPEVLEGG BGGSHGGASNLSLLASCANSTYSLLTCH
<mark> 5</mark> n = 45	
<mark> 6</mark> n = 49	MKDVLELQQLNEGSEVEASK GKGGLLTLITVVGTSTJSNNCG
<mark> 7</mark> n = 63	
<mark> 8</mark> n = 37	MTNDA I LSLQDLSVAAGNVGDA GQLEQNAA I SSLSFFCL
<mark> 9</mark> n = 49	MKKLLSLQHKALDKEVTLLKHGKSSVSLGCDK STVSLYFCGN
<mark> 12</mark> n = 25	NOVLELOKLAHESREGOONSVEKSPATYTITTAVGWSTASNEC
<mark> 15</mark> n = 44	
<mark> 17</mark> n = 26	MSEJLKLQNLSVADTDEGELNEWSTVSNUCGSK EEDAL
<mark> 19</mark> n = 23	MSLLDLQEMEL TDSAEET VLGSG SQHCSDASWVFC

Supplementary Figure S7. Sequence logos generated from alignments of class IV precursor peptides in clusters with 20 or more members (in Figure 2) using WebLogo [10]. Conserved leader motifs that are shared among multiple clusters (from Figure S2) are boxed in gray. Families with no previously characterized members are highlighted in yellow.

Supplementary Table S6. Twenty most abundant proteins in class I BGCs that belong to at least one Pfam family. If a protein has multiple domains from different Pfam families, those families are separated by a slash. Potential secondary modification enzymes are highlighted in yellow. Split LanBs, with the glutamylation and elimination domains on separate polypeptides, are denoted sLanB.

Pfam families	Description	Count
LANC_like (PF05147)	LanC	2,204
Lant_dehydr_N (PF04738)/Lant_dehydr_C (PF14028)	LanB	1,745
ABC_tran (PF00005)	LanT	657
Lant_dehydr_C (PF14028)	LanB elimination domain	562 (193 sLanBs)
PCMT (PF01135)	Protein-L-isoaspartate(D-aspartate)	<mark>571</mark>
Gallidermin (PF02052)	Gallidermin- and nisin-like precursor peptides	426
ABC2_membrane_4 (PF12730)	LanT	363
HTH_31 (PF13560)	transcriptional regulator	307
Lant_dehydr_N (PF04738)	PEARL	304 (193 sLanBs)
ABC_membrane (PF00664)/ABC_tran (PF00005)	LanT	283
Lant_dehydr_C (PF14028)/PCMT (PF01135)	LanB elimination domain and Protein-L- isoaspartate(D-aspartate) <i>O</i> -methyltransferase fusion protein	261
Peptidase_C39 (PF03412)/ABC_membrane (PF12730)/ABC_tran (PF00005)	LanT _P	258
HATPase_c_2 (PF13581)	Histidine kinase-like ATPase	197
Response_reg (PF00072)/Trans_reg_C (PF00486)	transcriptional regulator	180
Peptidase_S8 (PF00082)	LanP _A	172
Flavoprotein (PF02441)	LanD	<mark>146</mark>
Acetyltransf_1 (PF00583)	N-acetyltransferase	<mark>142</mark>
DUF397 (PF04149)	Domain of Unknown Function	<mark>140</mark>
MFS_1 (PF07690)	Major Facilitator Superfamily protein	128
Leukocidin (PF07968)	Leukocidin/Hemolysin toxin family protein	127

Supplementary Table S7. Twenty most abundant proteins in class II BGCs that belong to at least one Pfam family. If a protein has multiple domains from different Pfam families, those families are separated by a slash. Potential tailoring enzymes are highlighted in yellow.

Pfam families	Description	Count
DUF4135 (PF13575)/LANC_like (PF05147)	LanM	2,163
Peptidase_C39 (PF03412)/ABC_membrane (PF12730)/ABC_tran (PF00005)	LanT _P	1,270
ABC_tran (PF00005)	LanT	886
ABC2_membrane_4 (PF12730)	LanT	761
Mersacidin (PF16934)	Mersacidin-like precursor peptide	705
L_biotic_typeA (PF04604)	Type A lanthipeptide precursor peptide	532
HTH_3 (PF01381)	transcriptional regulator	348
Lantibiotic_a (PF14867)	Alpha precursor peptide	339
Response_reg (PF00072)/GerE (PF00196)	transcriptional regulator	308
Peptidase_S8 (PF00082)	LanP _A	291
ABC_membrane (PF00664)/ABC_tran (PF00005)	LanT	222
ABC_tran (PF00005)/DUF4162 (PF13732)	LanT	213
FMN_red (PF03358)	Flavin mononucleotide reductase	<mark>186</mark>
HisKA (PF00512)/HATPase_c (PF02518)	2-component response regulator	180
Response_reg (PF00072)/Trans_reg_C (PF00486)	transcriptional regulator	164
GerE (PF00196)	transcriptional regulator	140
Nhase_alpha (PF02979)	precursor peptide with nitrile hydratase family leader peptide	119
Nif11 (PF07862)	precursor peptide with Nif11 family leader peptide	109
FtsX (PF02687)	FtsX-like permease family	104
LANC_like (PF05147)	LanC (split LanM possibly from sequencing errors)	95

