

advances.sciencemag.org/cgi/content/full/6/23/eaba6944/DC1

Supplementary Materials for

VapBC22 toxin-antitoxin system from *Mycobacterium tuberculosis* is required for pathogenesis and modulation of host immune response

Sakshi Agarwal, Arun Sharma, Rania Bouzeyen, Amar Deep, Harsh Sharma, Kiran K. Mangalaparthi, Keshava K. Datta, Saqib Kidwai, Harsha Gowda, Raghavan Varadarajan, Ravi Datta Sharma, Krishan Gopal Thakur, Ramandeep Singh*

*Corresponding author. Email: ramandeep@thsti.res.in

Published 3 June 2020, *Sci. Adv.* **6**, eaba6944 (2020) DOI: 10.1126/sciadv.aba6944

The PDF file includes:

Table S1 Figs. S1 to S4

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/6/23/eaba6944/DC1)

Tables S2 to S6

List of strains used in the present study				
Bacterial strains	Description	Reference		
E.coli XL-1 Blue	recA1 endA1 gyrA96 thi-1 hsdR17	Stratagene		
	supE44 relA1 lac [F´proAB lacIq			
	$Z\Delta M15 Tn10 (Tetr)]$			
E.coli HB101	F , thi ⁻¹ , hsdS20 (r_B - m_B), supE44,	Promega		
	<i>recA13, ara-14, leuB6, proA2, lacY1,</i>			
	galK2, rpsL20 (strr), xyl-5, mtl-1			
M. smegmatis	M. smegmatis parental strain	A kind gift from Prof. Anil		
mc ² 155		Tyagi		
M. bovis BCG	<i>M. bovis</i> BCG parental strain	A kind gift from Prof. Anil		
Danish		Tyagi		
M. tuberculosis	<i>M. tuberculosis</i> parental strain	ATCC		
H_{37} KV	D 2020			
AvapC22	Rv2829c mutant strain of M .	This study		
	tuberculosis			
AvapC22-CI	Rv2829 complemented strain of <i>M</i> .	This study		
V D22 OF	tuberculosis	This state		
VapB22-OE	<i>M. tuberculosis</i> strain overexpressing	This study		
List of plasmids use	d in the present study			
List of plasmids use	Description	Deference		
r lasinius	T/A aloning vector Amnicillin	Dromaga		
polim-i Lasy	resistance gene	romega		
nTetR	Anhydrotetracycline inducible E	Agarwal et al. 2018		
preuv	<i>coli</i> mycobacterial expression vector	11gui wai ci al., 2010		
pTetR- <i>vanC</i> .	pTetR derivative harboring VanC _z	Agarwal et al 2018		
product tup o _x	(where x denotes VapC homolog			
	from <i>M. tuberculosis</i>)			
pTetR-vapC22 ^{D8A}	pTetR harboring D8A mutant Vap22	This study		
1 1	protein			
pYUB854	Cloning vector	Bardarov et al., 2002		
pYUB854⊿vapC22:	pYUB854 with Rv2829c region	This study		
:hyg ^r	amplicons flanking the hygromycin			
	resistance gene			
phAE87	Temperature sensitive	Bardarov et al., 2002		
	mycobacteriophages			
phAE87 <i>dvapC22::</i>	phAE87 derivative to replace	This study		
hyg ^r	Rv2829c with hygromycin resistance			
	gene in M. tuberculosis			
pVV16	E. coli mycobacterial shuttle	A kind gift from BEI resources		
	episomal plasmid containing			
	constitutive <i>hsp65</i> promoter			
pVV16- <i>vapB22</i>	pVV16 derivative harboring <i>vapB22</i>	This study		
pMV306K	Mycobacterial shuttle integrative	A kind gift from Dr. William Jacobs		
	vector			
pMV306K- <i>vapC22</i> -	pMV306K harboring VapBC22	This study		
	along with the flanking region.			
pET-Duet	<i>E. coli</i> expression vector	Deep et al., 2017		
pET-Duet-vapBC22	pET-Duet harboring Rv2830c and	This study		
	KV2829C			

Table S1: List of strains,	plasmids and primers us	ed in the study.

