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1 Jones matrix analysis

The Jones matrix, i.e. transmission matrix, of a metasurface shape birefringent component is constrained by three
conditions: unitarity, reciprocity, and geometrical symmetries. Here we assume that all materials are linear and
reciprocal, and that absorption is negligible for the wavelengths of interest. We are going to discuss how these
conditions restrict the form of the Jones matrix and the corresponding eigen-polarization states.

1.1 Unitarity

The Jones matrix is proportional to a unitary matrix if there is no dichroism, i.e. the transmission efficiency
is polarization-independent. This is usually a good approximation for lossless dielectric metasurfaces away from
resonances. Note that here we do not require the system to have unity transmission efficiency, as long as the
transmission efficiency is similar for different polarization states. A direct consequence of unitarity is the orthogonality
of eigen-polarization states.

1.2 Reciprocity

Reciprocity links the Jones matrix for forward (Jf = J(k̂)) and reverse (Jr = J(−k̂)) propagation. Here k̂ denotes
the light momentum. To understand this, consider time-reversal situations of light transmitting through an unitary
polarization elements (Fig. S1). Here a, b and a∗, b∗ are two-component complex polarization vectors. When
expressed in a fixed global coordinate system, a and a∗, (as well as b andb∗), are complex conjugate to each other.
Fig. S1(a) is expressed as

b = J(k̂)a (1)

Similarly, Fig. S1(b) is expressed as

a∗ = J(−k̂)b∗ (2)

If Jf is unitary, then equation 1 yields

b = J(k̂)a

⇔ (J(k̂))−1b = a

⇔ (J(k̂)T )b∗ = a∗ (3)

Compare equation 3 with equation 2, one immediately obtains that

J(−k̂) = (J(k̂))T (4)

The above relation is expressed using a fixed global coordinate system (oxyz) for both propagation directions. In
many cases, it is convenient to use different coordinate systems for forward (oxyz, Fig. S1(a)) and reverse (ox

′
y

′
z

′
,Fig.

S1(b)) propagation so that light always propagates toward the positive z(z
′
) direction. Using this convention, the

off-diagonal elements will acquire a minus sign, as shown below

J(k̂) =

(
A B
C D

)
; J(−k̂) =

(
A −C
−B D

)
(5)

1.3 Geometric symmetries

Any geometric symmetry of the system imposes constraints on the form of the Jones matrix.

SJS−1 = J (6)

where S is some spatial symmetry operation. A comprehensive classification can be found in (26).
Importantly, we emphasize the difference between the symmetries of the structure and the system. The latter

contains both the structure and the light beam. The key distinction is whether or not the symmetry operation alters
the light propagation direction k̂. If a symmetry operation S leaves not only the structure but also the original
propagation direction k̂ unchanged, i.e. Sk̂ = k̂, then we say S is a symmetry of the system, and equation 6 holds.
If S is a symmetry of the structure but Sk̂ 6= k̂, then equation 6 needs to be modified as

SJ(k̂)S−1 = J(Sk̂) (7)



Figure S1: Reciprocity in unitary optical systems. (a) Forward (k̂) propagation: the incident polarization state
denoted by a is transformed into b at the output. (b) The reciprocal situation is given by phase conjugating the

polarization state (b→ b∗), as well as reversing the propagation direction (k̂ → −k̂). Reciprocity requires that the
transmitted polarization state should be the phase conjugate of that in the forward propagation case, i.e. (a→ a∗).
Note that usually two different sets of coordinate systems oxyz and ox′y′z′ are used for the forward and backward
propagation.

Equation 7 links the Jones matrices for different propagation directions, but by itself does not directly impose any
symmetry constraint on J(k̂). Therefore, in general, the symmetry of the structures does not necessarily imply any
symmetry of the Jones matrix of the system at an oblique incident angle. In fact, even highly symmetric structures
can be slightly elliptically birefringent at some oblique incident angles. However, these effects are typically small and
uncontrollable.

At normal incidence, the geometrical symmetries of the structures usually directly dictate the form of the Jones
matrices. Some symmetry operations such as rotations around the z axis (Cn,z) and reflections with respect to the
xz or yz plane (Mxz,Myz) leave the light beam propagation direction unchanged, and therefore becomes a symmetry
of the system, restricting the eigen-polarization states to be either linearly or circularly polarized. Other symmetries
such as rotations around x or y axis (Cn,x, Cn,y) and reflections with respect to the zy plane (Mxy) transforms k̂

into −k̂, and can be combined with the reciprocity condition (equation 5) to derive the restrictions on the allowable
Jones matrices (26).

Table S1 summarizes some of the key conclusions.