Supplementary Table S8. Twenty most abundant proteins in class III BGCs that belong to at least one Pfam family. If a protein has multiple domains from different Pfam families, those families are separated by a back slash. Potential tailoring enzymes are highlighted in yellow. LanP_P is a Pro oligopeptidase that is distinct from the LanP_A subtilin-like S8 peptidases.

Pfam families	Description	Count
ABC_membrane (PF00664)/ABC_tran (PF00005)	LanT	1,514
Pkinase (PF00069)/LANC_like (PF05147)	LanKC	1,511
ABC_tran (PF00005)	LanT	781
Response_reg (PF00072)/GerE (PF00196)	transcriptional regulator	715
GerE (PF00196)	transcriptional regulator	263
MFS_1 (PF07690)	Major facilitator superfamily protein	243
adh_short (PF00106)	short chain dehydrogenase	<mark>156</mark>
GAF_2 (PF13185)/PAS_3 (PF08447)/GAF_2 (PF13185)/SpollE (PF07228)/HATPase_c_2 (PF13581)	Unknown	135
trypsin (PF00089)	Protease	133
Pkinase (PF00069)	protein kinase	133
HTH_20 (PF12840)	transcriptional regulator	123
Acetyltransf_1 (PF00583)	N-acetyltransferase	<mark>122</mark>
BPD_transp_1 (PF00528)	Binding-protein-dependent transport system, inner membrane component	121
FtsX (PF02687)/FtsX (PF02687)	FtsX-like permease	119
GAF_2 (PF13185)/PAS_4 (PF08448)/GAF_2 (PF13185)/SpoIIE (PF07228)	Unknown	114
Acetyltransf_3 (PF13302)	N-acetyltransferase	<mark>113</mark>
Peptidase_S9 (PF00326)	LanP _P	112
FecCD (PF01032)	FecCD transport family	102
Mac (PF12464) /Hexapep (PF00132)	Acetyltransferase	<mark>97</mark>
DUF4265 (PF14085)	Domain of unknown function	93

Supplementary Table S9. Twenty most abundant proteins in class IV BGCs that belong to at least one Pfam family. If a protein has multiple domains from different Pfam families, those families are separated by a back slash. Known class IV BGCs comprise only 4 genes, so these entries may include proteins encoded by genes that are not part of the gene cluster. Potential tailoring enzymes are highlighted in yellow.

Pfam families	Description	Count
Pkinase (PF00069)/LANC_like (PF05147)	LanL	340
ABC_membrane (PF00664)/ABC_tran (PF00005)	LanT	164
Peptidase_S9 (PF00326)	LanP _P	112
MFS_1 (PF07690)	Major facilitator Superfamily protein	101
ABC2_membrane (PF01061)	LanT	83
ABC_tran (PF00005)/DUF4162 (PF13732)	LanT	82
HATPase_c_2 (PF13581)	Histidine kinase-like ATPase domain	48
ABC_tran (PF00005)	LanT	48
Nif3 (PF01784)	NGG1p interacting factor 3	46
NAD_binding_10 (PF13460)	NAD(P)H-binding protein	<mark>35</mark>
STAS_2 (PF13466)	STAS domain containing protein	31
DAO (PF01266)	FAD dependent oxidoreductase	<mark>30</mark>
BPD_transp_1 (PF00528)	Binding-protein-dependent transport system, inner membrane component	30
TrmK (PF04816)	N-methyltransferase	<mark>29</mark>
Glycos_transf_2 (PF00535)	Glycosyl transferase	<mark>28</mark>
SBP_bac_3 (PF00497)	Bacterial extracellular solute-binding protein	26
Methyltransf_19 (PF04672)	Methyltransferase	<mark>26</mark>
GDP_Man_Dehyd (PF16363)	GDP-mannose 4,6-dehydratase	<mark>26</mark>
SNF2_assoc (PF08455)/SNF2_N (PF00176)/Helicase_C (PF00271)	Helicase	24
Response reg (PF00072)/Sigma70 r4 2 (PF08281)	Response regulator	25

Supplementary Table S10. Distribution among the lanthipeptide classes of Pfams that are in the 20 most abundant protein families in a single class. Values are presented on the basis of domains, so Pfam families that occur in multidomain proteins and single domain proteins are counted together. The Pfam are listed in order of decreasing frequency.

