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 Table S1. Changes in ITCZ mean position. Latitudinal change in the ITCZ position in the summer (June to 
September) following the eruption for TrNH and TrSH ensembles relative to the no-volcano case and for El 
Niño vs. La Niña conditions. The ITCZ position in the volcano and no-volcano simulations and the El Niño and 
La Niña cases is shown in brackets.  
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Figure S1. Sulfate aerosol burden and radiative forcing. Changes in Global (a, b), Northern Hemisphere (c, 
d) and Southern Hemisphere (e, f) sulfate aerosol burden (Tg) (left) and shortwave radiative forcing (W/m2) at 
the surface (right) for TrNH and TrSH eruptions relative to no-volcano simulations. Changes in Equatorial 
Pacific radiative forcing for the EqPAC idealized experiments are shown in g.  The shadings display the standard 
error of mean of each ensemble difference. 
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Figure S2: Changes in no-volcano ensemble surface temperature relative to the climatology. Changes in 
surface temperature (°C, shadings) in the first summer (June to August) (a, b) and winter (December to 
February) (c, d) following the start of the no-volcano ensembles relative to the reference historical simulation 
(1911-1964). Only anomalies that are significantly different at the 5% level using a local (grid-point) t test are 
shaded. The contours follow the colorbar intervals (solid for positive and dashed for negative anomalies; the zero 
line is omitted). 
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Figure S3. Thermocline anomalies. Ocean temperature (°C) anomalies in the Equatorial Pacific (5°S – 5°N) for 
the first summer (June to September) of the eruption for the TrNH (a, b) TrSH (c, d) experiments and the first 
winter (December to February) for the EqPAC simulations (e, f) relative to the no-volcano simulations. Only 
values that are significantly different at the 5% level using a t test are shaded. The contours follow the color bar 
intervals (solid for positive and dashed for negative anomalies; the zero line is omitted). The bold grey line 
shows the climatological thermocline depth for the no-volcano members (as defined using the 20°C isotherm).  
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Figure S4. Changes in winter surface temperature and precipitation. Surface temperature (a-d) and 
precipitation (e-h) changes in the winter (December to February ) following the TrNH (a, b, e, f) and TrSH (c, d, 
g, h) eruptions for each ensemble relative to the no-volcano simulations. Only values that are significantly 
different at the 5% level using a local (grid-point) t test are shaded. The contours follow the color bar intervals 
(solid for positive and dashed for negative anomalies; the zero line is omitted). 
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Figure S5. Pacific zonal-mean temperature and zonal wind anomalies for prescribed no-volcano SST 
experiments. Zonal-mean atmospheric temperature (a – d) and zonal wind (f – i) anomalies over the equatorial 
Pacific region (120°E – 90°W) in the summer (June to September) following the TrNH (a, b; f, g) and TrSH (c, 
d; h, i) eruptions for each ensemble using prescribed SST from the no-volcano experiments. Only values that are 
significantly different at the 5% level using a local (grid-point) t test are shaded. The contours follow the 
colorbar intervals (solid for positive and dashed for negative anomalies; the zero line is omitted). 

 
Figure S6. Changes in surface temperature, wind, sea level pressure for prescribed no-volcano SST 
experiments. Changes in surface temperature (°C, shadings), wind (m/s, arrows) and sea level pressure (hPa, 
contours) in the first summer (June to September) following the TrNH (a, b, e, f) and TrSH (c, d, g, h) eruptions 
for each ensemble using prescribed SST from the no-volcano experiments. Only temperature and precipitation 
values that are significantly different at the 5% level using a local (grid-point) t test are shaded. The contours 
follow the colorbar intervals (solid for positive and dashed for negative anomalies; the zero line is omitted).  
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Figure S7: Changes in sea level pressure anomalies between prescribed and coupled SST experiments. 
Changes in sea level pressure (SLP) anomalies (hPa, shadings) between prescribed and coupled SST 
experiments in the first summer (June to September) following the TrNH (a, b) and TrSH (c, d) eruptions for 
each ensemble. Only anomalies that are significantly different at the 5% level using a local (grid-point) t test are 
shaded. The contours follow the colorbar intervals (solid for positive and dashed for negative anomalies; the zero 
line is omitted) and represent the coupled SLP anomalies.  
 