Unitarity J†J = 1

Reciprocity J(−k̂) = (J(k̂))T (in global coordinates)

Geometric symmetries SJ(k̂)S−1 = J(Sk̂)

Table S1: Symmetry requirements for Jones matrices



2 Design and Optimization

2.1 Symmetry considerations

The cross-sectional shape of our freeform design does not have any symmetry. However, there remain three constraints
on the form of the Jones matrix: (approximate) unitarity, reciprocity, and approximate Mxy symmetry of the
structure (mirror symmetry with respect to the xy plane). The latter results from the fact that the structures have
vertical sidewalls and that the effect of the substrate is typically small.

Figure S2: Symmetry considerations in metasurface design. Structures with vertical sidewalls are approximately
mirror symmetric with respect to the xy plane (Mxy) if the effect of the substrate is small. In this case, the
approximate Mxy symmetry connects the Jones matrices for incidence (a) from the bottom Jbot(θ) and (b) from the
top Jtop(θ). Furthermore, Jtop(θ) is linked to Jbot(−θ) through reciprocity. The local (sp) coordinate systems used
to define the Jones vectors and Jones matrices are shown.

According to equation 7, for a general incident angle θ, the Mxy symmetry requires that

Jtop(θ) 'MxyJbot(θ)M
−1
xy =

(
A −B
−C D

)
where Mxy =

(
1 0
0 −1

)
Here the subscript top and bot corresponds to incidence from the top (air) and the bottom (substrate) side respectively
(Fig. S2). The Jones matrices are written in local sp coordinate systems. In addition, reciprocity links Jtop(θ) and
Jbot(−θ) according to equation 5, yielding

Jbot(−θ) '
(
A C
B D

)
Therefore we have

J(θ) ' J(−θ)T (8)

where the subscript has been omitted as the incidence is from the same side.
In addition, if the Jones matrix is unitary, then J(θ) ' J(−θ)T implies that the eigenstates at ±θ are complex

conjugate to each other, i.e. |λ+(−θ)〉 ' |λ∗+(θ)〉 and |λ−(−θ)〉 ' |λ∗−(θ)〉. In particular, this requires that at normal
incidence the eigenstates have to be real, which physically means that the eigen-polarization states are linearly
polarized. Therefore, in the optimization we require the device to have the desired elliptical birefringence at oblique
angles of incidence, but remain linearly birefringent at normal incidence to obey the physical constraint.

2.2 Figure of Merit (FOM)

As a proof-of-principle demonstration, we would like to convert a horizontally polarized incident light |H〉 into 45◦

oriented linear polarization |45◦〉 and right circular polarization |RCP 〉 at ±60◦ respectively, while preserving the
polarization states at normal incidence. The figure of merit (FOM) is defined as the following

FOM = maxmin{|〈RCP |J(−θ0)|H〉|2, |〈H|J(0◦)|H〉|2, |〈45◦|J(θ0)|H〉|2}

where θ0 = 60◦ , and maxmin means maximizing the minimum of the polarization conversion efficiencies at different
design angles.



We argue that the above-defined FOM automatically guarantees elliptical birefringence at ±60◦ incident angles.
Due to the condition J(θ) ' J(−θ)T (SI section 2.1), the requirement that J(−θ0)|H〉 → |RCP 〉 and J(θ0)|H〉 →
|45◦〉 is equivalent to

J(θ0)|H〉 → |45◦〉, J(θ0)T |H〉 → |RCP 〉 (9)

Applying the unitary condition J(θ0)T = (J(θ0)−1)∗,the second part can be rewritten as

(J(θ0)−1)∗|H〉 → |RCP 〉
⇔ J(θ0)−1|H〉 → (|RCP 〉)∗ = |LCP 〉
⇔ J(θ0)|LCP 〉 → |H〉

Therefore, equation (9) becomes

J(θ0)|H〉 → |45◦〉, J(θ0)|LCP 〉 → |H〉 (10)

Using the geometrical representation, we know that J(θ0) induces a rotation on the Poincare sphere. To simultane-
ously satisfy both requirements in equation (10), the Poincare sphere rotation axis for J(θ0) must be equidistant from
|H〉, |LCP 〉 and |45◦〉 (Fig. S3). One can see immediately that this corresponds to the case of elliptical birefringence.
Therefore, our definition of FOM automatically guarantees having elliptical birefringence at θ = ±60◦.

Figure S3: Poincare sphere representation for J(θ0 = 60◦). The red arrow corresponds to the polarization state
rotation axis, which is determined by the eigenstate |λeig〉. The |LCP 〉 (green dot), |H〉 (blue dot), and |45◦〉 (yellow
dot) states can be connected through rotations around this axis.