Pfam protein family	Top 20 most abundant in class	Class I	Class II	Class III	Class IV
PCMT (PF01135)	I	835	1	1	0
Flavoprotein (PF02441)	I	146	26	24	4
Acetyltransf_1 (PF00583)	1, 111	149	47	142	12
FMN_red (PF03358)	Ш	34	186	7	4
adh_short (PF00106)	Ш	57	30	157	19
Acetyltransf_3 (PF13302)	Ш	57	12	113	9
Mac (PF12464)	III	0	0	97	0
TrmK (PF04816)	IV	0	0	0	29
DAO (PF01266)	IV	6	1	9	30
NAD_binding_10 (PF13460)	IV	21	10	19	38
GDP_Man_Dehyd (PF16363)	IV	2	0	65	26
Glycos_transf_2 (PF00535)	IV	36	8	39	29
Methyltransf_19 (PF04672)	IV	64	12	9	26

Supplementary Figure S8. Example putative biosynthetic gene clusters encoding the enzymes in Table S10. LanA genes that were not annotated in the genome are indicated in red. Because BGC boundaries are not known, the genes encoding the noted enzymes may or may not be part of the lanthipeptide BGC for all panels of Supplementary Figure S8.

O-methyltransferase containing clusters

1 kb

LanA sequence MALLDLQTMETEYGGHGGGGGSEASLLLCWSDASIVLCV

18

Flavoprotein containing clusters

Class I

Class II

Class III

Class IV

Acyltransferase (Acyltransf_1) containing clusters

Class II

Class III

Class IV

Supplementary Figure S8 continued.

Short chain dehydrogenase (adh_short) containing clusters

Acyltransferase (Acetyltransf_3) containing clusters

Glycosyltransferase (Glycos_transf_2) containing clusters

Methyltransferase (Methyltransf_19) containing clusters

Supplementary Table S11. Distribution of select Pfam protein families from BGCs. The enzymes belonging to these families potentially carry-out secondary post-translational modifications. Values are presented on the basis of domains, so Pfam protein families that occur in multidomain proteins or single domain proteins are counted together. NRPS: non-ribosomal peptide synthetase, PKS: polyketide synthase, FAS: fatty acid synthase.

Pfam protein families	Class I	Class II	Class III	Class IV
YcaO (PF02624)	4	42	2	0
Radical_SAM (PF04055)	39	49	42	43
p450 (PF00067)	45	44	50	23
Condensation (PF00668) (NRPS)	45	31	10	2
Ketoacyl-synt_C (PF02801) (PKS/FAS)	34	5	92	8
ADH_N (PF08240) (zinc-dependent dehydrogenase)	56	63	38	27
2OG-Fell_Oxy_3 (PF13640)	0	5	4	0

Supplementary Figure S9. Example biosynthetic gene clusters encoding the enzymes in Table S11. LanA genes that were not annotated in the genome are indicated in red. Because BGC boundaries are not known, the noted enzymes may or may not be part of the lanthipeptide BGC for all panels of Supplementary Figure S9.

Radical SAM containing clusters

Class I

Tannerella forsythia 92A2

Class II

Class III

Class IV

Nonribosomal peptide synthetase containing clusters

Polyketide synthase containing clusters

Zinc-dependent alcohol dehydrogenase containing clusters

Supplementary Figure S10. Phylogenetic distribution of genomes in the dataset used for this study.

Supplementary Figure S11. An approximate maximum likelihood, midpoint rooted phylogenetic tree of LanC and LanC-like domains including human LanC-like proteins. The branches for the human LanC-like proteins are colored in red.

Supplementary Figure S12. GC content of clusters versus the cognate genome. The blue diagonal line is the linear regression with slope and intercept provided. Red points are the 10 greatest regression outliers. The box plot represents the differences between the cluster GC content and the genome GC content. The boxes indicate 1 standard deviation of the mean with the whiskers representing the maximum and minimum values.

