Supplementary text

Supplementary materials and methods

Bacterial culture

Bacterial strains were grown in tryptic soy broth. For nafcillin challenge, the strains were grown in the presence of 0.25µg/ml nafcillin for 4h and then plated on tryptic soy agar (TSA) plates (antibiotics added as per requirement) and incubated at 37C for CFUs.

List of Strains

Strains	Description	Reference
SF8300ex	Derivative of SF8300 lacking mezA and blaZ	(1)
∆stk1	SF8300ex lacking <i>stk1</i>	This study
∆stp1	SF8300ex lacking <i>stp1</i>	This study
Δstp1+E	Δstp1 containing pTX _Δ vector	This study
∆stp1+wt	Δstp1 expressing wt stp1	This study
Δstp1+SRB	Δstp1 expressing SRB stp1 (G169S)	This study
Δstp1+SRT	Δstp1 expressing SRT stp1 (Q31X)	This study
SF8300ex [E]	SF8300ex with empty pAmilux vector	This study
SF8300ex [<i>Ppbp4</i>]	SF8300ex with pAmilux containing <i>pbp4</i> promoter of SF8300ex	This study
Δstk1 [E]	Δstk1 with empty pAmilux vector	This study
Δstk1 [Ppbp4]	Δstk1 with pAmilux containing pbp4 promoter of SF8300ex	This study
Δstp1 [E]	Δstp1 with empty pAmilux vector	This study
∆stp1 [Ppbp4]	Δstp1 with pAmilux containing pbp4 promoter of SF8300ex	This study

List of Primers

Primer	Sequence	Description
Stp1-for	AAAGGATCCACAAGTAGAAACGAGGTAAAGACAAATGC	stp1 cloning in pTX _∆
Stp1-rev	ATTACGCGTATCATACTTTATCACCTTCAATAGCCGC	stp1 cloning in pTX _∆
stp1-stk1- P1	ACAAGAGCTCCAAAAATTTCGAGCGAAACAGATTTTTGAATGG	stp1 & stk1 deletion
stp1-P2	TTTATTATTTTACCTATCATTTGTCTTTACCTCGTTTCTACTTGTCGTTCCTTTGC	stp1 deletion
stp1-P3	ATGATAGGTAAAATAATAAATGAACGATATAAAATTGTAGATAAGC	stp1 deletion
stp1-P4	TACACCCCGGGTCTGGCTTTTGGAATTGCTGATGATGAGCAGGCCC	stp1 deletion
stk1-P2	TACATTTACTTCAATTATTCATACTTTATCACCTTCAATAGCCGCGAGTATGAAAGTAACG	stk1 deletion
stk1-P3	ATATAATTGAAGTAAATGTACCGAGGTTTCTATTTGGAAGTC	stk1 deletion
stk1-P4	TATTCCCGGGTATCTCTAATTGATGCTTAACATTACAATTAGG	stk1 deletion

List of plasmids

Plasmid	Description	Reference
pTX∆	Used as vector control	(1)
pTX∆+ <i>stp1</i> _wt	Used to constitutively express wt stp1	This study
pTX∆+ <i>stp1</i> _SRB	Used to constitutively express SRB stp1	This study
pTX∆+ <i>stp1</i> _SRT	Used to constitutively express SRT stp1	This study
pJB38	Used for creation of $\triangle stk1$ and $\triangle stp1$ mutants	(2)
pAmilux	Used as vector control for reporter assay	(1)
pAmilux+Ppbp4	Used for reporter assay for <i>pbp4</i> promoter	(1)

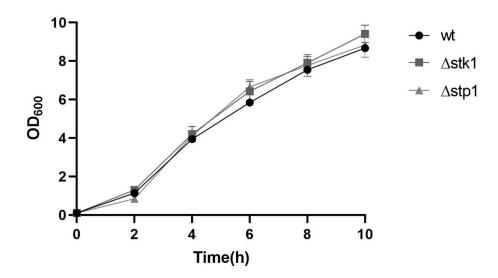


Fig. S1. Growth profiles of SF8300ex (wt), $\Delta stk1$ and $\Delta stp1$ in TSB. Experiments were repeated at least twice.