2.3 Optimization procedure

The optimization procedure is similar to that in (23). We used the open source Rigorous Coupled Wave Analysis
(RCWA) solver - RETICOLO for electromagnetic simulation (34). The optimization is implemented using Matlab
built-in optimization toolbox. A random continuous initial refractive index pattern is generated without preset
symmetry constraints. For each iteration, forward and adjoint simulations are performed for θ = 0◦,±60◦ to compute
the gradient and to update the refractive index profile. Robustness is built in by considering simultaneously the
diluted, intermediate and eroded pattern. Gaussian filters are used to remove small sharp features and to achieve a
connected pattern. A hyperbolic tangent function is applied to gradually push the continuous refractive index profile
to discrete structures which contain only air and silicon. The optimization is performed iteratively and typically
converges within 300 iterations.



3 Simulation results

Figure S4: Simulation results for the original design. (a) Simulated eigen-polarization state for various angles of
incidence. (b) Simulated output polarization states (for |H〉 incidence) as a function of angles of incidence. (c)
Simulated transmission efficiency for the two eigen-polarization states. (d) Simulated retardance. (e) Simulated
orthogonality of the eigen-polarization states.

Figure S5: Simulation results considering possible fabrication errors. The simulated structure is dilated by 10 nm in
the cross-sectional shape, and also 100 nm shorter in height compared to the original design. (a) Simulated eigen-
polarization states for various angles of incidence. (b) Simulated output polarization states (for |H〉 incidence) as a
function of angles of incidence.

3.1 Simulation results for the optimized design

Figure S4 shows the simulated eigen-polarization states and output polarization states for various angles of incidence,
as well as the transmission, retardance and orthogonality information.



3.2 Simulation results considering possible fabrication errors

The difference between the simulation and measurement may be explained by inaccurate material refractive indices
and fabrication imperfections. Although we implemented robustness control in the optimization considering structure
dilation and erosion, in reality, the fabrication errors are much more diverse and complex. In figure S5, we simulated
a device that is not only dilated by 10 nm in the cross-sectional shape, but also 100 nm shorter in height (H=1400
nm) compared to the original design. The simulation results resemble the measurement data, suggesting that the
deviation might result from a combination of lateral size and height difference.

3.3 Comparison with the forward design

In theory, the structure does not have to be freeform to exhibit elliptical birefringence, as long as it avoids the
symmetry constraints discussed in SI sec.1. However, without optimization, these effects are usually small and
uncontrollable. Here we simulated a class of asymmetric U shape structures (Fig. S6). We did a parameter sweep of
the lengths and widths (labeled in Fig. S6) using the traditional forward design method. The simulation results for
the best design is shown in Figure S6(b). One can see that the eigen-polarization states become slightly elliptically
polarized at oblique angles of incidence, however, the change is much smaller than that obtained with topological
optimization.

Figure S6: Simulation results for the forward design. (a) The cross-sectional pattern is an asymmetric U shape. The
structure height and unit cell size is fixed at 1500 nm and 600 nm respectively. (b) Simulated eigen-polarization
states for various angles of incidence. The eigen-polarization states become slightly elliptically polarized at oblique
angles of incidence, however, the change is much smaller than that obtained with topological optimization. In this
design, W1 = W2 = L3 = 100 nm, W3 = 340 nm, L1 = 200 nm, L2 = 400 nm.

4 Polarimetric measurement and data analysis

4.1 Jones v.s. Mueller calculi

Two formalisms exist to describe the polarization states of light and the polarization effects of optical elements: Jones
calculus and Mueller calculus (Table S2) (13). Disregarding coherent wave superposition, for fully polarized light
and non-depolarizing optical elements, the two formalisms provide equivalent information (up to an overall phase)
and can be converted from one to another.

In most of our analysis, we use the Jones formalism as it is more compact and physically more intuitive. However,
since the Jones vector and Jones matrix are complex quantities, they are not directly measurable. Therefore, in the
experiments, we measure the Stokes vectors and Mueller matrices, as they consist of real quantities that can be
directly determined via intensity measurements.



Jones calculus Mueller calculus

Jones vector: |λ〉 = eiφ

 cos Ψ

eiδ sin Ψ

 Stokes vector: S =


1

cos 2Ψ

sin 2Ψ cos δ

sin 2Ψ sin δ


Jones matrix: |λout〉 = J |λin〉 Mueller matrix: Sout = MSin

J =

 ρxxe
iφxx ρxye

iφxy

ρyxe
iφyx ρyye

iφyy

 M =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33


Table S2: Jones & Mueller calculi

Conversion formulae

Jones matrix to
Mueller matrix

M = U(J ⊗ J∗)U−1, U = 1√
2


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0



Mueller matrix to
Jones matrix

ρxx = 1√
2

√
m00 +m01 +m10 +m11

ρxy = 1√
2

√
m00 −m01 +m10 −m11

ρyx = 1√
2

√
m00 +m01 −m10 −m11

ρyy = 1√
2

√
m00 −m01 −m10 +m11

φxy − φxx = arctan(−m03−m13

m02+m12
)