Supplementary Figure S13. ESI MS/MS and bioactivity of birimositide α and β . A+B) Collision induced dissociation fragmentation spectrum of each peptide. The multiply-charged monoisotopic mass is boxed in blue. C) Peptides were screened against *Lactococcus lactis* sp. *cremoris* (left) and *Micrococcus luteus* ATCC 4698 (right). Red arrows indicate zones of growth inhibition.

36

Supplementary Table S12. Expected and observed monoisotopic masses for Brtα and Brtβ using orbitrap ESI MS/MS.

lon	Predicted (m/z)	Observed (m/z)	Error (ppm)
(Brtα + 3H) ³⁺	1023.1071	1023.1071	0.0000
$(Brt\alpha + 3H)^{3+} y_{26}^{+2}$	1342.5938	1342.5961	-1.7131
(Brtα + 3H) ³⁺ y ₂₅ ⁺²	1301.0752	1301.0721	2.3826
(Brtα + 3H) ³⁺ y ₂₄ ⁺²	1227.5410	1227.5405	0.4073
$(Brt\alpha + 3H)^{3+} y_{23}^{+2}$	1192.0225	1192.0245	-1.6778
$(Brt\alpha + 3H)^{3+} y_{22}^{+2}$	1135.4804	1135.4804	0.0000
$(Brt\alpha + 3H)^{3+}b_8$	798.3603	798.3563	5.0103
$(Brt\alpha + 3H)^{3+} b_6$	614.2391	614.2389	0.3256
(Brtβ + 2H) ²⁺	1191.5649	1191.5649	0.0000
$(Brt\beta + 2H)^{2+}y_{20}$	1829.8495	1829.8484	0.6011
$(Brt\beta + 2H)^{2+}y_{19}$	1758.8124	1758.8099	1.4214
(Brtβ + 2H) ²⁺ y ₁₈	1687.7753	1687.7721	1.8960
(Brtβ + 2H) ²⁺ y ₁₇	1616.7382	1616.7356	1.6082
(Brtβ + 2H) ²⁺ y ₁₆	1517.6698	1517.6671	1.7790
(Brtβ + 2H) ²⁺ y ₁₅	1446.6327	1446.6337	-0.6913
(Brtβ + 2H) ²⁺ y ₁₄	1375.5956	1375.5968	-0.8723
(Brtβ + 2H) ²⁺ y ₉	914.4223	914.4188	3.8276
(Brtβ + 2H) ²⁺ b ₁₀	865.4600	865.4583	1.9643
(Brtβ + 2H) ²⁺ b ₉	766.3916	766.3898	2.3487
(Brtβ + 2H) ²⁺ b ₈	695.3545	695.3540	0.7191
(Brtβ + 2H) ²⁺ b ₇	624.3174	624.3172	0.3203
(Brtβ + 2H) ²⁺ b ₆	553.2803	553.2798	0.9037
(Brtβ + 2H) ²⁺ b ₅	454.2119	454.2113	1.3210
(Brtβ + 2H) ²⁺ y ₈ ⁺²	409.1884	409.1897	-3.1770

References

- 1. Grant CE, Bailey TL, Noble WS: **FIMO: Scanning for occurrences of a given motif**. *Bioinformatics* 2011, **27**(7):1017-1018.
- 2. van der Meer JR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, de Vos WM: Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by *Lactococcus lactis*. *J Biol Chem* 1994, **269**(5):3555-3562.
- 3. Patton GC, Paul M, Cooper LE, Chatterjee C, van der Donk WA: **The importance of the leader sequence for directing lanthionine formation in lacticin 481**. *Biochemistry* 2008, **47**(28):7342-7351.
- 4. Müller WM, Ensle P, Krawczyk B, Süssmuth RD: Leader peptide-directed processing of labyrinthopeptin A2 precursor peptide by the modifying enzyme LabKC. *Biochemistry* 2011, 50(39):8362-8373.
- 5. Hegemann JD, van der Donk WA: Investigation of substrate recognition and biosynthesis in class IV lanthipeptide systems. *J Am Chem Soc* 2018, 140(17):5743-5754.
- 6. Zallot R, Oberg NO, Gerlt JA: 'Democratized' genomic enzymology web tools for functional assignment. *Curr Opin Chem Biol* 2018, **47**:77-85.
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504.
- Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC *et al*: Minimum Information about a Biosynthetic Gene cluster. *Nat Chem Biol* 2015, 11(9):625-631.
- 9. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP: **BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins**. *Nucleic Acids Res* 2018, **46**(W1):W278-w281.
- 10. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. *Genome Res* 2004, 14(6):1188-1190.