pET28b	<i>E. coli</i> expression vector	Merck		
pET28b-vapB22	pET28b-harboring Rv2830c	This study		
List of primers used in the study for cloning purpose.				
Primer name	Forward primer (5' 3')	Reverse primer (5' 3')		
vapC22 upstream	gggaggcctgtgggcagcagctggtcgtgggc	gggtctagagaccaccagtaggccacatgcg		
vapC22 downstream	gggccatggcggcacccacgaccggtcaccgtc	gggactagtggcgtcaccggcagctgcacccagc		
vapC22	gggtctagatcatccgccgggccaggccgatg	gggacgcgtctaccagacggtgaccggtcgtggg		
complemented				
pVV16-vapB22	gggcatatgaccgctacggaggtgaaggcg	gggaagctttgaaacgttccacgaaaccccggtg		
pET-Duet-vapB22	gggcatatgaccgctacggaggtgaaggcg	ctcactcgagtgaaacgttccacgaaaccccg		
pET-Duet-vapC22	atgcgctagcacgacggtgctgctcgactcgactcgcat	gaagcttctaccagacggtgaccggtcgtggg		
pET28b-vapB22	gggcatatgaccgctacggaggtgaaggcg	ctcactcgagtgaaacgttccacgaaaccccg		
List of primers used in the study for quantitative PCR.				
sigA	acgaagaccacgaagacctcgaa	gtaggcgcgaaccgagtcggcgg		
vapC22	ggcttggcttgccgaacaggaacgc	ccttggtcaccagccgccagccg		
vapB22	accgctacggaggtgaaggcg	tgaaacgttccacgaaaccccggtg		
mazF6	gtacaacgcaagtcgccttgcc	ccccaactcggtcggtgaggtc		
higB1	ggagttgcgatggcatgaggcg	tcagatcggtggggtgtcgccg		
vapC15	gaaccgctggccccggtccgcgacg	tcagaacaacggctcggtgcgtag		
furA	gcgcatccacacgccgacacggaaac	caagaccggcagacgatgtgatgg		
Rv2660c	gtgatagcgggcgtcgaccaggcgc	ctagtgaaactggttcaatcccag		
Rv2661c	gtgccctcgttgataatccgcagg	gcgaacggctgcaaacggtcgttg		
whib7	ttgccggttttgccgtgccacgtcg	cgcgcggacgcttgtgactcacg		
Eis	cggctacgggcccgctaccacc	gcacctgcgggcgtagcagcccg		
Rv3290c	gccctggcggtggagaacgcgctc	gcgtggccagtcgaatttcgggaac		
rpmI	atgcccaaggccaagacccacagc	tcagccgttcagcaacgacgtgacc		
rplT	cgcaaagccaaagagcagcagctgc	cgcaatgtcggcgaggtttttccgg		
rplN	gtgattcagcaggaatcgcggctg	tacaacacctccggggccagcg		
rplX	gtattggtcgagggtgtcaaccgg	cgcttggagatacggacgcgcttg		
rplE	gcgctgatcaccgggcagaagccg	cccacaccgtcgaactgtttgggcg		
Primers used in the study for <i>in vitro</i> transcription				
Rv2830c	taatacgactcactatagatgaccgctacggaggtgaag	tcatgaaacgttccacgaaac		
Rv2831	taatacgactcactatagatgaccgacgacatcctgctg atc	ctaacgcacctgcgcgcggccgcgctg		

Supplementary Figure Legends.

Agarwal et al., Figure S1

Supplementary Figure 1: Functional and biochemical characterization of VapBC22 TA system from *M. tuberculosis*. (A-C) Effect of VapC22 overexpression on the growth, nucleoid morphology and cell length of *M. smegmatis*. (A) The growth of the recombinant *M. smegmatis* mc²155 harbouring an inducible expression vector, pTetR or pTetR-*vapC22* was monitored by measuring absorbance at 600nm at regular intervals. The data shown in this panel is representative of three independent experiments. (B) The 9 hrs induced cultures of *M. smegmatis* harboring either pTetR or pTetR-*vapC22* were stained with DAPI. Representative bright/DAPI overlaid images of parental and VapC22 overexpressing *M. smegmatis* strain is shown. Scale bar, 2 μ m. (C) The cell length of recombinant *M. smegmatis* harbouring either pTetR-*vapC22* was determined after 9 hrs post-Atc induction. The confocal images were captured using 100X objective and cell length of at least 150 bacilli was determined.

