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Supplementary Note 1: Formalism of spin relaxation time

Starting from the Lindblad master equation of density matrix in interaction picture based on the standard Born-
Markov approximation given in Ref. 1
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where α is the combined index of electron wavevector k and band index n, q is phonon wavevector, λ is normal
mode, n±qλ = nqλ + 0.5 ± 0.5 and nqλ is the phonon occupation number, R is the atomic coordinate, i = x, y, z,

eqλ (R, i) is the phonon polarization vector and δ (εk − εk′ ∓ ωqλ) is the Dirac delta function.
In its matrix form, the above equation becomes
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Suppose the density matrix ρ = ρeq + δρ, where ρeq is the density matrix of the final equilibrium state and
||δρ|| � ||ρeq||.
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Considering ∂ρ
∂t |ρ=ρeq ≡ 0, ρeq is just Fermi-dirac distribution function f and neglecting second-order terms, we
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Given an exponentially-relaxing measured quantity O = Tr(oρ), where o is the observable operator, we can define
the relaxation rate Γo and relaxation time τo = Γ−1o of quantity O as
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Taking complex conjugate of the second terms, we have
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where Trn and †n are trace and matrix complex conjugate for only band index.

Supplementary Note 2: Fermi’s-golden-rule-like formula

The most general (experiment-agnostic) choice of δρ for preparing a spin polarization is to assume that all other
degrees of freedom are in thermal equilibrium, which can be implemented using a test magnetic field Bi as a Lagrange
multiplier for implementing a spin polarization constraint. Suppose a perturbation H1 = −2µBBiSi/~ is turned on
at t→ −∞ but is turned off at t = 0. After that, the spin starts to relax, finally at t→ +∞, the system goes back to
the final equilibrium state. At t = 0−, the system is still at a equilibrium state with Hamiltonian H = H0 +H1. Let
V1 be the eigenvectors of this equilibrium state at first order of perturbation theory. With V1, the density matrix at

t = 0− is the Fermi function with eigenvalues ε+ ε1. With ground-state eigenvectors, ρ (t = 0−) = V1f (ε+ ε1)V †1 .
Following the instruction of degenerate perturbation theory, for H = H0 + H1, we firstly define the degenerate-
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Taking the zeroth and first order of ρ (t = 0−) ,
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Obviously, with any set of eigenstates of H0, which is a unitary transform of V deg
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Insert the above equations in Eq. 9,
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Such formula is preferred numerically since Γs,i is positively defined.
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The above formula is the same as Eq. 3 and 4 in Ref. 2.

Supplementary Note 3: Wannier-interpolated band structure

Supplementary Figure 1-3 show that our Wannier-interpolated band structures fit perfectly those directly calculated
by density functional theory (DFT). This ensures the high quality of the Wannierization, which is crucial to obtain
accurate lifetime results.

Supplementary Note 4: Phonon dispersion

Supplementary Figure 4 shows the phonon band structure of monolayer MoS2 and MoSe2. The lowest three modes
are the out-of-plane acoustic or flexural (ZA), transverse acoustic (TA) and longitudinal acoustic (LA) modes. Both
the TA and LA modes show linear dispersion in the long wavelength limit, while the ZA phonons deviate with an
approximate quadratic dependence. The next two are in-plane optical E” modes, with two S(Se) atoms vibrating
out of phase and the Mo atomic static. The TO and polar LO modes are two in-plane modes, but with all three
atoms moving out of phase. The LO-TO splitting of MoS2 is is too small to be visible. The A1 and A2” phonons are
out-of-plane optical vibrations. More specifically, the A1 mode has the Mo atom static while the S(Se) atoms moving
in the opposite directions. All three atoms oscillate out of the plane and out of phase in the case of A2” phonons.
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Supplementary Figure 1: Wannier-interpolated band structure of (a) silicon and (b) iron compared with that
directly calculated by DFT.

Supplementary Figure 2: Wannier-interpolated band structure of MoS2 compared with that directly calculated by
DFT in a wide energy range (left panel) and close to CBM (right panel).

Supplementary Figure 3: Wannier-interpolated band structure of MoSe2 compared with that directly calculated by
DFT in a wide energy range (left panel) and close to CBM (right panel).
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Supplementary Figure 4: Phonon dispersion of (a) monolayer MoS2 and (b) monolayer MoSe2 calculated with the
supercell method using a 6×6 supercell.

Supplementary Table I: The calculated parameters of 2D Fröhlich model - in-plane (εmp ) and out-of-plane (εmz )
monolayer dielectric constants, thickness t and in-plane (Z∗p ) and out-of-plane (Z∗z ) Born effective charges, of Mo
atom of MoS2 and MoSe2. See the detailed definition of εmp , εmz and thickness t in Ref. 3.

εmp εmz t (bohr) Z∗p Z∗z

MoS2 16.8 16.6 10.3 -1.0 -0.07

MoSe2 18.3 18.3 11.1 -1.4 -0.08

We follow the approaches in Ref. 3 and 4 to consider the effects of the 2D Fröhlich interaction on the phonon
dispersion and the electron-phonon matrix elements. The parameters of the 2D Fröhlich model are extract from a
series of density functional perturbation theory5 calculations using Quantum Espresso6. The model parameters are
summarized in Supplementary Table I.

Supplementary Note 5: Transport properties

We show our calculated transport properties of silicon and iron compared with experimental data for verifying
the implementation of our carrier lifetime due to electron-phonon scatterings. From Supplementary Figure 5, our
calculated electron mobilities are in good agreement with experimental data in Ref. 7. Our calculated electrical

Supplementary Figure 5: Comparison between calculated and measured intrinsic (low carrier concentration ≤1015

cm3) electron mobilities of silicon, as a function of temperature.
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resistivity of iron at 300 K is 105 µΩ cm, close the experimental value 99.8 µΩ cm8.
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