 
Figure S8. Sea level pressure and wind composite of El Niño minus La Niña. Difference between El Niño 
and La Niña composite of sea level pressure (a) and near-surface wind (b) for the summer (June to September – 
JJAS) preceeding the peak of ENSO events in the reference experiments. Only values that are significantly 
different at the 5% level using a local (grid-point) t test are shaded. The contours follow the color bar intervals 
(solid for positive and dashed for negative anomalies; the zero line is omitted). 

c) d)

a) b)

(hPa)

Sea level pressure changes between anomalies in Fixed and Coupled SST experiments 

: :

: :

~ ~

(hPa)



 
 
Figure S9. Global zonal mean temperature anomalies. Zonal mean atmospheric temperature anomalies over 
the entire globe in the summer (June to September – JJAS) following the TrNH (a, b) and TrSH (c, d) eruptions 
for each ensemble. Only values that are significantly different at the 5% level using a local (grid-point) t test are 
shaded. The contours follow the color bar intervals (solid for positive and dashed for negative anomalies; the 
zero line is omitted). 

Model Validation 
NorESM1-M does not include a module for the explicit treatment of stratospheric microphysics, 
therefore SO2 / SO42- interactions in the stratosphere goes through the tropospheric life-cycling scheme. 
Furthermore, NorESM1-M does not simulate growth by self-coagulation (coagulation of Aitken-mode 
particles combining to form larger particles). Self-coagulation is an important mechanism after an 
eruption when a massive amount of sulphate is injected, as described in Pinto et al. (44) and English et 
al. (45). Therefore, in NorESM1-M, SO2 injection into the stratosphere leads to the formation of H2SO4 
in a much finer mode compared to observed sizes as discussed in Pausata et al. (43). This can lead to 
significant biases in the climate response to volcanic eruptions due to the increased residence time of 
the aerosol particles as well as radiative forcing, especially when simulating strong tropical events 
where the injection height can reach the middle stratosphere up to 40 km asl. To overcome this 
shortcoming we lowered the injection height from 24 km to 18 km in our simulations and we validate 
our model against the Pinatubo eruption. When lowering the injection height, the Pinatubo simulation 
shows a better agreement with observations in terms of volcanic aerosol residence time and global 
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cooling (Fig. S10). 
Specifically, to test the skill of NorESM1-M in simulating large tropical eruptions we run 5 simulations 
in which we injected 20 Tg of SO2 at a mean altitude of 18 km mimiking the Pinatubo eruption. We 
aimed at reproducing a similar SO4 peak concentration and e-folding time compared to observations. 
Injecting the SO2 mostly between 15 and 21 km, the model show a SO4 peak of ~22 Tg and an e-
folding time of ~17 months (Fig. S8). Observational evidence indicates a sulfate aerosol production 
between 21 and 40 Mt (46) and an e-folding time between 12-14 months (47–48). Our model thus sits 
in the low-side of the observations for the SO4 peak and slightly underestimates the SO4 removal. The 
simulated global cooling for the Pinatubo eruption is around 0.4 °C, in agreement with observational 
and model-based estimates of 0.4-0.5°C (49). Therefore, we have adopted the same injection height for 
the Tambora experiments as for the Pinatubo eruption. 

 
Figure S10. Global-average anomalies for Pinatubo eruption. Global-average anomalies of radiative forcing 
at the surface, aerosol optical depth, sulfate burden and surface temperature following a Pinatubo-like eruption 
simulated by NorESM1-M. Shading shows the approximate 95% confidence intervals (twice the Standard Error 
of the Mean) of the change seen in all 5 pairs of experiments performed. 
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