(D) VapC22 is a functional ribonuclease. Ribonuclease activity of the purified VapC22 was performed using either MS2 RNA or tRNA-Leu^{CAG} for different time points. The reactions were resolved on 6% UREA-PAGE (for MS2 RNA) or 10% UREA-PAGE (for tRNA-Leu^{CAG}) and stained using ethidium bromide.

(E) AUC analysis of VapB22, VapC22 and VapBC22. Sedimentation coefficient distribution analysis suggests that VapB22 and VapC22 forms a predominant homodimeric species with observed molecular weight of 21.1 kDa and 29.5 kDa, respectively. Sedimentation coefficient distribution analysis of VapBC22 suggests that these proteins interact to form a predominant heterotetrameric species with observed molecular weight of 48 kDa.

Agarwal et al., Figure S2

Supplementary Figure 2: Overexpression of VapC toxins in *M. bovis* BCG inhibits growth in a bacteriostatic manner. The expression of various toxins in *M. bovis* BCG was induced by the addition of Atc for 2 days. The induced cultures were harvested, washed, labelled and stained bacilli were visualised by confocal microscopy using 100X objective. The data shown in this panel is representative of two independent experiments. Scale bar, 5 µm.

Agarwal et al., Figure S3

Supplementary Figure 3: Characterization of $\Delta vapC22$ mutant strain of *M. tuberculosis* and *M. bovis* BCG. (A) Schematic representation of *vapC22* locus in parental and mutant strain of *M. tuberculosis*. (B) For Southern blot analysis, the genomic DNA isolated from wild type (WT) and *AvapC22* (MT1, MT2) strains of *M. tuberculosis* was *Pvu II* digested and transferred to nylon membrane. The DIG-labelled probe hybridized with 3.4 kb and 1.8 kb, respectively in genomic DNA isolated from the wild type and mutant strain, respectively. (C) The transcript levels of vapC22 were measured by qPCR using mRNA isolated from parental, mutant and complemented strains of *M. tuberculosis* and *M. bovis* BCG. The data shown is mean \pm S.E. of fold change in the mutant and complemented strain relative to the parental strain obtained from two independent experiments. (D-H) The effect of deletion of VapC22 on growth of *M. tuberculosis* in different conditions. (D-G) The susceptibility of different strains was also determined after exposure of early-log phase cultures to either nutritional stress (D) or low oxygen growth conditions (E) or 2.5 mg/ml lysozyme (F) or 0.1 % SDS (G) as described in methods. (H) For drug-tolerance experiments, mid-log phase cultures of various strains were exposed to either isoniazid or rifampicin for 14 days as described in materials and methods. For bacterial enumeration, 10.0 fold serial dilutions were prepared and plated on Middlebrook 7H11 medium at 37 °C for 3-4 weeks. The data shown in these panels is mean + S.E. of \log_{10} cfu obtained from three independent experiments.

Agarwal et al., Figure S4

Supplementary Figure 4: Global transcriptome profile of lung tissues from uninfected and mice infected with wild type and $\Delta vapC22$ strain. (A and B) These panels are the volcano plot displaying gene expression profiles in uninfected mice and mice infected with wild type and $\Delta vapC22$ strain for 4 weeks. The y-axis and x-axis depict *P value* and fold change for each gene, respectively. The significant differentially upregulated and downregulated genes between uninfected versus $\Delta vapC22$ infected mice (A) and uninfected versus wild type infected (B) mice are shown as blue dots and red dots, respectively. (C and D) Heat map representation of differentially expressed transcripts between different groups as analysed by RNA-seq. The transcripts with fold change more than 4-fold have been shown. The gene names are indicated on the right of heat map and bacterial growth conditions at the top. The data shown in obtained from three biological replicates. The genes highlighted in red and green means upregulated and downregulated, respectively.