Fig. S2

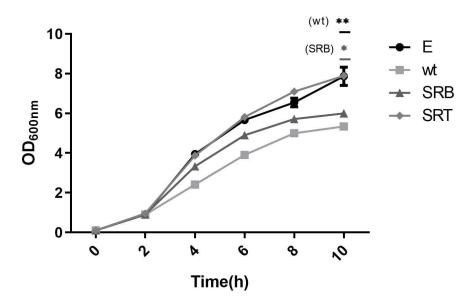
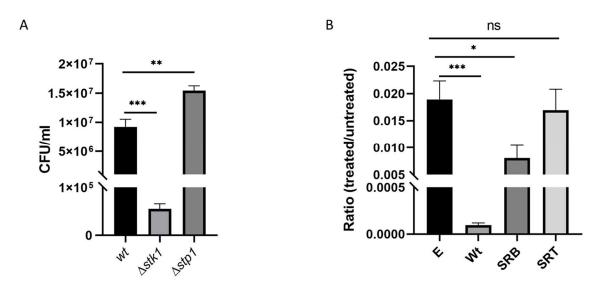



Fig. S2. Growth profiles of $\triangle stp1$ complemented strains in media in TSB. $\triangle stp1$ complemented with empty vector pTX_{\triangle} (E), wild type stp1 (wt) and mutant stp1s

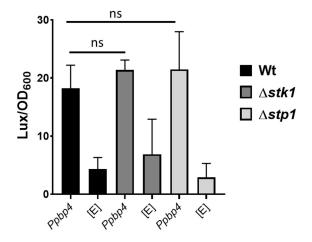

G169S (SRB) and Q31X (SRT). *; P=0.0157, **; P=0.0055. Student's t test used to analyze the *P* values using GraphPad prism software. Experiments were repeated at least twice.

Fig. S3

Fig. S3 Deletion of *stp1* **facilitates resistance in SF8300ex**. (A) CFU/ml of knock out strains (Δ*stk1* and Δ*stp1*) and wild type SF8300ex after 4h of 2µg/ml cefoxitin treatment. (B) Ratio of survival of Δ*stp1* complemented strains after 4h of 2µg/ml cefoxitin treatment. Δ*stp1* complemented with empty vector pTX_{Δ} (E), wild type stp1 (wt) and mutant stp1s G169S (SRB) and Q31X (SRT). *; P=0.01, **;P=0.0022, ***; P ≤ 0.0007. Student's t test used to analyze the P values using GraphPad prism software. All the experiments were repeated at least twice.

Fig. S4

Fig. S4 *pbp4* expression in Δ*stk1* and Δ*stp1* strains of SF8300ex strain. *pbp4* promoter from wild type were cloned in to lux reporter plasmid *pAmilux*. The resultant plasmid and its empty vector [E] were transformed into SF8300ex and its Δ*stk1* and Δ*stp1* strains. Lux signals and bacterial OD₆₀₀ were measured at 2h post culture and data are presented as lux signal divided by OD₆₀₀. Student's t test used to analyze the *P* values between Wt *Ppbp4* and Δ*stk1 Ppbp4* and Δ*stp1 Ppbp4* using GraphPad prism software. Experiments were repeated at least twice.

References

- Chatterjee SS, Chen L, Gilbert A, da Costa TM, Nair V, Datta SK, Kreiswirth BN, Chambers HF.
 2017. PBP4 Mediates beta-Lactam Resistance by Altered Function. Antimicrob Agents
 Chemother 61.
- 2. Basuino L, Jousselin A, Alexander JAN, Strynadka NCJ, Pinho MG, Chambers HF, Chatterjee SS. 2018. PBP4 activity and its overexpression are necessary for PBP4-mediated high-level beta-lactam resistance. J Antimicrob Chemother 73:1177-1180.