φyx − φxx = arctan(m30+m31

m20+m21
)

φyy − φxx = arctan(m32−m23

m22+m33
)

Table S3: Conversion formulae

4.2 Measurement setup

To fully characterize the device’s polarization response, dual-rotating retarder Mueller matrix polarimetry (30) was
performed at various angles of incidence (Fig. S8). The setup has five sections: the laser source, the polarization state
generator (PSG), the metasurface sample (mounted on a rotation stage), the polarization state analyzer (PSA), and
the detector. An iris and a lens are used to concentrate light on the sample. The focused beam has a divergence angle
of around 0.3◦, smaller than the angular resolution of the rotation stage (1◦). Both the PSG and PSA consist of a
fixed linear polarizer and a rotating quarter waveplate. Here the two polarizers are aligned parallel to the horizontal
direction and the two waveplates are rotated in angular increments of five-to-one. The PSG prepares a set of
polarization states, which then pass through the sample and get analyzed by the PSA. Although Mueller polarimetry
already provides complete information regarding the polarization properties of the sample, for illustration purposes,
we also performed separate Stokes polarimetry to measure the output polarization for a fixed input polarization state
This is done using the same setup but without the quarter waveplate in the PSG so that the incident polarization is
fixed to be horizontal linear polarization.



Figure S7: Poincare sphere. ψ and χ correspond to the orientation and ellipticity angle of the polarization ellipse.

Figure S8: Measurement setup. The measurement setup consists of the light source, the polarization state generator
(PSG), the sample mounted on a rotation state, the polarization state analyzer (PSA) and the detector.

4.3 Measurement data analysis

At each angle, each Mueller matrix polarimeter takes 16 intensity measurements. For the qth measurement, the
polarization generator produces a beam with Stokes vector Sq. The beam transmits through the sample and is
analyzed with an analyzer vector Aq (i.e. the outgoing beam is projected onto the polarization state Aq). The
measured intensity Iq is given by

Iq = ATqMSq =
∑
i

∑
j

aq,isq,jmi,j

Here aq,i and sq,j are components of the Aq and Sq, and are determined by the polarization generator and analyzer
configuration (i.e. the orientation of the quarter waveplates). Each intensity measurement results in a linear con-
straint on the matrix elements of M . With 16 linearly independent equations, the Mueller matrix, which has 16 real
elements, can be obtained via matrix inversion.

The measured Mueller matrices are then converted to Jones matrices using the formula in Table S2 (13). The
eigen-vectors and eigenvalues are computed via matrix diagonalization. The phase difference of the eigenvalues yields
the retardance. Note that the eigenvalues are complex amplitudes, so to obtain intensity we take the square of their
absolute values. Transmission efficiency is computed by normalizing the ”eigen”-intensity obtained with the sample
to that without the sample.



5 Mode analysis

Figure S9: Mode analysis. (a) Magnetic field intensity profiles of propagating Bloch modes. The mode profiles

are computed for normal propagation direction (k̂ = 0). (b) Effective refractive indices of the Bloch modes. (c-d)
Far-field polarization states of the two lowest order Bloch modes, M1 (c) and M2 (d). Their angular response agrees
quantitatively with that of the device’s eigen polarization states (Fig. 5 (b-c)), indicating that they are the main
contributing Bloch modes away from resonances.

To investigate the physical mechanism of the observed unconventional polarization response, we analyzed the
Bloch modes (31) supported in the metasurface layer. Inside the nanostructures, the fields expand into a basis
of Bloch modes, the eigen-modes of the nanostructure layer. At the interfaces - the Bloch modes are partially
transmitted and reflected. Although the Bloch modes are eigenmodes inside the nanostructure, in general they mix
together upon reflection. The metasurface can be effectively treated as a Fabry-Perot cavity of the Bloch modes.
When incident light impinges on the metasurface, it couples to the Bloch modes, which bounce between the interfaces
and eventually couple out to free space, contributing either to the transmitted or reflected light. The optical response
of the metasurface is ultimately determined by the characteristics and scattering dynamics of these Bloch modes.

Four propagating Bloch modes are identified in our structure (Fig. S9(a)). Among them, the first two Bloch
modes (M1 and M2) dominate the overall optical response, and the other two higher order modes are responsible for
the guided mode excitation at the resonances. The dominating role of the two lowest order modes becomes evident
as one compare their far field polarization states (Fig. S9(c-d)) with the eigen-polarization states of the metasurface
(Fig. 4(b-c)). The overall trend agrees qualitatively, indicating that they are the main contributions to the observed
birefringent response.
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